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Abstract
In the past two decades, work on the microbiota-gut-brain axis has led to a renewed appreciation for the interconnectedness 
between body systems in both clinical and scientific circles. In the USA alone, millions of adults are burdened with non-
communicable chronic diseases whose putative etiologies were previously thought to be restricted to either the gut or brain, 
such as inflammatory bowel disease, irritable bowel syndrome, Parkinson’s and Alzheimer’s disease, and autism spectrum 
disorder. However, the recent explosion of research into the impacts of the gut microbiome on diverse aspects of human 
health has revealed the potentially critical importance of reciprocal interactions between the gut microbiota, the immune 
system, and the brain in diverse diseases and disorders. In this review, we revisit the history of gut-brain interactions in sci-
ence and medicine, which dates back to at least the eighteenth century, and outline how concepts in this field have shifted 
and evolved across eras. Next, we highlight the modern resurgence of gut-brain axis research, focusing on neuro-immune-
microbiota interactions and recent progress towards a mechanistic understanding of the diverse impacts of the microbiome 
on human health. Finally, we offer a forward-looking perspective on the future of microbiota-gut-brain research, which may 
eventually reveal new paths towards the treatment of diverse diseases influenced by the complex connections between the 
microbiota and the brain.
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Introduction

The recent explosion of interest in the role of the gut 
microbiota in human health has led to a growing interest 
in the so-called microbiota-gut-brain axis. However, the 
first studies of the gut-brain axis date back more than three 
centuries. In this review, we explore the saga of the gut-
brain axis over the centuries, with a focus on microbiota-
neuroimmune communication. We begin by outlining the 
clinical and scientific conceptualization of the gut-brain 

axis in the 1700s before reviewing modern investigations 
of the underlying mechanisms governing gut-brain com-
munication. Finally, we speculate on how our understand-
ing of the myriad links between the gut and brain may 
shift in the future.

Gut‑brain axis: a historical perspective

Scientific and clinical perspectives on the gut-brain axis 
have historically cycled between holistic and individualized 
approaches. Early descriptions of the gut-brain connection 
can be traced back at least three centuries. In the eighteenth 
century, physicians’ conception of the connection between 
the gut and brain was primarily holistic. It centered around 
the idea that digestion, emotions, and identity are linked and 
that individuals’ digestive functions influence both mind and 
mood [1–3]. Furthermore, this connection was bidirectional: 
the mind affects digestive function, and digestive function 
influences the mind (Fig. 1). In 1765, Robert Whytt, a Scot-
tish physician, introduced the concept of nervous sympathy 
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in which all internal body organs, including the gut and the 
brain, are interconnected by a single communication net-
work [4]. Nervous sympathy thus reflects how eighteenth 
and nineteenth century scientists and physicians conceptual-
ized the reciprocal nature of the gut-brain axis—that is, an 
unhealthy digestive system causes an abnormal mind.

Beginning in the late nineteenth century and continu-
ing into the twentieth century, increased specialization in 
medicine ushered in a Golden Age of medical discovery 
[5]. This enabled rigorous and focused dissection of specific 
health problems, leading to more in-depth clinical science 
and medical breakthroughs such as the polio vaccine in 1955 
[6]. However, partitioning different organs to various clini-
cal specialties set back the clock on the holistic approach to 
understanding the gut-brain connection that was dominant in 
the eighteenth century. For example, nineteenth-century phy-
sicians often dismissed patients with gastrointestinal issues of 
unclear etiology as hypochondriacs. And, even in the 1970s, 
physicians would often diagnose patients that exhibited gas-
trointestinal symptoms with no apparent organic cause with 
psychiatric rather than gastrointestinal illness [7].

