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Glioma is a common type of tumor originating in the brain. Glioma develops in the gluey
supporting cells (glial cells) that surround and support nerve cells. Exosomes are
extracellular vesicles that contain microRNAs, messenger RNA, and proteins.
Exosomes are the most prominent mediators of intercellular communication, regulating,
instructing, and re-educating their surrounding milieu targeting different organs. As
exosomes’ diameter is in the nano range, the ability to cross the blood–brain barrier, a
crucial obstacle in developing therapeutics against brain diseases, including glioma,
makes the exosomes a potential candidate for delivering therapeutic agents for
targeting malignant glioma. This review communicates the current knowledge of
exosomes’ significant roles that make them crucial future therapeutic agents and
diagnostic tools for glioma.
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1 INTRODUCTION

Gliomas are the highest known primary malignant tumor that affects the brain. Among all
the gliomas, glioblastoma (GBM) is the most prevalent type among all other types. It occupies
70% of all gliomas and has a median overall survival of 15 months (1). The United States’ incident
rate is 3.20 per 100,000, and GBM handles 60%–70% of malignant glioma (2, 3). Glioma is the third
highest cause of cancer deaths in patients aged 15 and 34 years, which is responsible for 2.5% of the
worldwide cancer fatality rate. Glioblastoma multiforme is 50% of gliomas, with a higher prevalence
of patients over 65 years of age (4).
Abbreviations: GBM, glioblastoma; TMZ, trimetazidine; EMT, epithelial–mesenchymal transition; MDSCs, myeloid-derived
suppressor cells; MCP-3, monocyte chemotactic protein 3; CXCL1, chemokine (C-X-C motif) ligand 1; GSCs, glioblastoma
stem cells; TME, tumor microenvironment; EMT, epithelial–mesenchymal transition; DNA, deoxyribonucleic acid; RNA,
ribonucleic acid; HBMEC, human brain microvascular endothelial cell; CADM1, cell adhesion molecule 1; STAT3, signal
transducer and activator of transcription 3; CAB39, calcium-binding protein 39; AMPK, prime-AMP-activated protein kinase;
FBXW7, F-box and WD repeat domain containing 7; DKK3, Dickkopf homolog 3; BBB, blood–brain barrier; circNFIX,
circular RNA nuclear factor I X; SPION, superparamagnetic iron oxide nanoparticles; EZH2, enhancer of zeste homolog 2;
GDEs, genes with different expression levels; EVs, extracellular vesicles; MCP-3, monocyte chemotactic protein; AGAP-2, Arf-
GAP with GTPase; ANK repeat, and PH domain–containing protein 2, TiO2-CTFE-AuNIs, titanium dioxide (TiO2) columnar
thin film (CTF), coupled with gold nanoislands (AuNIs); BIGH3, beta Ig-H3.
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Multiple occurrences such as high growth rate, widespread
invasion, and genetic variations are characteristics of gliomas.
The drug resistance of GBM, the poor prognosis of patients who
harbor glioma, is significantly linked to the lack of insight into
the molecular facts related to the initiation of glioma and the
absence of sensitive diagnosis and accurate therapeutic agents
(5). The glioma microenvironment comprises different cells
other than tumor cells, such as astrocytes, microglia,
endothelial cells, and immune cells. Currently, trimetazidine
(TMZ) is the primary chemotherapy drug for GBM (6).
Patients with GBM have relatively high treatment resistance,
resulting in decreasing overall survival (7). Immunotherapy
inhibits the immune checkpoint receptor of programmed cell
protein 1 (PD-1), and bevacizumab that inhibits the vascular
endothelial growth factor is now being studied to enhance the
treatment outcome of patients treated with GBM, which is the
most prevalent glioma type (8). The determination of GBM is
primarily focused on imaging methods and biopsies of tissues.
However, imaging methods cannot reliably distinguish lesions
induced by tumor development from treatment-related pseudo-
progression lesions that mimic tumor progression and may
typically resolve with time (9). Liquid biopsies allow
identifying circulating biomarkers and offer the advantage of
being non-invasive, thus enabling serial sampling and tracking
possible structural reforms in the tumor during therapy (10).

