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Abstract: The problems that the key biomass variables in Pichia pastoris fermentation process are
difficult measure in real time; this paper mainly proposes a multi-model soft sensor modeling
method based on the piecewise affine (PWA) modeling method, which is optimized by particle
swarm optimization (PSO) with an improved compression factor (ICF). Firstly, the false nearest
neighbor method was used to determine the order of the PWA model. Secondly, the ICF-PSO
algorithm was proposed to cooperatively optimize the number of PWA models and the parameters
of each local model. Finally, a least squares support vector machine was adopted to determine
the scope of action of each local model. Simulation results show that the proposed ICF-PSO-PWA
multi-model soft sensor modeling method accurately approximated the nonlinear features of Pichia
pastoris fermentation, and the model prediction accuracy is improved by 4.4884% compared with the
weighted least squares vector regression model optimized by PSO.

Keywords: soft sensor; piecewise affine; improved compression factor; particle swarm optimization;
Pichia pastoris

1. Introduction

An expression system is a molecular biology technique that uses model organisms
such as bacteria, yeast, animal cells or plant cells to express exogenous gene proteins.
In short, the expression process is the synthesis of proteins under the guidance of genes.
The Pichia pastoris expression system is a technically mature eukaryotic expression system,
and one of the most successful foreign protein expression systems [1]. The expression
system of Pichia pastoris has been developed for more than 30 years, and so far, nearly
1000 heterologous proteins have been successfully expressed by this system, which has a
promising development [2]. In addition, the low cost but high yield of the Pichia pastoris
expression system makes it economically valuable. Pichia pastoris is also a facultative
anaerobe, which is very easy to carry out genetic manipulation and cultivation on [3].
The Pichia pastoris expression system has obvious advantages in the processing, external
separation, post-translational modification, and glycosylation modification of expression
products [4]. Nowadays, many regions are being plagued by the Coronavirus (COVID-19).
In order to fight COVID-19, the recombinant expression of proteinase K in Pichia pastoris
has attracted widespread attention [5,6]. Protease K has drawn attention for its following
capabilities: cracking the COVID-19 virus to release nucleic acid, eliminating ribonuclease
(RNase) to prevent ribonucleic acid (RNA) degradation, and inactivating the COVID-
19 virus to denature the virus protein [7]. Therefore, protease K becomes an important
component of nucleic acid detection kit for sample pretreatment, and plays a significant role
in COVID-19 detection [8]. However, the fermentation process of recombinant expression
of protease K by Pichia pastoris is nonlinear, coupled, uncertain, and time-varying [9]. There
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are few online detection instruments for the key biomass variables of the Pichia pastoris
fermentation process (such as cell concentration, protease K concentration, etc.) [10] As for
the offline assay and analysis methods, the long interval of data acquisition drags down
the real-time performance, and adds to the risk of flora pollution. Moreover, the assay
results are often inaccurate, due to the large errors of human operation [11]. With the
development of the times, biosensors that can detect biomass on-line in real time emerge
as the times require. Biosensors have the advantages of high sensitivity and a fast analysis
speed; however, a highly automated, miniaturized and integrated biosensor is often very
expensive [12].

The above problems give rise to the soft sensor technology. The basic idea of this
technology is to model the relationship between target and auxiliary variables, and thus
estimate the target variables indirectly, without causing any pollution to flora. The Soft
sensor technology is powerful and cost-effective, and it can work in harmony with other
software and hardware, which means that it is highly compatible [13]. However, in most
cases, it is difficult for a single global soft sensor model to adequately and quickly char-
acterize the process of a complex object. Furthermore, a single global soft sensor model
is usually complex in structure and requires a lot of time to solve it. Wang and Han [14]
proposed a single soft sensor model based on a recurrent wavelet neural network and
Gaussian process regression methods for online prediction of whether Chlortetracycline
fermentation broth is contaminated by non-target bacteria. Although the experimental
results show that the proposed soft sensor model can be used to predict the occurrence of
pollution during the Chlortetracycline fermentation process, and the effectiveness of the
modeling method is verified based on field data, the Chlortetracycline fermentation process
is a very complex and non-linear process, and most microbial fermentation processes in-
cluding Chlortetracycline can be divided into four stages: adjustment, logarithmic growth,
stabilization and decay phases. During these four phases, the process characteristics of
Chlortetracycline are completely different, especially during the exponential growth phase,
when the fermentation process is most intense. Therefore, it is impractical to try to describe
the complete fermentation process by a single soft sensor model. Although the soft sensor
model proposed in this paper showed good prediction results for the Chlortetracycline
fermentation process, the model has limitations and cannot be extended to soft sensor
modelling of other microbial fermentation processes, i.e., it is not generalizable.

Therefore, in order to address the drawbacks of a single soft sensor model, multi-model
soft sensor modeling strategies have attracted a great deal of scholarly attention [15–17].
Scholars have found that using the divide and conquer modeling strategy, building a
multi-local soft sensor model can greatly simplify the model structure, save calculation
time, and fully mine the information of each sample, hence multi-local soft sensor modeling
methods are becoming an inevitable trend in the development of soft sensor technology in
the future [18]. As a result, it is highly practical to build a multi-local soft sensor model
that supports the real-time online measurement of key biomass variables in Pichia pastoris
fermentation, as well as the efficient (protease K yield) and high-quality generation of
products (protease K quality).

Following the above ideas, Zhang and Cai [19] presented a multi-model soft sensor
modeling method based on the improved locally weighted partial least squares (LWPLS),
and adopted the soft sensor model to predict the key biomass variables in the fermentation
process of alkaline protease. Their approach copes well with the multi-stage and large lag
features of microbial fermentation, and realizes good prediction accuracy. However, it is
difficult to identify the structural and local parameters of the extremely complex model,
and it is time-consuming to complete the heavy calculations. Hence, their approach is not
applicable to a wide range of fermentation processes.

In order to avoid the problems mentioned above, this paper will apply a multi-model
modeling method called piecewise affine (PWA), which is also called piecewise linear
(PWL). Based on the idea of multi-model “decomposition-synthesis”, the PWA/PWL
multi-model divides the sample space of the system into a finite number of sub-intervals,
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and each sub-interval is described by a PWA/PWL local model, which transforms the
problem of solving a complex nonlinear system into the problem of solving several linear
systems [20]. The advantages of the PWA multi-model are that the model structure is very
simple; after all, the structure of linear systems is far less complex than that of nonlinear
systems, and PWA multi-model is less time consuming than other multi-models because
the time to solve a linear system is much less than that to solve a nonlinear system [21,22].
These advantages have made PWA systems a hot research topic in the field of modeling,
and they are widely used in many engineering practices. Sun and Wu [23] applied a PWA
model to speed regulation in longitudinal dynamics of intelligent vehicles. Muhammad
and Michael [24] applied a PWA modeling method to optimal planning of thermal energy
systems for microgrids. Sindareh-Esfahani [25] identified a discrete-time PWA model of a
wind turbine during Maximum Power Point Tracking region. Mattsson and Zachariah [26]
applied the PWA modeling method to the identification of discrete-time nonlinear dynamic
models of cascade tanks. All these cases proved the effectiveness and feasibility of the PWA
modeling method. Therefore, in this paper, a PWA modeling method was applied to soft
sensor modeling of key variables in the fermentation process of Pichia pastoris.