The development of the germ theory of disease by Louis 
Pasteur and Robert Koch ushered in a new era of microbe-
focused research and innovation [8]. The burden of com-
municable diseases decreased dramatically beginning in the 
mid-nineteenth century due to improvements in sanitation 
hygiene as well as the development of vaccines and antibi-
otics. At the same time, the burden of non-communicable 
diseases rapidly increased [9]. Unlike infectious diseases, 
non-communicable conditions were more lifestyle-driven 
and often chronic [5, 9]. Faced with this new challenge, 
clinicians and scientists once again began to approach the 
body holistically. This transition was marked by a steady 
progression of research seeking to dissect how the gut 
affects central nervous system functions and vice versa. 
For example, surgeons observed that post-operative jeju-
noileostomy patients experienced episodic central nervous 
system symptoms, such as slurred speech and confusion, 
which sometimes recurred months after their operation 
[10]. These observations challenged previous conceptions 
that the small intestine and the colon were merely tubes for 
waste materials [7].

Fig. 1   History of the gut-brain axis: trends in clinical and scientific 
understanding of the gut-brain axis from the eighteenth to twenty-first 
centuries. In the eighteenth century, the gut-brain axis was conceptu-
alized by most clinicians and scientists as two organs that constantly 
communicate. However, this view shifted in the nineteenth century 
as medicine became increasingly specialized. In the twentieth cen-
tury, a resurgence of interest in gut-brain communication emerged as 

the USA faced an increasing burden of chronic, non-communicable 
diseases. The modern twenty-first century understanding of the gut-
brain axis is characterized by an appreciation for its complexity, the 
emerging fields of the gut microbiome and neuroimmunology, and 
the increasing promise of gut-brain interventions as novel therapeutic 
approaches to treat neurological disease
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Indigenous microbial inhabitants of the gut, now known 
as the microbiota, also came into focus as a potential key 
to understanding the gut-brain connection. One of the first 
proponents of this concept was Russian embryologist Elie 
Metchnikoff, who proposed that probiotic bacteria found in 
yogurt could promote health and delay senility more than 
a century ago [11]. This idea remained largely dormant for 
many decades, before reemerging in the mid to late twenti-
eth century when multiple research groups began to explore 
the impact of alterations in the gut microbiota on mamma-
lian phenotypes in rodent models. Ian Rowland in the UK 
found that toxic concentrations of mercury and associative 
neurotoxic symptoms were more pronounced in rats treated 
with antibiotics [12]. Antibiotic administration in rats also 
altered biogenic amine concentrations in plasma [13, 14]. 
The generation of germ-free rats that lack all indigenous 
microbes led to further targeted studies of the gut-brain axis 
and numerous studies in the late-twentieth century revealed 
that diverse CNS phenotypes differed between GF and con-
ventional animals. Linda Hegstrand and R. Jean Hine from 
the William S. Middleton Memorial Veterans Hospital in 
Wisconsin found that conventional rats had higher hypo-
thalamic histamine levels than germ-free (GF) rats [15]. 
Furthermore, 1,3-dinitrobenzene administration induced 
ataxia in GF but not conventional rats [16]. These studies 
laid the foundation for a growing consensus that gut-brain 
connections are critical for human health. At the turn of the 
century, scientists began to examine whether specific com-
mensal bacteria might even prevent or reverse neuropathol-
ogy. In 1965, following on earlier studies of the probiotic 
Lactobacillus by Minoru Shirota and Elie Metchnikoff in 
intestinal health [11], William Macbeth of Harvard Medi-
cal School performed one of the first experiments testing 
the impact of probiotics on the brain when he successfully 
treated two patients with hepatic encephalopathy with Lac-
tobacillus acidophilus [17].