At present, the critical testing techniques for diagnosing
gliomas are based on neurological tests and neuroimaging
procedures are sometimes performed when gliomas are at the
advanced level (11). Exosomes are extracellular vesicles first
identified 30 years ago. They have since been connected to
cell–cell communication, disease propagation, and drug
development (12). Those exosomes comprise different bioactive
molecules, such as microRNAs (miRNAs), messenger RNA
(mRNA), and other vital protein compounds (13).

Exosomes are critical for cellular signaling in normal
physiology and pathological conditions, most notably in
cancer. Exosomes are potent progenitors capable of changing
target cell phenotypes, most notably during carcinogenesis and
development, by altering tumor microenvironments and
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assisting in establishing the pre-metastatic niche. Numerous
features of exosomes point to them as a new method for
identifying cancer biomarkers for early diagnosis and
therapeutic targets and for utilizing exosomes’ inherent and
modified properties as therapeutic tools to slow down disease
development (14). The blood–brain barrier (BBB) protects the
central nervous system, supplies nourishment, regulates
homeostasis, and allows the brain and the rest of the human
body to communicate through the serum. Because of the
complex structure of the BBB, drug administration in the brain
is a significant problem, necessitating the discovery of innovative
methods to achieve improved drug delivery in the brain, either
invasively or non-invasively (15). To solve the issue mentioned
above, different studies have been proposed to use exosomes to
deal with this issue due to their nano size. Also, various studies
revealed that exosomes are highly or lowly expressed in different
cancers, including glioma. In addition, exosomes are also
involved in other main cancer events, such as cancer initiation
and progression of various cancers (16); however, this active
status made exosomes potential therapeutic and biomarkers
tools for glioma (17). The primary purpose of this review is to
highlight the roles of exosomes as future therapeutic agents and
diagnostic tools for glioma
2 EXOSOME’S BIOLOGY

Exosomes are extracellular vesicles with a diameter of around
30–100 nm with a bilayer membrane (18, 19). Exosomes include
several cargo types comprising proteins, lipids, enzymes,
transcriptional factors, DNA fragments, mRNAs, micro-RNAs,
and Long non-coding RNA (lncRNAs) (20, 21). Exosomes are
released by different cell types, such as erythrocytes, platelets,
lymphocytes, dendritic cells (DCs), adipocytes, fibroblasts, brain
cells, stem cells, and cancer cells. Exosomes are detected in
biofluids, including blood, plasma, urine, Cerebrospinal fluid
(CSF), milk, amniotic fluid, malignant ascites, saliva, and
synovial fluid (Figure 1). They play a significant part in the
signals of normal and pathological processes in communication
FIGURE 1 | The biology of exosomes. Exosomes are vesicles with a diameter of 40 to 100 nm that may be produced by various cells and extracted from multiple
bodily fluids. Exosomes may provide information to receptor cells via plasma membrane fusion, phagocytic endocytosis, or cell–receptor contact (BioRender.com
was used to create this figure).
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between cells and transporting substances such as proteins and
RNAs from donor cells to recipient cells (16, 22, 23).

The biogenesis of exosomes occurs by inward budding of the
plasma membrane that forms the endosome vesicle and the
multivesicular bodies (MVBs). MVBs fuse with lysosomes,
degrade or fuse with the plasma membrane, and create
exosomes released from cells into extracellular space (22). Late
endosomal structures containing dozens of Intraluminal Vesicles
(ILVs) are known as MVBs, which are eventually transported to
the trans-Golgi network for endosome recycling, delivered to
lysosomes for degradation of all carried material, or fused with
the plasma membrane and release exosomes into the
extracellular space; this process is facilitated by Rab GTPase,
such as RAB11 and RAB35, which release exosomes enriched
with flotillin and other cell-specific proteins (24). Thus, exosome
biogenesis and secretion require forming an endosomal-sorting
complex required for transport (ESCRT) (25). ESCRT comprises
four complexes (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III)
and associated proteins (VPS4, Tsg101, and ALIX). ESCRT-0
sorts ubiquitinated cargo proteins into the lipid domain; ESCRT-
I and ESCRT-II induce membrane deformation to form the
stable membrane neck, and recruitment of the Vps4 complex to
ESCRT-III drives vesicle neck scission and the dissociation and
recycling of the ESCRT-III complex (26, 27).