In order to improve the prediction accuracy of the PWA multi-model, two model
parameters must be optimized, i.e., the number of local models and the parameters of each
local model. Too many local models will lead to complex models with a large computational
effort and huge dimensionality of local model parameters while too few local models will
lead to too simple models with poor prediction performance. In recent years, the research
on intelligent optimization algorithms and its applications in model parameter optimization
has been very active and has achieved encouraging results [27–29]. Inspired by the foraging
behavior of birds, a PSO algorithm as an intelligent swarm optimization algorithm has been
successfully applied to the optimization of model parameters [30–32]. The PSO algorithm
has no crossover and variational operations, relies on particle velocity to complete the
search, and only the optimal particle passes the information to other particles in the iterative
evolution, which makes the search speed very fast. The PSO algorithm requires fewer
parameters to be adjusted and has a simple structure, which is an effective method to solve
practical engineering problems. Many numerical examples show that PSO is better than
Differential Evolution (DE), Genetic Algorithm (GA) and Ant Colony Algorithm (ACO) in
terms of search efficiency and convergence speed of the global optimal solution [33–35].
This is why this algorithm is used in this paper to optimize the number of local models and
the parameters of each local model. However, the PSO algorithm also has some drawbacks,
such as the lack of dynamic adjustment of the speed, which is easy to fall into local optimum
and requires the selection of appropriate parameters for different problems to achieve the
optimal results. Therefore, it is essential to improve the PSO algorithm before the PSO
algorithm is used to optimize the number of local models and the parameters of each local
model. The reason why the PSO algorithm easily falls into local optimum is that the particle
velocity cannot be dynamically adjusted, so the particle velocity must be constrained. The
most effective way to constrain the particle velocity is to introduce a compression factor
into the particle velocity update formula [36]. However, the traditional compression factor
has a fixed form and poor self-adaptability, which makes it difficult to achieve the desired
constraint effect [37]. Therefore, this paper will study an improved compression factor
(ICF) that can make the compression factor change dynamically as the number of PSO
iterations increases [38]. Hence, this study eventually uses this ICF-PSO algorithm to
optimize the number of local models and the parameters of each local model. The selection
of specific parameters and performance analysis of the ICF-PSO algorithm will be analyzed
in detail in the following. The complete PWA modeling process requires not only the
optimization of the parameters of the PWA multi-model, but also the determination of
the order of the PWA multi-model and the determination of dividing surfaces where each
sub-model plays a role, all of which will be explained in detail in the following. To verify
the feasibility of the ICF-PSO-PWA multi-model, this study obtained real and accurate
original sample data through real fermentation experiments. Supported by these sample
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data, this study demonstrated the feasibility of applying the PWA multi-model to the
Pichia pastoris fermentation process through MATLAB simulations, and compared the ICF-
PSO-PWA multi-model with the weighted least squares support vector regression model
optimized by standard PSO algorithm (PSO-WLSSVR). The simulation results showed that
the ICF-PSO-PWA multi-model can effectively predict the key biological variables of the
Pichia pastoris fermentation process online, and it outperformed the PSO-WLSSVR model.

In summary, the purpose of this study can be summarized into two aspects. The
primary study focus is to construct and solve a PWA soft sensor multi-model based on the
fermentation process of Pichia pastoris, and to demonstrate the effectiveness of the PWA
soft sensor multi-model through simulations. The secondary study focus is to propose
a novel ICF-PSO optimization algorithm to optimize the PWA soft sensor multi-model,
which not only serves the primary study focus but also is an innovative point of this paper.

The rest of the paper is structured as follows: Section 2 consists of materials and
methods, which explains PWA model basics, determination of the PWA multi-model order,
proposed ICF-PSO algorithm, determination of dividing surfaces and experimental work.
Section 3 includes results and discussion. The paper is concluded in Section 4.

2. Materials and Methods
2.1. Structure Diagram of Overall Modeling Algorithm

In order to clarify the components of the prediction algorithm used in this study and
their respective functions, this paper first constructs a diagram of the overall modeling
algorithm structure here. The functions of each component are then explained in detail in
the following sections of this paper. The overall modeling algorithm structure is shown in
Figure 1.
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Figure 1. Overall structure diagram of modeling algorithm.

2.2. Description of PWA Modeling Algorithm

The existing sample data evidently testifies the nonlinearity of Pichia pastoris fer-
mentation. To facilitate the PWA modeling, the Pichia pastoris fermentation (Multi-input
Multi-output Nonlinear System) was decomposed into several multiple input single output
(MISO) discrete time systems, each of which can be described as a piecewise auto-regressive
exogenous (PWARX) model [39]:

y(k) = f (X(k)) + ε(k) (1)

where, y(k) ∈ R is the system output; ε(k) ∈ R is the error term.
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The PWA mapping f (•) can be defined as:

f (X(k)) =



[
XT(K), 1

]
θ1 X ∈ Ω1[

XT(K), 1
]
θ2 X ∈ Ω2

...[
XT(K), 1

]
θs X ∈ Ωs

(2)

where, X(k)∈Rn is the input vector, which consists of the output and input of the system in
the past moment:

X(k) =
[
y(k− 1), · · · , y

(
k− ny

)
, u 1(k− p− 1), · · · , u r(k− p− 1), · · · , u 1(k− p− n u), · · · , u r(k− p− n u)

] T (3)

where, k is a time series; y ∈ R is the system output; u ∈ Rr is the system input; p is
the system delay; ny and nu are the orders of the model (n = ny + nu); S is the number of
models; θ = [θ1, θ2, · · · , θS]

T ∈ R(ny+nur+1)×S is the parameter vector of each linear local
model of the PWA system.

The bounded input space ΩN can be decomposed into S closed polyhedral regions
{Ωi}S

i=1. Assuming that these closed polyhedral regions have no overlapping parts except
the common boundary: 

S
∪
i
Ωi = ΩN ⊂ Rn

Ωi ∩Ωj = ∅ i 6= j
(4)

where, Ωi is a closed polyhedron: Ωi =
{

X ∈ Rn
∣∣∣Hi

[
XT , 1

]T ≥ 0
}

, with Hi ∈ Rqi which
determines the boundary of a closed polyhedron Ωi, i.e., the dividing surface dividing Ω i
from other polyhedrons (qi is the number of linear inequalities defining the i-th polyhedron
region), and ≥ being an inequality:

If Hi =

[
hi1
hi2

]
hi1 ∈ Rn+1 and hi2 ∈ Rn+1

Then Hi

[
XT , 1

]T
≥ 0⇔

{
hi,1
[
XT , 1

]T ≥ 0
hi,2
[
XT , 1

]T ≥ 0

Suppose the PWA model is unknown, and the modeling space consists of N datasets
on the fermentation process:

ZN = {z(k)}N
k=1 and z(k) =

[
XT(k), y(k)

]T
(5)

where, ZN∈R(n + 1)N. Then, the identification problem of the PWA aims to reconstruct the
PWA mapping to characterize all the features of the original system, that is, to solve the
following optimization problem:

minJ1 = min∑k

[
y(k)− ∧y(k)