In the late twentieth century, advances in understanding 
the connection between the gut and the brain were spurred 
on by the establishment of the new field of neuroimmunol-
ogy, which began to challenge the traditional assumption 
that the brain is segregated from the immune system (Fig. 1). 
A series of pioneering studies by early proponents of this 
field demonstrated a critical role for T lymphocytes in main-
taining brain homeostasis, injury repair, and resolution of 
neuroinflammation [18–24]. The shift of clinical research 
towards a more team-based and multidisciplinary approach 
in the late twentieth century [25] led to mechanistic insights 
into the gut-brain axis and the immune system’s role in these 
interactions. Patrick Dougherty’s lab in the 1980s found 
that the bacterial product 6–0-stearoyl-muramyl dipeptide 
(MDP) could attenuate opiate withdrawal severity in a dose-
dependent fashion when injected directly into the brain [26, 
27]. Sylvain Nadeau and Serge Rivest at Laval University 

found that myeloid-derived cells in the brain express the LPS 
receptor CD14, indicating that brain-resident myeloid cells 
may sense peripheral bacterial products [28]. At the same 
time, a few studies began to indicate a critical role for the 
immune system in mediating the bidirectional communica-
tion between the gut and the brain. Specifically, Baciu et al. 
found that tuberomammillary lesions dramatically reduced 
the phagocytic activity of circulating immune cells [29]. 
These early indications of neuro-immune-microbiota con-
nections paved the way for the gut-brain-microbiome boom 
that would occur in the twenty-first century. During this 
same era, advances in next-generation sequencing enabled 
facile assessments of microbiota composition independent 
of microbial culture via 16S rRNA gene sequencing. Many 
early research efforts using these technologies focused on 
identifying individual causative agents of non-communica-
ble human diseases; however, after failing to find individual 
pathogens responsible for these diseases, the field largely 
converged on the modern holistic view of microbiota-medi-
ated impacts on host health [30].

Modern understanding 
of neuro‑immune‑microbiota connections

Modern clinical conceptions of the neuro-immune-micro-
biota axis are, in essence, an homage to the eighteenth- and 
nineteenth-century holistic approaches to understanding 
the gut-brain connection. A preponderance of clinical and 
pre-clinical data underscore the consistent comorbidity 
between neuropsychiatric diseases and intestinal patholo-
gies [31, 32]. Correspondingly, the gut microbiota has 
been found to modulate psychological outcomes, such as 
behavioral abnormalities in neurodevelopment and the anti-
seizure effects of ketogenic diets [33, 34]. An explosion of 
recent studies has also provided insights into the role of the 
neuro-immune-microbiota axis in complex diseases such as 
ulcerative colitis, inflammatory bowel disease, Parkinson’s 
disease, and multiple sclerosis [35, 36]. Indeed, in the past 
21 years, there have been 2.5 times as many publications in 
this field as compared to the past century altogether. Most 
recently, spurred on by the rapid growth of the microbiome 
field, mechanistic insights into the role of the immune sys-
tem in the gut-brain axis have started to come into focus. 
Below, we offer a brief review of the current understanding 
of the neuroimmune-microbiota connection with a focus on 
the influence of bacteria and their metabolites on neurode-
generative disease.

The classical role of microglia in neuroinflammation

Considered endogenous macrophages of the central nerv-
ous system, microglia are essential for tissue homeostasis in 
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the brain. Microglial activation is central to the macrophage 
theory of depression, where neuroinflammation is a core 
contributor to abnormal depressive behaviors [37]. Micro-
glia dysfunction is also prominent in other neuropathologies, 
including schizophrenia (increased microglial activity and 
density, elevated expression of proinflammatory cytokines) 
[38, 39], Parkinson’s disease (increased activation in the 
substantia nigra by alpha-synuclein, proinflammatory pro-
file) [40, 41], Alzheimer’s disease (increased activation, syn-
aptic remodeling) [42–44], and multiple sclerosis (increased 
activation profile and oxidative stress) [45, 46].

Building upon earlier experiments from the Rivest lab 
[28], multiple research groups found that GF mice and mice 
with a dysbiotic gut microbiota have abnormal microglia 
populations in the hippocampus, cortex, and cerebellum 
[47–49]. Microglia from GF mice are immature as compared 
to microglia from conventionalized mice [48], as character-
ized by higher Ki67 and Csflr expressions and diminished 
capacity to produce a variety of chemokines and cytokines 
upon infection [48]. This “dysbiotic” microglial population 
ultimately leads to a reduced ability to fight against both sys-
temic and local bacterial and viral infections [48]. Microglial 
morphology is also altered in GF mice and mice colonized 
with simple bacterial communities, with increased branch-
ing [48].

