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INTRODUCTION

Intracrinology
Intracrinology refers to the production of active sex steroids in situwithin the cells where the action
takes place. The active hormones are not released in the extracellular space (1, 2) as opposed to
endocrinology where glands release active hormones in circulation to exert their effect on target
tissues. The term “intracrinology” has been coined 30 years ago during the study of the prostate
(3). It has been shown that after removing androgens of testicular origin, the prostate still produces
dihydrotestosterone (DHT) from an inactive circulating sex steroid precursor of adrenal origin.
Can this concept of intracrinology be extended to the developing lung?

Intracrinology and Lung Development
Mammalian lung development divides into 5 overlapping stages. When the embryonic,
pseudo-glandular and canalicular stages end, the formation of terminal bronchioles with terminal
sacs begins. The saccular stage results in primitive alveoli. Finally, in the alveolar stage, secondary
septa grow into the airspace to increase the surface area of the lung and allow efficient gas exchange
through a thin vascularized diffusion membrane (4).

Preterm birth refers to babies born alive before 37 weeks of pregnancy (5). It is estimated that
about 7% of pregnancies end prematurely in France (6), 8% in Canada (7) and range between 10
and 14.4% depending on ethnicity in the United States (8). According to gestational age, preterm
births are classified into moderate to late preterm (32–37 weeks), very preterm (28–32 weeks), and
extremely preterm (<28 weeks). The babies in the last category are the most subject to various
complications and have the highest rate of mortality and morbidity.

Respiratory distress syndrome (RDS) (9) is the leading cause of mortality in preterm neonates
(10). RDS is the consequence of birth before the emergence of mature lung epithelial type II (PTII)
cells that are responsible for surfactant synthesis. The syndrome is characterized by the collapse of
airway membranes due to a lack of surfactant. The degree of severity increases with the degree of
prematurity (11), morbidity (extremely-low-birth-weight infant) and sex. Indeed, more than four
decades ago, Farrell and Avery (9) reported a higher incidence of RDS in male vs. female. This
sexual dimorphism has been considered to be caused by the presence of androgens in the male
lung that cause a delay in the PTII cell maturation and thus a delay in the surge of surfactant lipid
production. For review see (12).

RDS can be an early phase of bronchopulmonary dysplasia (BPD), another lung complication
of premature birth. BPD was originally described as a heterogeneous group of lung disorders
associated with preterm birth and lung impairment due to mechanical ventilation (13).
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Today, as the preterm newborn survival rate increases, a new
form of BPD has emerged. New BPD is characterized by
alveolar simplification as a result of impaired alveolar and
capillary development (14, 15). It is a consequence of extreme
premature birth with immature lungs rather than a consequence
of extended RDS treatment with mechanical ventilation as it was
previously described. Its incidence is also higher in males than
females (16).

Steroid Activity: Current Knowledge
During lung development, many regulatory factors exert a
negative or positive pressure on the communication between
fibroblasts and PTII cells that lead to surfactant production
(17). Glucocorticoids have been known to stimulate the
production of surfactant-associated protein and stimulate cell
maturation through their actions on glucocorticoid receptors
in the fetal lung (18). In contrast, androgens lead to a
delay in surfactant production and antenatal lung maturation.
Indeed, in vitro exposure of fibroblasts to androgens decreases
their ability to stimulate the maturation of PTII cells (19).
As with glucocorticoids, the effect of androgens on the
developing lung is mediated by specific androgen receptors (AR)
activation (20). Indeed, in TFM (testicular feminization) mouse
model, male TFM produce similar surfactant level as female
mice (21).

Sex steroids (estrogen and androgen) biosyntheses belong
in two pathways. The intra-gonadal endocrine production
and the peripheric intracrine production. The endocrine
pathway is carried by the ovaries and testes. Active sex
steroids are synthesized from cholesterol and released in
circulation to have their effects on target tissues. The intracrine
pathway depends on intracellular activation of adrenal derived
precursors (also named sex steroid precursors, SSP), namely
DHEA and androstenedione. These circulating precursors,
when presented to tissues with the required enzymes, are
converted into active androgens capable of having a direct
effect on the cell in the presence of AR (22). Many tissues
can exert an intracrine activity. The brain, endometrium, and
prostate all have the ability of controlling the occupancy
of the AR by conversion of SSPs into active or inactive
products. The main enzymes required in androgen metabolism
are 17β-hydroxysteroid dehydrogenases (17βHSD) types 5
and 2 which catalyze androgens activation and inactivation,
respectively (23).

SUMMARY

In resume, intracrinology refers to in situ synthesis of active
steroids in the cell where the steroids have their action (1). Four
criteria are necessary to extend intracrinology to the developing
lung in context of BPD. First, there must be circulating SSPs
in the fetal circulation. Second, the lung cell must be able
to transform these into androgens in situ. Third, these lung
cells must be androgen receptors positive to allow an androgen
dependent reaction. Lastly, the androgen action must be part of
the lung physiology.