]2

= min ∑
z(k)∈ZN

[
y(k)−

∧
f (X(k), θi)

]2 (6)

where,
∧
y(k) ∈ R is the output predicted based on the input vector X(k) at time k;

∧
f (•, •) ∈ R

is the local PWA model of the current work space:

Let δi =

{
1 X(k) ∈ Ωi
0 X(k) /∈ Ωi

Ωi ⊂ ΩN
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Then, Equation (2) can be represented as:

∧
f (X(k), θi) =

S

∑
i=1

[
XT(k), 1

]T

θiδi and X(k) ∈ ΩN (7)

Therefore, the solution problem of MISO nonlinear system in each fermentation pro-
cess can be transformed into a mixed integer quadratic programming (MIQP) problem [40]:

min
n,θ,S

J1 = min
n,θ,S

N
∑

i=1

[
y(k)−

∧
f (X(k), θi)

]2

s.t.
∧
f (X(k), θi) =

S
∑

i=1

[
XT(k), 1

]T

θiδi

(8)

where, δi =

{
1 X(k) ∈ Ω i
0 X(k) /∈ Ω i

, y(k) = f (X(k)), X(k) ∈ ΩN and
[
XT(k), y(k)

]T ∈ ZN . It

is not hard to see from the objective function J1 that MIQP only identifies θi. However,
in order to identify θi, several prerequisites are needed, namely, solving for the order
n of the input vector X(k) and determining the number of local models S. The problem of
identifying n and S is a problem of identifying two hyperparameters, and in this study
the optimal n and S will be solved by different algorithms respectively. When S and n are
known, the objective function J1 becomes an easier-to-solve MIQP problem containing only
one decision variable θi. It is only necessary to find the optimal θi by the corresponding
optimization algorithm for J1. After all the above parameters are determined, the range
Ωi in which the local model works can be easily determined by just the corresponding
classification algorithm.

Without sufficient prior information, however, it is usually difficult to determine the
number of models or the parameters of each local model. Therefore, this paper modifies the
goal of optimization modeling from maximizing model accuracy by single optimization to
maximizing the approximation degree of the model while minimizing the number of local
models. That is, the single-objective Problem (6) was transformed into a multi-objective
optimization problem:

min{J1, J2} (9)

where, J2 = S is an integer representing the number of local models; J1 is given by
Equation (8), reflecting the approximation of the model. The value of J1 is negatively
correlated with the approximation degree of the model. Thus, the goal of maximizing the
approximation degree of the model is equivalent to minimizing the objective function J1.

2.3. Determining Model Order

In the absence of sufficient prior information, it is a complex issue to determine the
appropriate order of the PWA model. The topological delay embedding theorem [41]
suggests that a nonlinear system cannot be completely modeled if the final model has a
too-small order; if the model order is too large, the modeling can be complete in theory, but
the actual modeling will require heavy computations, and face lots of system noises and a
large rounding error [42].

The false nearest neighbor (FNN) method is suitable for determining the embedding
dimension in the state space reconstruction of nonlinear time series. The core idea of
this method is to iteratively determine the false and real neighboring points of a certain
trajectory xn, while increasing the embedding dimension in each iteration. The iterative
process terminates when the number of false neighbors is zero, and outputs the minimum
required embedding dimension. From the geometric perspective, the FNN is a very simple
and easy approach to determine the embedding dimension [43]. Hence, this paper adopts
this method to calculate the order of the PWA multi-model.

Step 1. Determining the false nearest neighbor
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Considering the input/output data on fermentation, construct the following n-dimensional
regression vector:

X(k) =
[
y(k− 1), · · · , y

(
k− ny

)
, u 1(k− p− 1), · · · , u r(k− p− 1), · · · , u 1(k− p− n u), · · · , u r(k− p− n u)

] T (10)

Rewrite the regression vector X(n)(k) as:

xp =
[

xp−1, xp−2, · · · , xp−ny , xp−(ny+1), · · · , xp−(ny+nu), · · · , xp−(ny+nur)

]T
(11)

p = N0, N0 + 1, · · · , N (12)

where, N0 = n + 1.
Define the distance from xi to xj in Rn by L∞ norm:

‖xi − xj‖∞ = max
∣∣xi+1 − xj+1

∣∣ (13)

Let xp be the nearest point of xη (p):

‖xη(p) − xp‖(n)∞
= min

j=N0,··· ,N;j 6=n
‖xp − xj‖∞ = min

j=N0,··· ,N;j 6=n
max

0≤l≤n−1

∣∣∣xp+l − xj+l

∣∣∣ (14)

Then, N0 ≤ η(p) ≤ N, and η(p) is related to n, that is, η(p) is related to ny and nu.
As the embedding dimension changes from n to n + 1, the distance from xi to xj

becomes:‖xη(p) − xp‖(n+1)
∞

= min
j=N0,··· ,N;j 6=n

‖xp − xj‖∞ = min
j=N0,··· ,N;j 6=n

max
0≤l≤n−1

∣∣∣xp+l − xj+l

∣∣∣.
If ‖xη(p) − xp‖(n)∞

� ‖xη(p) − xp‖(n+1)
∞

, namely, two non-adjacent points become two adja-
cent points when projected on the low trajectory, such adjacent points are the false neighbors.

Specifically, xη(p) is considered as the false nearest neighbor of xp if it satisfies:∣∣∣∣∣∣‖xη(p) − xp‖(n+1)
∞

− ‖xη(p) − xp‖(n)∞

‖xη(p) − xp‖(n+1)
∞

∣∣∣∣∣∣ ≥ RT (15)

where, RT is a threshold value, RT ∈ [10, 50].
With the increase of dimension n, the ratio of false neighbors δ decreases, where δ is

the ratio of false neighbors to total neighbors. When δ is less than a certain threshold δ0 or δ
no longer changes with the change of n, then the geometric structure of the state space has
been completely opened, and the dimension n at this time is the embedding dimension.

Step 2. Calculating the minimum embedding dimension
Firstly, define the variable α(p,n):

α(p, n) =
‖xη(p) − xp‖(n+1)

∞

‖xη(p) − xp‖(n)∞

(16)

Then, define the mean value of α(p,n) with respect to n as:

E(n) =
1

N − N0 + 1

N

∑
n=N0

α(p, n) (17)

To capture the change of embedding dimension from n to n + 1, redefine:

E0(n) =
E(n + 1)

E(n)
(18)

The minimum embedding dimension of reconstructed state space can be judged
according to the change of E0(n). If it is found that when the embedding dimension
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increases to a certain extent, E0(n) will no longer change or change to a very small extent,
then n + 1 is the required minimum embedding dimension. At this time, the corresponding
ny and nu are the orders of the corresponding model [44]. After using the false nearest
neighbor method, the optimal order of the input vector (nu) and output vector (ny) of the
PWA model are 1 and 2 respectively.

2.4. Collaborative Optimization of the Number and Parameters of the Models

In order to improve the prediction performance of PWA multi-models, the number of
sub-models and the parameters of each sub-model must be optimized. The PSO is widely
adopted for fuzzy system control, neural network training, and function optimization,
because it is simple to define and easy to implement, with fast computing speed [45].
Therefore, this paper applies the PSO to determine the number of models and to optimize
the parameters of local models in the PWA multi-model, and introduces the ICF to improve
the ability of the standard PSO to avoid the local optimum early and perform accurate local
search thereafter.