Altered microglial profiles in GF versus conventional 
mice can be at least partially explained by the effects of 
microbial-derived metabolites on microglia (Fig. 2). The gut 
microbiota produces thousands of unique small-molecule 
metabolites, some of which can accumulate systemically and 
reach extra-intestinal tissues, including the brain [35, 50]. 
Short-chain fatty acids (SCFAs), which are produced dur-
ing microbial fermentation of dietary fiber, are among the 
best-studied microbial metabolites [50]. Reduced SCFA con-
centrations have been associated with multiple CNS patholo-
gies, such as brain amyloidosis in Alzheimer’s disease [51]. 
Furthermore, SCFA administration restored microglial acti-
vation profiles and functions in GF mice [48]. Conversely, 
microbial-derived SCFA promoted microglial activation 
and enhanced motor dysfunction in a mouse model of Par-
kinson’s disease [52]. SCFAs also induced microglial pro-
duction of neuroprotective IL-10 [53]. Beyond SCFA, other 
microbial metabolites such as indole and its derivatives have 
also been shown to influence microglial activation and neu-
rotoxicity [54–57]. Microglial activation is also thought to 
be an initial step in the chemical-induced neurotoxic cas-
cade [58]. Gut microbes that synthesize AhR agonists from 
dietary tryptophan (e.g. Peptostreptococcus russellii), also 
influence microglial activation by promoting TGFα produc-
tion and modulating astrocyte activation and neuroinflam-
mation [54–56].

Emerging evidence also suggests that microglial neuro-
inflammation in the central nervous system may result from 

microbiota-mediated priming via the peripheral immune 
system (Fig. 2). In mice treated with dextran sulfate sodium 
(DSS) to induce colitis, researchers observed parallel and 
synergistic inflammatory responses in the gut mucosa and 
the cerebral cortex, marked by increased expression of IL6 
and iNOS [59]. DSS-colitis ultimately led to microglial alter-
ations characterized by increased activation and elevated 
cytokine levels, which mirrors the microglial phenotype 
in germ-free mice [48]. Potential priming of microglia by 
peripheral immunity is also supported by data from Par-
kinson’s disease mouse models. For example, DSS–induced 
intestinal inflammation led to accelerated brain neuropathol-
ogy and motor dysfunction in a Parkinson’s disease model 
[60]. The age of onset of motor dysfunction was also sig-
nificantly earlier in DSS-treated mice compared to mice that 
were not challenged with DSS. Although the authors did not 
profile microglia in these studies, these findings are con-
sistent with the microglia hypothesis of Parkinson’s disease 
progression. However, it is unknown precisely how periph-
eral immune responses reprogram microglia. Illuminating 
the nature of this neuromodulation will be vital to develop 
strategies to protect the central nervous system from the 
pathological impacts of peripheral immune activation by 
the microbiome.

Adaptive immunity: T lymphocytes 
in neuro‑immune‑microbiota communication

Immune cells in the meningeal compartments are essential 
for maintaining neurological homeostasis, including regu-
lating behavior and resolution of neuroinflammation after 
injury [61]. T lymphocytes are critical coordinators and 
effectors of both mucosal and systemic immunity. Intestinal 
dendritic cells constantly sample the luminal contents of the 
gut, resulting in persistent priming of T cells by gut bacteria 
that primarily results in regulatory T cell (Treg) expansion 
[62, 63]. Thus, commensal microbes profoundly impact 
intestinal T cell activation and differentiation. Microbial 
metabolites, such as SCFAs, maintain immune homeosta-
sis by inducing Treg differentiation [64, 65] (Fig. 2). Con-
versely, butyrate can activate antigen-specific CD8 + T cell 
populations, promoting anti-pathogen immunity in the gut 
[66]. Other metabolites that can alter T lymphocyte func-
tionality include ascorbate (induction of T cell apoptosis) 
[67], mevalonate and dimethylglycine (inhibit the develop-
ment of IFNγ + CD8 T cells) [68], and poly-γ-glutamic acid 
(induction of regulatory T cells), to name just a few [69]. 
Specific gut bacteria can also induce defined T cell subsets, 
such as Th17 induction by segmented filamentous bacteria 
(SFB) and Treg induction by Bacteroides fragilis [70–73].