SUMMARY OF DATA

Circulating Sex-Specific Steroid

Precursors During Pregnancy
The first condition necessary to have an intracrine function is the
presence of circulating sex specific steroid precursors (SSPs). The
rodent model was considered in the first place to make direct
measurements. It is important to note that androstenedione
is the main SSPs in rodents whereas in humans DHEA and
androstenedione are the main precursors (24). In 1986 Warshaw
et al. measured Adione relative levels in rodent (rat) placenta and
noted a significant increase in Adione levels on gestational day 18
(25). Accordingly, Hill et al. (26) measured high levels of DHEAS
in the umbilical cord and not in the cubital vein of pregnant
women. This result strongly suggests that the human placenta is
indeed capable of producing sex specific steroid precursors with a
peak late in pregnancy. Sex-specific steroid precursors are present
in the fetal circulation and they are most likely from a placental
origin rather than from the maternal adrenal.

Androgen Synthesis and Inactivation in the

Fetal Lung
17β-hydroxysteroid dehydrogenases (17β-HSDs) (23, 27) 3β-
HSDs, (28) and 5α-reductases (29) are the enzymes involved in
the synthesis of active androgens from circulating sex-specific
steroid precursors (SSPs) in peripheric human tissues. Studies
from Milewich et al. (30) confirmed the presence of 3αHSD’s
and 17βHSD’s activities by the capability of the human lung to
metabolized SSPs. Following these studies within the developing
lung, we aimed to characterize the enzymatic machinery and
identify the cells carrying these activities.

A549 Cells in vitro
We first described the ability of pulmonary epithelial type 2
(PTII) cells to synthesize androgens from SSPs in vitro using
A549 cells. This PTII like cell line was established from a lung
adenocarcinoma of an adult male. They have been widely used to
study androgen metabolism (31–34). As normal PTII cells, A549
cells can synthesize and secrete surfactant (11) and are androgen
receptors (AR) positive (35). Our results show that A549 cells can
rapidly convert androstenedione into testosterone with a little
formation of 5α-DHT and the inactive 5α-androstane-3α,17β-
diol (12). These cells show high levels of expression of 17β-HSD
type 5 and 3α-HSD type 3. Overall, A549 cells present a high in
vitro capacity of synthesizing and maintaining testosterone levels
from SSPs while rapidly inactivating DHT (31).

Lung Fibroblast Cells in vitro
We also aimed to describe the enzymatic activity regarding
androgen metabolism in perinatal pulmonary fibroblasts using
eight normal diploïd cells. Regarding androgen synthesis, none
of them showed the capacity to form androgens from SSPs but
the opposite reaction was observed. Indeed, the human lung
fibroblast cells show a pattern of androgen inactivation where
testosterone is mainly converted back into androstenedione
and androstanedione without any formation of 5α-DHT. The
enzymes responsible for androgen metabolism in lung fibroblasts
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are 17β-HSD type 2 and 5α-reductase type 1, the latter having
a strong substrate preference for androstenedione, the product
of 17β-HSD type 2. In addition, all lung fibroblasts studied
have the ability to inactivate androgens into their 17-ketosteroid
counterparts regardless of sex (36) or fetal age (37).

From this point, we stipulated that androgen could be
synthesized by normal male PTII cells in vitro but that male
and female fibroblasts could modulate the exposure to androgen.
To go further into this complex steroid metabolism within the
developing lung, in vivo experiments were designed.

Spaciotemporal Regulation of AR and

17β-HSD Type 2-5
17β-HSD type 5 is expressed in PTII-like cell line A-549 (31)
in the mouse (38) as well as in fetal human lungs (37). A peak
of expression of the enzyme is detected on GD 17.5 in the
fetal lung of both male and female mice. This peak corresponds
to the surge of surfactant in mature PTII cells (38). Analyses
of human lungs from 17 to 40 weeks of pregnancy reveled a
similar increase in mid-late gestation (37). These results strongly
suggest that both male and female fetal lung can synthesize
androgens. In human fetal lungs, 17β-HSD type 5 is located
in a small population of epithelial cells in proximal airways
and rarely in the distal epithelium where PTII cells are still
in development. It is absent from the mesenchyme, smooth
muscle cells and endothelial cells (37). These results suggest that
17β-HSD type 5 positive cells are specific to the conducting
zone (37).

17β-HSD type 2 is expressed inmice (39) and human fetal (37)
lungs epithelial cells and in mesenchymal cells to a lesser extent.
This suggests that the androgen inactivation capability is widely
distributed in the lung. Around mid-gestation, in mice (37) and
humans (39), all epithelial cells from the distal epithelium, most
of the proximal epithelium and most mesenchymal cells express
the 17β-HSD type 2 genes. Moreover, the expression of 17β-HSD
type 2 gene is more intense in the budding portion of developing
respiratory ducts as well as in the proximal epithelial cells in early
saccular stage. The expression of 17β-HSD type 2 gene also shows
a marked decrease between the saccular and alveolar stage (40),
but is upregulated from GD 16.5 to 17.5 (38).