2.4.1. PSO Algorithm

In the standard PSO algorithm, each particle in the swarm is of zero volume in the
D-dimensional search space, and is represented by its current position. Each particle flies
at a certain velocity in the search space, and keeps adjusting the velocity based on its
experience and that of every other particle.

The current velocity and position of the i-th particle can be defined as:

Vi = (vi,1, vi,2, · · · , vi,D) and Pi = (pi,1, pi,2, · · · , pi,D) (19)

Then, the individual best-known position of the i-th particle and the global best-known
position of the swarm can be respectively expressed as:

Pb
i =

(
Pb

i,1, Pb
i,2, · · · , Pb

i,D

)
and Pb

g =
(

Pb
g,1, Pb

g,2, · · · , Pb
g,D

)
(20)

For the generation t + 1, the velocity and position of the i-th particle in the j-th
dimension (1 ≤ j ≤ D) can be updated by:

vi,j(t + 1) = wvi,j(t) + c1r1,i

(
pb

i,j
(t)− pi,j(t)

)
+ c2r2,i

(
pb

g,j
(t)− pi,j(t)

)
(21)

pi,j(t + 1) = pi,j(t) + vi,j(t + 1) (22)

where, w is inertia weight; c1 and c2 are acceleration coefficients, both of which are constants;
r1,i and r2,i are two random functions that change in the range of [0, 1].

In the position update Equation (21) of the standard PSO, if pi,j = pb
i,j = pb

g,j, which
means that the current position of particle i is the best position it has experienced and also
the best position the whole particle population has experienced so far, then the change
of vi,j(t + 1) only depends on wvi,j(t). This implies that when the swarm approaches a
local optimal solution, its velocity will approach zero. This means that all particles tend
to stop moving near the local optimal solution. Thus, the standard PSO would converge
prematurely, and get stuck in the local optimal position. However, there are many local
optimal solutions for non-convex problems, and the standard PSO will converge to a local
optimum very easily. For these reasons, PSO must be improved.

2.4.2. ICF-PSO Algorithm

To overcome premature convergence, this paper improves the PSO into the ICF-PSO.
The position update formula was not changed, while the velocity update formula was
refined by introducing the ICF µ:

vi,j(t + 1) = µ
(

wvi,j(t) + c1r1,i

(
pb

i,j
(t)− pi,j(t)

)
+ c2r2,i

(
pb

g,j
(t)− pi,j(t)

))
(23)
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where, µ = δσ
G

N+G −1 is the compression factor, which both restrains the velocity of particles
and enhances the local search ability of the algorithm. Note that δ and σ are constants in µ,
both of which are key to the control of the constraint effect of the compression factor; N is
the total number of iterations; G is the current number of iterations. The rationale for the
improved compression factor is as follows. In this paper, the characteristic curve of µ is
made to be a monotonically decreasing curve in the first quadrant as the number of current
iterations G increases by determining the appropriate values of δ, σ and N. This curve must
contain the following characteristics, that is, the value of µ must vary between 1 and 0;
the value of µ must decrease rapidly at the beginning of the iteration, and then the rate of
decrease of the value of µ tends to smooth out as the iteration proceeds to the middle and
later stages. The compression factor satisfying the above conditions is substituted into the
velocity update formula of the standard PSO algorithm, which makes the particle velocity
decrease continuously during the iteration process under the constraint of the compression
factor. The particle velocity satisfies the following characteristics during the decreasing
process, the particle can maintain a fast velocity at the beginning of the iteration, which
can make the particle jump out of the local optimum effectively with the fastest speed, but
the rate of particle velocity decreasing is fast during this time. As the iteration proceeds to
the middle and later stages, the particle velocity becomes small and the particle velocity
decreases very little and smoothly at this time. This kind of particle is able to search the
global optimum precisely and smoothly, just like the carpet search of radar. The above is
the rationale for the improved compression factor µ. This paper will describe in detail how
to determine reasonable values of δ, σ and N, in the following subsections.

2.4.3. Determination of Parameter Values in ICF

This paper tries to maximize the efficiency and optimization effect of the compression
factor by determining the value range of δ and σ. Firstly, the total number of iterations
N was assumed to be 300. Secondly, both δ and σ must be positive numbers, according
to mathematical knowledge (otherwise, µ will be meaningless). Finally, the value of the
compression factor should decrease with the increase of G, judging by its functional features.
Therefore, the value range of δ and σ could only be one of the two cases: (1) δ ∈ (0, 1) and
σ ∈ (1,+∞); (2) δ ∈ (1,+∞) and σ ∈ (0, 1). The variation curves of µ in these two cases
are discussed in detail below:

(1) δ ∈ (0, 1) and σ ∈ (1,+∞)

Figure 2a shows the curve of µ with the increase of σ at δ = 0.5, and Figure 2b shows
the curve of µ with the increase of δ at σ = π. It can be seen that when the value of δ was
constant, the constraint performance of ICF µ was better at a larger σ value; when the value
of σ was fixed, the smaller the value of δ was, the better the constraint performance was.
The values of σ and δ should be considered comprehensively to optimize the constraint
performance of the ICF µ. Experimental results show that, in case (1), the constraint
performance of µ is the best at δ = 0.1 and σ = 2π (Figure 2c).

(2) δ ∈ (1,+∞) and σ ∈ (0, 1)

Figure 2d shows the curve of µ with the increase of σ at δ = 2π, and Figure 2e shows
the curve of µ with the increase of δ at σ = 0.5. It can be seen that when the value of
δ was unchanged, the constraint performance of ICF µ was better at a smaller σ value;
when the value of σ was fixed, the larger the value of δ was, the better the constraint
performance was. The values of σ and δ should be considered comprehensively to optimize
the constraint performance of the ICF µ. Experimental results show that, in case (2), the
constraint performance of µ is the best at δ = 24 and σ = 0.01 (Figure 2f).
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To sum up, the compression factor µ has an optimal state in either case, depending on
the values of δ and σ. Here, the δ and σ values in compression factor µ are set to 24 and
0.01, respectively.

In fact, the concept of compression factor ϕ was put forward by Clerc et al. in as early
as 1999 [46]:

ϕ =
2∣∣∣2− ρ−
√

ρ2 − 4ρ
∣∣∣ and ρ = c1 + c2 (24)

where, ρ > 4 and ϕ is the compression factor; c1 and c2 are acceleration constants. The
problem is that the compression factor is too rigid [47]. The value of ϕ only depends
on the size of c1 and c2, failing to consider the iterative effect. With the elapse of time,
such a compression factor is no longer suitable for optimizing complex nonlinear systems.
Compared with the original compression factor ϕ, the improved compression factor µ
proposed by the authors can change iteratively, and adapt its constraint effect to the specific
optimization task, in the light of the combined effect of factors like δ, σ, N and G.

The details of the performance analysis of the ICF-PSO algorithm are shown in the
Appendix A.