Microbiota-induced peripheral T cell dysregulation can 
potentially lead to alterations in T cell populations in the 
CNS. For example, microbiota-induced increases in Th17 
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differentiation contribute to maternal immune activa-
tion–induced behavioral abnormalities [74] and exacerbate 
the mouse model of multiple sclerosis experimental auto-
immune encephalomyelitis (EAE) [75] [76]. By combining 
single-cell RNA-sequencing and repertoire sequencing of 
Th17 T cells across peripheral and central tissues, a recent 

study solidified the connections between peripheral and 
CNS T cells in EAE. This study identified two subsets of 
Th17 cells in the CNS: a homeostatic SLAMF6 + popula-
tion and a pathogenic CXCR6 + population that migrates to 
the central nervous system in EAE [77] (Fig. 2). Homeo-
static SLAMF6 + Th17 cell populations in intestinal tissues 

Fig. 2   Mechanistic insights into the neuro-immune-microbiota axis. 
The role of microglia, T and B lymphocytes, and neurons in medi-
ating interactions between the gut and the brain in homeostasis and 
disease. Modern techniques in microbial manipulation and steriliza-
tion (e.g., germ-free [GF] mice) and immunological advances enable 
precise dissection of the role of specific gut microbes and immune 
cells in modulating central nervous system (CNS) diseases. Gut 
microbes and their metabolites influence intestinal T and B cell acti-
vation and differentiation (1). A subset of intestinal T and B cells can 
circulate from the gut (2) to the meninges where they influence the 
local neuro-immune microenvironment by releasing cytokines (e.g., 

IL-17a, IL-10) and antibodies (e.g., IgA) that act on central neurons 
and microglia and protect against meningeal infection (3a: T cells; 
3b: B cells). Dysbiotic and GF mice have altered microglia, which are 
immature and hyperproliferative (4). Lastly, accumulating evidence 
suggests that vagal and insular cortex neurons are critical in mediat-
ing the bi-directional communication between the gut and the brain 
and that insula neurons can retrieve and reactivate past inflammatory 
events (5). Abbreviations: EAE: experimental autoimmune encepha-
lomyelitis; GF: germ-free; SPF: specific-pathogen-free; PC: plasma 
cells; CNS: central nervous system; SCFA: short-chain fatty acids; 
SFB: segmented filamentous bacteria
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gave rise to pathogenic CXCR6 + Th17 cells, which were 
significantly reduced in mice treated with antibiotics. These 
data suggest that microbial composition and density play a 
critical role in maintaining SLAMF6 + Th17 cells [77]. The 
conversion of SLAMF6 + to CXCR6 + Th17 cells was also 
reduced in antibiotic-treated mice [77], providing an attrac-
tive mechanistic explanation for the resistance of germ-free 
mice to EAE.