In summary, 17β-HSD type 5 participates in the production of
androgens while 17β-HSD type 2 modulates the paracrine action
of testosterone in lung fibroblasts. Thus, androgen synthesis
must be a physiological feature in normal lung development and
could play an essential role in cell reprogrammation when the
emergence of mature PTII cells occur (38).

Androgen Receptor Regulation
As the mechanisms of androgen action require the presence of
AR, we searched for the distribution of AR within the fetal lung
of both male and female.

The AR is expressed at similar levels in male and female
mouse with no detectable modulation over time (38). In human,
AR is expressed in fetal lungs as soon as 13–16 weeks of
pregnancy, mainly in epithelial cells (41) and fibroblasts (42)
to a lesser extent. It is detected in the cytoplasm and nucleus

of the conducting and respiratory zone cells (37). AR mRNA
levels increases between the saccular and alveolar stage of lung
development as opposed to 17β-HSD type 2 which decreases (40).
These results suggest that the androgen sensibility in the lung
begin before the alveolar stage. AR is detected in 17β-HSD type 5
positive and negative cells such as fibroblasts.

In conclusion, both male and female express AR and are
capable of synthesizing and inactivating androgen in the period
overlapping the surge of surfactant. Thus, the lung is not passively
exposed to circulating androgens, it is a dynamic tissue with a
fine-tuning action on AR occupancy (11).

Is the Intracrine System Active?
To make progress, we needed a faster, more precise and
reliable morphogenic analysis method. To do so, we developed
an automated image analysis program to study the lung
development with higher reproducibility, reliability and rapidity
than manual analysis. Moreover, a greater portion of the lung
and a larger number of samples can be evaluated with this novel
method (43).

With this algorithm, we were able to confirm an experimental
model of BPD with hyperoxia. Indeed, newborn mice from
postnatal (PN) 1 to PN 4 were exposed to 80% oxygen
(hyperoxia) and compared with newborn exposed to 21% oxygen
(normoxia). The mice exposed to hyperoxia presented drastic
changes in density of closed area, a diminution of the relative
frequency of closed area under 1,000mm (2) (alveoli and
saccules) and an augmentation of closed area over 1,000mm (2)
compared to mice in normoxia (43). These changes correspond
to an alveolar simplification which is the major characteristic of
BPD (14, 15).

To evaluate the contribution of androgens during lung
maturation, we treated neonate pups with flutamide during the
junction between the saccular and the alveolar stage. Flutamide
is a pure antiandrogen that binds to the AR but prevents
androgens to have an ARmediated response in the cell (44). Both
normoxia and hyperoxia flutamide-treated mice showed alveolar
impairment. Indeed, at 21% oxygen the relative frequency of
closed areas under 1,000µm (2) decreased and the ones over
2,500µm (2) increased. The mice exposed to hyperoxia showed
the most dramatic alveolar simplification (45). The absence of
androgen action does not restore the structure of the lung, this
supports a positive role for androgens in lung. As we are in
a period of fetal development where the levels of circulating
androgen are very low in both sexes but specially in male (46),
the androgens in the fetal lung must be formed from SSPs.

If removing androgen response is deleterious to the lung,
adding them should reverse this effect. Surprisingly, mice
exposed to 80% oxygen then treated with exogenous DHT,
had similar morphogenic parameters as mice treated with
flutamide alone (45). At 21% oxygen the mice treated
with DHT still showed alveolar simplification compared to
the control mouse. This result indicates that the complex
enzymatic mechanism of androgen activation and inactivation
in the lung is active and cannot be bypassed by exogenous
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androgens in order to exert a physiological action on
lung development.

CONCLUSION

In 2004, we proposed that androgens should play a positive role
in lung development for both sexes (38). Since then, we have
accumulated several observations leading to the conclusion that
intracrinology concept applies to the developing lung. In order
to better understand the action of steroids in the developing lung
and demystify the dimorphism associated with the prevalence
of BPD in males, a gender-sex-based analysis approach, which
takes into account sex, was chosen. This approach has allowed a
new understanding of the role of androgens in lung development
and has allowed us to demonstrate that the lung is a SEX
organ with an INTRACRINE function with therapeutic potential
for BPD.

During development, the lungs and particularly the female
lungs are not exposed to a significant amount of circulating
androgens (47). Nevertheless, the androgen receptor has been
found in the nucleus of several cells in developing lungs in
both sexes (38). Moreover, the fetal lung in both sexes is
capable of synthesizing testosterone from sex-specific circulating
precursors (31) through 17β-HSD type 5 expressed in PTII cells
(37). On the other hand, fibroblasts expressing 17β-HSD type 2
(37) inactivates androgens (36). Finally, removing all androgen
response in the cells with flutamide causes alveolar simplification
(45), and the alveolar impairment cannot be reversed with
the administration of exogenous DHT, because the specific
enzymatic machinery has been bypassed.
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