2.4.4. ICF-PSO Algorithm Applied to Optimize the Number and Parameters of PWA
Local Models

The multi-objective optimization Problem (9) cannot be easily solved by the traditional
phased strategy, because of the strong coupling between the two objective functions.
Drawing on the idea of non-inferior optimal solution, this paper chooses to optimize
objective function J1 by the step-by-step iterative method, in view of the fact that J1 depends
heavily on J2 but J2 is independent of J1: First, select the non-optimal solution S that satisfies
J2 and determine an optimal search threshold Yts for J1. Then, S is substituted into J1, and
J1 is optimized to obtain the optimal solution of the corresponding local model parameter;
if the optimized J1 cannot meet the preset threshold Yts, optimize S and re-optimize J1.
Repeat these steps until the threshold Yts is satisfied.

To optimize objective function J2, it is critical to reasonably divide the input space ΩN
into S subspaces that satisfy conditional Equation (25), so as to determine the number of
local models:

S

∑
i=1

Mi = N (25)

where, Mi is the number of input vectors contained in the i-th subspace; Ωi(i = 1, 2, · · · , S)
is the i-th input subspace.

After the input space dividing Ωi is obtained, the corresponding sample dataset can
be determined by:

Zi = {z(k)|X(k) ∈ Ωi, y(k) = f (X(k))} (26)

where,
S
∪

i=1
Xi = ZN ; Zi is the sample dataset corresponding to Ωi, which uniquely deter-

mines the modeling space of f (X(k)).
When the system model is unknown, y(k)∈R can be replaced by the actually observed

output. The difficulty of J2 is that the division of input space cannot be separated from
the parameter identification of the local model. The strong coupling between the two
objective functions makes it necessary to determine the number of models and estimate the
model parameters simultaneously. Therefore, this paper employs the ICF-PSO algorithm,
which excels in parallel search and data clustering to optimize the number of models
and parameters.

During the optimization, the modeling parameters reflecting each local model are
combined with the corresponding cluster center into a particle:

P = {θ1, Z1, · · · , θi, Zi, · · · , θS, ZS} (27)
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where, Zi(i = 1, 2, · · · , S) is the cluster center of the i-th cluster.
By the ICF-PSO algorithm, the study optimized the number of local models and the

parameters of each local model at the same time [48]. The detailed steps are as follows:

(1) Step 1. Initialization

Set the number of non-optimal models S = 1, swarm size NS, inertia weight w, acceler-
ation coefficients c1 and c2, the threshold Yts of objective function J1, maximum allowable
number of iterations Nit, initial position Pi and initial velocity of each particle Vi, etc.

(2) Step 2. Data clustering

Because the PWA system is locally linear, the data close to each other are very likely
to fall into the same class. Thus, each local subspace Zi can be divided by the distance
between the data and the given cluster center. The specific method is to calculate the norm

distance from each modeling space vector z(k) to a given cluster center
∧
Zi; if the modeling

space vector is the closest to a given cluster center, it will be assigned to that cluster:

z(k) ∈ Zi and I = argmin
k
‖z(k)−

∧
Zi‖2 (28)

where, i = 1, 2, · · · , S.

(3) Step 3. Initial fitness evaluation

Evaluate the initial fitness of each particle according to the objective function J1.

(4) Step 4. Evolution of particle swarm

Update the position and velocity of particles according to Equations (22) and
(23), respectively.

(5) Step 5. Fitness update

Cluster the data by Step 2, and update the fitness of each particle by objective function J1.

(6) Step 6. Termination conditions

(1) If the maximum number of iterations is not reached and the threshold of the
objective function is not met, return to Step 3.

(2) If the maximum number of iterations is not reached, but the threshold of the
objective function is met, terminate the algorithm.

(3) If the maximum number of iterations is reached and the threshold of the
objective function is met, terminate the algorithm.

(4) If the maximum number of iterations is reached, but the threshold of the
objective function is not met, go to Step 7.

(7) Step 7. Make J1 = S + 1, return to Step 1, and restart the search

The above steps can be organized into the following flow chart in Figure 3.

2.5. Determination of Dividing Surfaces

So far, the sample space has been divided into S local spaces Ωi (i = 1, 2, ···, S).
According to the definition of the PWA system in Equation (2), the convex polyhedrons
with different scopes have no overlapping parts except the common boundary. Therefore,
the problem of finding the optimal dividing surface is directly transformed into the linear
division of cluster data. The least square support vector machine (LS-SVM) algorithm was
selected to solve the optimal dividing surface between local PWA models. The selection
was made because the LS-SVM is a classical classifier to handle small samples, and high-
dimensional nonlinear data. The training speed of the model is accelerated, owing to the
combination between the standard SVM and the least squares method.
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2.5.1. Least Square Support Vector Machine

The core idea of LS-SVM is that in a given sample data set {xk, yk}N
k=1, in which xk∈Rn

and yk∈{−1, 1}. To find the optimal classification hyperplane wTx + b = 0, that is, to solve
the following optimization problems [49], namely

minJ(w, e) = min
w,b,e

1
2 wTw + µ

N
∑

k=1
e2

k

s.t.yk
[
wT ϕ(xk) + b

]
= 1− ek k = 1, 2, · · · , N

(29)

where, ϕ(g) : Rn → RnH is a function that maps input data to a high-dimensional feature
space; weight vector w ∈ RnH ; error variables and offset values satisfy ek ∈ R and b ∈ R;
µ > 0 is the weight coefficient, which can make LS-SVM find the optimal hyperplane and
ensure the minimum deviation [50].

Introducing Lagrange function into Equation (29), then

L(w, b, e; α) = J(w, e)−
N

∑
k=1

αk

{[
yk

(
wT ϕ(xk) + b

)
− 1 + ek

]}
(30)

where, αk ≥ 0 is Lagrange multiplier; xk is the support vector.
By deriving w, b, ek, αk in the above formula respectively, the following linear equation

system about α and b can be obtained:[
0 yT

y Ω + I/µ

][
b
α

]
=

[
0
1v

]
(31)

where, y = [y1,· · · ,yN]; α = [α1,· · · , αN]; 1v = [1,· · · ,1]; Ω is called a kernel matrix, and its
expression is

Ωi,j = yiyj ϕ(xi)
T ϕ
(
xj
)
= yiyjK

(
xi, xj

)
(32)

where, i,j = 1,· · · ,N. A set of α and b can be obtained by solving Equation (31). Finally, the
classification hyperplane obtained by LS-SVM is shown below:

f (x) = sgn

[
N

∑
k=1

αKykK(x, xk) + b

]
(33)
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where, the kernel function must satisfy Mercer condition. The kernel function of this paper
uses RBF kernel function. The expression of the RBF kernel function is shown below.

K
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

σ2

)
(34)

where, σ is the width parameter of the function, which controls the radial range of action
of the function.

2.5.2. LS-SVM Applied to Determine the Parameters of Dividing Surfaces

To begin with, a sample space is defined:

Zi = {z(k)|X(k) ∈ Ω i, y(k) = f (x(k))}Mi
k=1 (35)

where, ZN =
S
∪

i=1
Zi.