While SFB-induced Th17 cells can promote EAE, B. 
fragilis–induced Tregs can ameliorate EAE [78] (Fig. 2). 
The B. fragilis zwitterionic capsular polysaccharide A pro-
tects against severe inflammation in EAE by inducing the 
conversion of naive T cells to IL-10 + FoxP3+ regulatory 
T cells [79]. Although the exact mechanism of protection 
is unclear, it is postulated that these Tregs directly combat 
IL-17a induction. Recent studies describe a new role for 
the gut microbiota in the cross talk between peripheral and 
CNS immunity. Using paired single-cell and TCR repertoire 
sequencing, Papparlardo et al. found that the majority of T 
cells in human cerebrospinal fluid exhibit features character-
istic of peripheral T cells, suggesting that peripheral T cell 
populations play a significant role in CNS immunity [80]. 
Furthermore, Benakis et al. found that bacterial dysbiosis 
suppressed effector T cell trafficking from the gut to the lep-
tomeninges after acute ischemic brain injury [81]. Finally, 
the recent discovery that T cells inhabit the meninges both at 
homeostasis and during inflammation raises a myriad of new 
questions about the nature of this surveillance and its impli-
cation for central nervous system health and disease [82].

In addition to classical T cells, innate-like lymphocytes 
may also influence neuronal functions. For example, the 
release of IL-17a by γδ T cells in the meninges can directly 
activate cortical glutaminergic neurons and induce anxiety-
like behaviors [61]. The gut microbiome also has a profound 
impact on the selection and function of invariant natural 
killer T (iNKT) cells [84]; thus, NKT cells may also form an 
additional link between the gut and the brain [85].

Adaptive immunity: B lymphocytes 
in neuro‑immune‑microbiota communication

Accumulating data indicate that B cells also play a criti-
cal role in regulating CNS immunity. As with T lympho-
cytes, microbial metabolites can shape B lymphocyte dif-
ferentiation and function (Fig. 2). Lactobacillus-derived 
3-idoleacetic acid and lipopolysaccharide (LPS) enhance the 
production of IL-35 by Bregs [86]. SCFAs influence plasma 
cell differentiation and antibody production [87, 88], where 
acetate induces IgA production and butyrate suppresses IgA 
production [89, 90]. In the intestine, IgA+ plasma cells criti-
cally regulate microbiota composition and barrier function 
[91], and IgA production by intestinal plasma cells is rapidly 
induced following microbial colonization [92]. IgA levels in 

the meninges also depend on microbial colonization status. 
Like T cells, gut-derived plasma cells can also traffic to the 
brain [93]. Although IgA+ plasma cells are abundant in the 
dural venous sinuses of conventional mice, only very low 
levels of IgA+ plasma cells are found in the dural sinuses 
of GF mice. Colonization of ex-GF mice with human fecal 
microbes restored IgA+ plasma cell populations in the dural 
venous sinuses; notably, dural B cell repertoires overlapped 
with intestinal plasma cells, suggesting that dural venous 
sinus plasma cells originated in the gut [93]. IgA-produc-
ing plasma cells in the dural venous sinuses provide criti-
cal protection against infection as depletion of meningeal 
IgA+ plasma cells resulted in infiltration of fungi to the brain 
after intravascular injection [93].

Finally, several recent studies have highlighted immu-
noregulatory roles for gut-derived IgA+ plasma cells in the 
central nervous system. Early evidence of immune sup-
pression by B cells emerged in 2010 when Lloyd Casper’s 
group found that antibiotic treatment of EAE mice induced 
expansion of CD5+ B cell populations in lymphoid organs 
and adoptive transfer of these CD5+ B cells conferred 
protection against EAE pathology [94]. More recently, 
microbiota-specific IgA+ plasma cells were shown to pro-
tect against EAE by trafficking to the central nervous sys-
tem [95], presumably as part of a homeostatic response to 
reduce inflammation. This protection is mediated by gut-
derived IgA+ plasma cells, which can traffic to the cen-
tral nervous system and reduce disease severity in an IL-
10-dependent manner [96]. Together, these studies show 
that the impacts of microbiota-mediated education of the 
immune system extend beyond the intestine to the CNS in 
both health and disease.

The potential role of vagal and central neurons 
in neuro‑immune‑microbiota connections

The vagus nerve can serve as a physical conduit that directly 
relays signals from the gut microbiota to the central nervous 
system (Fig. 2). The vagus nerve comprises 80% afferent fib-
ers and 20% efferent fibers [97], and vagal nerve endings in 
the gastrointestinal tract can sense luminal inputs [98, 99]. 
Numerous microbial-derived metabolites have been shown 
to impact vagal activation. The microbiota-derived SCFA 
oleate activates the vagus nerve via the CCK-A receptor 
[100], and butyrate can directly activate vagal afferent ter-
minals in the gut [100]. Furthermore, vagal fibers express 
pattern recognition receptors such as Toll-like receptor 4, 
enabling direct detection of and activation by bacterial prod-
ucts [101]. Interestingly, targeted vagal stimulation can sup-
press LPS-induced pro-inflammatory cytokine production by 
microglia [102, 103]. The vagus nerve’s role in the gut-brain 
axis is commonly studied using vagotomized humans and 
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mice. For example, vagotomized humans had a significantly 
lower risk of developing Parkinson’s disease [104, 105]. In 
mice, Lactobacillus rhamnosus–induced amelioration of 
anxiety- and depression-related behaviors was diminished 
after vagotomy [106, 107].

The vagus nerve is also thought to serve as a physical 
transporter of protein aggregates in Alzheimer’s and Par-
kinson’s disease via a mechanism analogous to prion dis-
ease. The accumulation of α-synuclein aggregates in gut 
vagal endings often precedes CNS symptoms in progres-
sive Parkinson’s disease, and recent studies have shown that 
α-synuclein aggregates injected into the gut can transit to 
the brain via the vagus nerve [108] (Fig. 2). Gut bacteria 
can also produce amyloid proteins, such as curli or CsgA, 
which is important for biofilm formation and epithelial 
adhesion [109, 110]. Colonization with E. coli–producing 
curli exacerbated motor deficit in a mouse model of Par-
kinson’s disease [111], suggesting that microbial influences 
on α-synuclein aggregation in the gut can seed or enhance 
disease progression via the trafficking of peripheral protein 
aggregates to the central nervous system.

Recent evidence also suggests that microbial metabolites 
can directly influence the CNS (Fig. 2). For example, the 
circulation of microbial metabolites to the brain can affect 
thalamic axonogenesis in early life [112]. Also, specific 
microbial-derived metabolites associated with neuropsy-
chiatric disorders, such as 3-(3-hydroxyphenyl)-3-hydroxy-
propanoic acid (HPHPA), are more abundant in cerebro-
spinal fluid from conventional mice as compared to GF 
mice [113]. Finally, recent pioneering studies underscore 
the bidirectional nature of the gut-brain axis (Fig. 2). Koren 
et al. demonstrated that a subset of neurons in the insular 
cortex were activated by DSS-induced intestinal inflam-
mation [114]. Remarkably, reactivation of these neurons 
after removal of DSS led to the re-induction of intestinal 
inflammation, suggesting that these neurons can store and 
retrieve past immunological activation. Prior observations 
of psychosomatic immune responses, including conditional 
allergic responses, indicate the potential generalizability 
of CNS-mediated recall of past immune responses. Future 
exploration of the memory and recall capacity of the brain 
in neuro-immune-microbiota cross talk promises to further 
solidify this fascinating concept.

Conclusion

Scientific and clinical endeavors to understand the gut-brain 
axis over the past three centuries have evolved in fits and 
starts toward the modern holistic approach that underlies 
the explosion of new interest in this area. The emergence of 
neuroimmunology as a core discipline that links the study 
of the nervous and immune systems has critically enabled 

our current understanding of the gut-brain connection. Fur-
thermore, the technology-fueled explosion in microbiome 
research over the past two decades has ushered in a new era 
of exploration of the microbiota-gut-brain axis. Going for-
ward, holistic approaches and close collaborations between 
normally disparate disciplines will be critical to expose the 
core mechanistic principles that underlie the complex and 
multi-dimensional interactions between these systems.
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