The LS-SVM determines the dividing surface in two steps: First, find out the adja-
cent subspaces; Then, determine the parameters of dividing surfaces between adjacent
subspaces. The specific steps are as follows:

Step 1. Determine the modeling subspaces adjacent to each other by the nearest
neighbor rule of cluster center, namely:{

Zi, Zj
}
= min

2≤i,j≤s,i 6=j

{
‖Zi − Zj‖2

}
(36)

Step 2. Determine the parameters of the dividing surface between two adjacent subspaces.
According to Equation (4), the dividing surface of two adjacent subspaces can be

described as: hi,j =
{

wT
i,jX + vi,j = 0

}
. Suppose y(i) = 1 for the sample belonging to Ωi

subspace, and y(j) = −1 for the samples belonging to Ωj subspace. Then, kernel matrix Ω
in Equation (31) can be transformed by LS-SVM into:

Ωi,j = yiyj ϕ(Xi)
T ϕ
(
Xj
)
= yiyjK

(
Xi, Xj

)
(37)

Without changing other parameters in Equation (31), N groups of α and b can be
obtained by solving the new linear equation set. Finally, the dividing surface can be
obtained by LS-SVM as:

f (x) = sgn

[
N

∑
i=1

αiyiK(X, Xi) + b

]
(38)

where, N = Mi + Mj is the total number of vectors in subspace Ωi and subspace Ωj.
Accordingly, the parameters of dividing surfaces can be obtained by:

wi,j =
N

∑
i=1

αiyiXi and vi,j = yi − wT
i,jXi (39)

Therefore, the parameters of dividing surfaces can be expressed as hi,j =
[
wT

i,j, vi,j

]
.

2.6. Modeling Steps of the PWA Soft Sensor Model

Let D be the sample dataset of the fermentation process. The sample dataset is a kind
of MISO Problem (1). Then, the model identification problem is transformed into an MIQP
optimization Problem (8). The optimal solution of the MIQP problem can be obtained by
the following steps:

(1) Step 1. Determining model order
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The FNN is introduced to determine the embedding dimension in the state space
reconstruction of nonlinear time series in the fermentation process. The false nearest
neighbor can be identified by Equation (15). When the dimension n increases continuously,
the ratio δ of the false nearest neighbor will approach a threshold. The dimension at this
very moment is taken as the embedding dimension. The change of embedding dimension is
evaluated by E0(n) in Equation (18). When the embedding dimension n = ny + nu increases
to a certain extent, E0(n) tends to be stable. At this moment, the ny and nu are the order of
the corresponding model.

(2) Step 2. Collaborative optimization of the number and parameters of models

Because of their strong coupling, J1 and J2 must be determined synchronously. There-
fore, the powerful parallel search ability of ICF-PSO algorithm is utilized to optimize the
multi-objective optimization Problem (9). By the ICF-PSO, Equations (22) and (23) are
updated, such that the particles can avoid the local optimum.

(3) Step 3. Determining dividing surfaces

The adjacent modeling subspaces {Zi, Zj} are determined by the nearest neighbor
rule of cluster center, and the dividing surfaces of adjacent subspaces are determined
by hi,j =

{
wT

i,jX + vi,j = 0
}

. By solving the new linear equation set, N groups of α and

b are obtained. Then, the parameters wT
i,j and vi,j of dividing surfaces can be solved by

Equation (38), namely, hi,j =
[
wT

i,j, vi,j

]
.

The modeling process of the PWA algorithm is illustrated in Figure 4.
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2.7. Introduction of Experimental Work

The online control of Pichia pastoris fermentation is a difficult problem, due to the
complexity of the fermentation process, and the cost of online detection instruments for
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key biomass variables being very high. To provide information for the online control and to
optimize the fermentation process, it is significant to establish real-time soft sensor models
for cell concentration X and protease K concentration P.

The sample data used in this paper all came from the microbial fermentation lab of
Zhenjiang Yangzhong Weikete Bioengineering Equipment Co., Ltd. (Zhenjiang, China),
and the fermentation experiment equipment adopted RTY-C−100 L model. Taking Pichia
pastoris fermentation as the object, the Pichia pastoris KM71, MutS constructed by the
Key Laboratory of Animal Husbandry and Veterinary Institute of Shanghai Academy of
Agricultural Sciences, was selected as the strain, and the expression vector and foreign
genes were pPICZαA and IFNαcDNA [51]. The experiment was carried out according to
the schematic diagram of the Pichia pastoris fermentation process (Figure 5). After deeply
analyzing the fermentation process, the temperature of fermentation broth T, dissolved
oxygen concentration DO, pH of fermentation broth, air flow q, stirring speed v, and
the pressure of fermentation tank p were selected as auxiliary variables. In order to
clarify the auxiliary and key biomass variables of the ICF-PSO-PWA model at a glance, a
model expression with a generalized form for the input and output variables is given in
Equation (39).

ϕ(X, P) = f (T, Do, pH, q, v, p) (40)

where, f (g) is a generalized form of the complex nonlinear relationship between the
auxiliary variables in the ICF-PSO-PWA model; ϕ(X, P) is any one of X and P. That is, the
auxiliary variables (T, Do, pH, q, v, p) are the input variables of the model we use, and the
key biomass variables (X, P) are the output variables we need.
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The initial values of the input variables in the fermentation process were set as follows:
the pressure of the fermentation tank was controlled at 0.04 Mpa, the stirring speed of the
motor was about 250 rpm, the fermentation temperature was controlled at about 28 ± 0.5 ◦C,
and the air flow was controlled at the range of 1000–1200 L/h. The oxygen content was
maintained between 35% and 45%, and the pH was 7.3.
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Under normal fermentation conditions, the environmental variables of the fermenta-
tion processes were monitored by sensors every 5 min and uploaded to the host computer.
The cell concentrations and protease K concentrations were measured offline every 1 h.
The cell concentration was measured by the American Lehman Lamotte 1200 photoelectric
colorimeter, and the concentration of proteinase k was measured by the UV−260 model au-
tomatic spectrophotometer of Shimadzu Corporation, Japan. The adjustment, logarithmic
growth and stabilization phases in the fermentation processes were selected as the data
collection time period, which was approximately the first 80 h of the fermentation process.
Finally, 10 batches of sample data were extracted to apply our algorithm. Subsequently,
6 out of these 10 batches were used for training, the 7th and 8th batch for online correction
of the initial PWA model, and the 9th and 10th batch for verifying the effectiveness and
prediction accuracy of the PWA model. As the output variables are measured offline once
every 1 h and the input variables once every 5 min, there is no one-to-one correspondence
between the two, so the interpolation methods are used to convert the output variables
offline every 1 h to the input variables every 5 min, forming a one-to-one correspondence.
The data are then pre-processed by a coordinate transformation, which normalizes all
sample data to between −1 and 1, making the calculation easier and faster. Through
coordinate transformation and interpolation operation on 10 batches of sample data, a
total of 960 sets of sample data were obtained at last, including 576 sets of sample data
in training set, 204 sets of sample data in verification set and 180 sets of sample data in
test set.

3. Results and Discussion

After determining that the order of input vector (nu) is 1 and the order of output vector
(ny) is 2, XT(k) = [uT(k), yT(k), yT(k + 1)] is selected to form the input vector and the local
model is chosen to be of the form y(k) = [yT(k − 1), uT(k − 1), 1]θ. The dividing surface
equation is hi,j[yT(k − 1), uT(k − 1), 1]T = 0, which separates the i-th local model from the
region where the j-th local model is located. After using the ICF-PSO algorithm to optimize
the PWA model, the number of local models is S = 3, which exactly corresponds to the
three phases of the sample data in this paper: adjustment, logarithmic growth and stable
phase. The local model parameters θi (i = 1, 2, 3) and the parameters of dividing surfaces
hi,j are shown in the Table 1.

Table 1. Local moel modeling parameters.

The Local Model Parameters The Parameters of Dividing Surfaces

Local model I θ1 = [0.5957, −0.1847, −0.0964, 0.4447, 0.3635,
0.0464, 0.5567, −0.2888] T

h13 = [1, 1.0445, −0.0045, 0.9854, 0.5421,
−0.2347, −1.0786, 0.0864]

Local model II θ2 = [0.0962, 0.9649, 0.0434, 0.0762, 0.9564,
0.0615, −0.6332, 1] T

Local model III θ3 = [0.1629, 0.9885, −0.0003, 1, 0.1005,
−0.6575, 0.3209, 0.6887] T

h23 = [1, −1.8753, 0.9753, −0.8656, 1.9531,
0.6542, −0.5423, 1.0112]

To verify its performance, the ICF-PSO-PWA model was compared with the PSO-
WLSSVR model based on global modeling, which used Gaussian radial basis kernel (RBF)
function k(x1, x2) = exp(−‖x1 − xx‖2/σ2), with σ = 0.2, and penalty coefficient C = 10.
The WLS-SVR model introduces the least squares algorithm and weights on the basis of
the SVR model, which greatly enhances the prediction accuracy and generalization ability
of the SVR model. It is a very good comparator. All simulation results were obtained based
on MATLAB R2019b software.

Figure 6a,b present the prediction results of soft sensor models based on ICF-PSO-
PWA and PSO-WLSSVR, respectively. Obviously, the fitting effect of ICF-PSO-PWA soft
sensor model is better than that of the PSO-WLSSVR model, regardless of the bacterial
concentration or the concentration of protease K. In particular, the fitting effect of the
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PSO-WLSSVR model is clearly inferior to the ICF-PSO-PWA model in terms of the cell
concentration in the later stage.
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Figure 6. Comparison curve between the soft sensor value and the actual value of (a) cell concentration and (b) protease
K concentration.

Figure 7a,b compare the relative error of cell concentration and protease K concen-
tration based on ICF-PSO-PWA and PSO-WLSSVR, respectively. For both ICF-PSO-PWA
and PSO-WLSSVR soft sensor models, the prediction errors gradually decrease with time
and are eventually stabilized. However, the ICF-PSO-PWA soft sensor model has a much
smaller error range, a relatively high accuracy in the whole sample interval, and an obvi-
ously smaller final error than the PSO-WLSSVR model.
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Figure 7. Comparison curve of relative error of (a) cell concentration and (b) protease K concentration.

Table 2 shows the mean absolute percentage error (MAPE) of cell concentration and
proteinase K concentration based on ICF-PSO-PWA and PSO-WLSSVR. It can be seen from



Sensors 2021, 21, 7635 19 of 26

Table 2 that compared with the PSO-WLSSVR soft sensor model, the ICF-PSO-PWA soft
sensor model has an improved accuracy by 2.4642% when predicting the cell concentration,
and an improved accuracy by 6.5127% when predicting the proteinase K concentration.
The mean prediction accuracy of ICF-PSO-PWA soft sensor model has been improved
by 4.4884%.

Table 2. Comparison of prediction accuracy of soft sensor models.

PSO-WLSSVR ICF-PSO-PWA Accuracy
Improvement

MAPE of cell
concentration 0.043573488 0.018931913 2.4642%

MAPE of protease K
concentration 0.091100816 0.025974078 6.5127%

Mean accuracy
improvement 4.4884%

Furthermore, the root mean square errors (RMSEs) of the ICF-PSO-PWA and PSO-
WLSSVR soft sensor models were tested on different scale datasets. The test results in
Table 3 show that, with the growing number of test samples, the RMSE of the PSO-WLSSVR
soft sensor model increases, while that of the ICF-PSO-PWA model does not change
significantly. This is because the latter model divides the working interval of the system
into several subintervals, and models each subinterval separately; besides, multiple local
models are used in place of the global single model, making full use of the information of
each sample. As time goes by, the ICF-PSO-PWA model can adapt to the changing working
conditions, and achieve excellent generalization performance and self-adaptability.

Table 3. RMSE of different test sample sets.

Number
PSO-WLSSVR ICF-PSO-PWA

X P X P

20 0.034753378 0.242421228 0.013863265 0.057610602
40 0.041227412 1.726108115 0.017189875 0.537857149
60 0.043646458 2.086190315 0.021352118 0.598752504
80 0.041167894 2.272430942 0.019573828 0.635771991

100 0.039357834 2.402638746 0.018463627 0.710257895
120 0.036679143 2.35714544 0.017360173 0.70555966
140 0.035563714 2.38677746 0.016815066 0.745174526
160 0.035008022 2.372930488 0.016138098 0.716623673
180 0.033457354 2.278762339 0.015402352 0.711287476

4. Conclusions

In order to solve the problem that the key biological variables in the fermentation
process of Pichia pastoris are difficult to directly measure online, a PWA multi-model soft
sensor modeling method based on the idea of “decomposition-synthesis” was proposed to
measure the key variables in the fermentation process of Pichia pastoris online. In order to
identify the PWA multi-model, the FNN was used to solve the order of the input and output
vectors of the model. Then, a novel ICF-PSO algorithm was proposed for collaborative
optimization of the number of local models and the parameters of each local model. Finally,
the LS-SVM was used for the determination of the parameters of the dividing surfaces
in the modeling process, so as to delineate the regions where each local model plays a
role. MATLAB simulation results show that the prediction accuracy of the ICF-PSO-PWA
model for X and P reach 1.8932% and 2.5974%, respectively, compared with 4.3573% and
9.1101% of the prediction accuracy of the PSO-WLSSVR model for X and P, the prediction
accuracy of the ICF-PSO-PWA model improved by 2.4642% and 6.5127%. The RMSEs of the
ICF-PSO-PWA model for X and P prediction results remain at 0.015402352 and 0.711287476,
respectively, which are smaller than 0.033457354 and 2.278762339 of the PSO-WLSSVR
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model, indicating that the prediction results of the ICF-PSO-PWA model are more stable.
The simulation results above demonstrate the effectiveness of the ICF-PSO-PWA soft sensor
method in predicting the key biological variables in the fermentation process of Pichia
pastoris. The proposed model provides a feasible theoretical approach to solve the soft
sensing of key biological variables in the Pichia pastoris fermentation process.

The PWA modeling method, as a special form of modeling method, partitions the
nonlinear complex system into several linear systems, so that the system can be solved
using the existing mature linear theory, breaking through the bottleneck that the traditional
single model is extremely complex and cannot meet the needs of actual engineering when
the global description of increasingly complex controlled objects is performed. The strong
nonlinear approximation capability and simple model structure of PWA are not only loved
by scholars in the field of modeling, but also a hot research topic in the control community.
In the future, we are interested in studying the optimal control of PWA models and the
design of online monitoring systems for the whole fermentation process.
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Appendix A. Performance Analysis of ICF-PSO Algorithm

In order to study the influence of the algorithm improvement scheme on the algorithm
performance, this paper selects six well-known classic test functions for verification. Since
the ICF-PSO algorithm is used for the collaborative optimization of the number of PWA
models and the parameters of PWA sub-models, three classic test functions for multi-
objective optimization problems similar to the PWA model proposed in this paper are
selected in the test function. The expressions of the functions are shown in Table A1,
where f 2(x (De Jong’s f2), f 4(x) (Shaffer’s f6) and f 5(x) (Levy N.13) are test functions for
multi-objective optimization problems. This is because both values of x1 and x2 must be
searched for simultaneously in order to determine the final minimum values of f 2(x), f 4(x)
and f 5(x). The parameter settings of the 6 classic test functions are shown in Table A2.
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Table A1. Functions used to test the performance of different optimization algorithms.

Function Name Expression

Ackley f1(x) = −20 exp

(
−0.2

√
1
D

D
∑

d=1
x2

d

)
− exp

(
1
D

D
∑

d=1
cos(2πxd)

)
+ 20 + e

De Jong’s f2 f2(x) = 100
(

x2
1 − x2

)2
+ (1− x1)

2

Griewank f3(x) = 1
4000

D
∑

d=1
x2

d −
D
∏

d=1
cos
( xd

d
)
+ 1

Shaffer’s f6 f4(x) = 0.5 + sin
√

x2
1+x2

2−0.5

(1.0+0.001(x2
1+x2

2))
2

Levy N.13 f5(x) = sin2(3πx1) + (x1 − 1)2[1 + sin2(3πx2)
]
+ (x2 − 1)2[1 + sin2(2πx2)

]
Rosenbrock f6(x) =

D
∑

d=1

(
100
(

xd+1 − x2
d
)2

+ (xd − 1)2
)

Table A2. Function parameters for the test problems.

Function Dimension Initial Range of xi Global Minimum

Ackley 10 ±32.768 0
De Jong’s f2 2 ±50 0
Griewank 10 ±300 0

Shaffer’s f6 2 ±100 0
Levy N.13 2 ±10 0

Rosenbrock 10 ±15 0

In order to further verify the performance of the ICF-PSO algorithm, compare it with
the standard PSO, Bat Algorithm (BA) and Firefly Algorithm (FA) [52,53]. To facilitate
quick comparison of performance, setting the maximum number of iterations to 100 is
enough, and calculate the average (AVE) and standard deviation (SD) of the calculation
results. The comparison results are shown in Table A3, and the convergence curve of each
algorithm test function is shown in Figure A1.

Table A3. Function test results.

Function
ICF-PSO PSO BA FA

AVE SD AVE SD AVE SD AVE SD

f 1(x) 0.35633 1.70326 0.60577 2.45382 0.70429 2.00445 1.24317 2.57169
f 2(x) 0.21804 0.79072 0.46414 1.04782 0.96809 1.82061 1.08155 2.41802
f 3(x) 0.08603 0.18551 0.15912 0.37573 0.11013 0.22398 0.14648 0.24683
f 4(x) 0.04314 0.12191 0.08433 0.09664 0.09812 0.09255 0.06048 0.08848
f 5(x) 0.83762 2.86836 2.74258 7.55932 3.10593 8.56497 1.97337 5.36548
f 6(x) 0.32771 3.19435 0.73393 4.53503 1.28882 6.83131 1.95052 7.77723

It can be seen from the test results in Table A3 that the AVE and SD of ICF-PSO
are significantly smaller than the standard PSO, BA and FA, indicating that ICF-PSO can
find the minimum zero stably. The optimization accuracy of ICF-PSO is also significantly
higher than the other three algorithms. Summarized from the six curves in Figure A1, the
convergence curve of ICF-PSO is obviously below the other curves, indicating that ICF-PSO
has stronger optimization ability and the convergence speed is significantly higher than
the other three algorithms, especially in the Figure A1e, ICF-PSO quickly converges to the
minimum in less than ten steps, and the convergence speed is at least twice that of the
other three algorithms, and the stability is stronger. It can also be seen in Figure A1b,d that
the convergence speed of ICF-PSO is at least ten steps ahead of other algorithms, and the
stability is stronger.
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Figure A1. The fitness curves of different optimization algorithms on different test functions (a) Ackley; (b) De Jong’s f2;
(c) Griewank; (d) Schaffer’s f6; (e) Levy N.13; (f) Rosenbrock.

Besides, as can be seen from Figure A1 and Table A3, the PSO algorithm performs
second only to ICF-PSO in terms of the outperformance of these six test functions. Therefore,
in order to assert that the ICF-PSO algorithm performs better, converges faster, and is more
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robust, the PSO algorithm is again compared with the ICF-PSO algorithm. De Jong’s f2
and Shaffer’s f6 were chosen as the test functions and three different initial populations
were chosen for each function, i.e., the optimization performance of the two optimization
algorithms was compared separately for different initial populations of each test function.
The comparison results are shown in Table A4, and the convergence curve of each algorithm
test function is shown in Figure A2.

Table A4. Function test results.

Function Initial Populations
ICF-PSO PSO

AVE SD AVE SD

De Jong’s f2
Type I 0.33380 0.87704 1.10774 2.13176
Type II 1.58682 2.72450 2.25954 3.64831
Type III 0.21251 0.79077 1.16916 2.20947

Shaffer’s f6
Type I 0.02700 0.08391 0.11621 0.09779
Type II 0.02409 0.03907 0.06715 0.12842
Type III 0.03974 0.09922 0.06017 0.11168
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Figure A2. The fitness curves optimized for De Jong’s f2 under three different initial populations (a) Type I; (b) Type II;
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(f) Type III.

It can be seen from the test results in Table A4 that the AVE and SD of ICF-PSO are
significantly smaller than the standard PSO, indicating that ICF-PSO can find the minimum
stably. The optimization accuracy of ICF-PSO is also significantly higher than the PSO
algorithm. Summarized from the six curves in Figure A2, the convergence curve of ICF-PSO
is obviously below the curves of PSO, indicating that ICF-PSO has stronger optimization
ability and the convergence speed is significantly higher than the PSO algorithm.

Therefore, considering the above performance comparison results, the ICF-PSO algo-
rithm with better convergence speed, convergence accuracy and convergence stability was
chosen to optimize the PWA model in this paper.

The ICF-PSO algorithm can be implemented in the following steps:

(1) Step 1. Initialize the particle swarm.
(2) Step 2. Calculate the initial fitness of each particle by the objective function F and

evaluate particle fitness.
(3) Step 3. Update the position and velocity of each particle in the swarm by Equations (22)

and (23), respectively.
(4) Step 4. Continue to evaluate the initial fitness of each particle according to the

objective function F.
(5) Step 5. Terminate the algorithm if the termination condition is met; otherwise, jump

back to Step 3.
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