A broad range of research has indicated an ESCRT-independent
route in the exosome synthesis and carrier packing of lipids and
related proteins, including tetraspanine (28). In opposition to
ESCRT-sorted proteins, the loading of RNA into exosomes
becomes lipid-mediated, reliant on self-organizing fat and carrier
motifs. Specific nucleotide sequences show improved phospholipid
bilayer affinity that relies on variables such as lipid morphology,
hydrophobic changes, and physiologically concentrated sphingosine
within rafting membranes (29, 30). Lipid rafts are plasma
membrane subdomains loaded in cholesterol, sphingolipids, and
attached proteins of glycosyl-phosphatidylinositol (GPI) whose
connection with proteins or compounds may help their release by
the use of exosomes (31, 32). The availability on the limiting
membrane of ceramide, lysophospholipid, and glycosphingolipid
molecules promotes the impulsive entry method to create ILVs (33).
The ceramide changes in the existence of ceramidase and
sphingosine kinase into sphingosine and sphingosine phosphate
and the continual stimulation of 1-phosphate sphingosine receptors
on the limited membrane facilitate the kind of tetraspanin into ILV.
Thirty-three, three-four tetraspanin is a cell surface protein
superfamily member with four transmembrane domains.
Tetraspanin organizes membrane microdomains termed TEMs
with a broad range of transmembrane and cytosolic signaling
proteins (34). As the first tetraspanin, CD63 works in ESCRT-
independent ILV creation. Interestingly, the lack of an ESCRT
machine did not prevent the formation of MVB vesicles in
mammalian cells but led to decreased cargo processing and
changes in ILV numbers and sizes (35), indicating that exosome
biogenesis could be a synchronized process that involves ESCRT-
dependent and ESCR-independent pathways. The methods of
exosome penetration into recipient cells have not been adequately
explored. Nevertheless, it has been demonstrated that, according on
Frontiers in Oncology | www.frontiersin.org 3
the recipient cell type, exosomes penetrate target cells via fusion
with the plasma membrane, macropinocytosis, phagocytosis, and
clathrin-dependent endocytosis.
3 THE ROLES OF EXOSOMES IN GLIOMA
DEVELOPMENT

Exosomes play a critical function in cell–cell communication by
transporting bioactive materials from the donor cells to the
receiving cells (36). Many pieces of research have revealed that
cancer cells release more exosomes, both locally and at a
distance, to share information with other cells (37). Cancer-
derived exosomes contribute to pre-metastatic milieu creation,
tumor development, progression, immune evasion, angiogenesis,
anti-apoptotic signaling, and treatment resistance throughout
their bioactive cargo. Meanwhile, healthy cell exosomes such as
DCs, B cells, and T cells significantly prevent tumor growth (38).
To date, many miRNAs, lncRNAs, and proteins have played a
vital role in the development of cancer. Therefore, exosomes may
play a dual function in controlling, preventing, or encouraging
the development of cancer, depending on their cell of origin and
bioactive cargo (Figure 2).

It has been reported that over 48 h, a single glioma cell
secretes around 10,000 EVs (39). Glioma cell exosomes transport
different chemicals than regular glial cell exosomes (40). Cancer
effectors such as a mutant oncoprotein, oncogenic transcripts,
and miRNAs are among the elements involved in tumor
formation (28). In addition, exosomes enhance communication
between cancer cells and the stromal cells surrounding them,
resulting in either the tumorigenesis of apparently normal cells
or a change in their behavior, which offers a favorable
environment for the tumor to grow (41).

Angiogenesis is a critical event in glioma development, and
glioma-delivered exosomes have been reported to play an
essential role in this important event of glioma progression.
For instance, a study that aimed to determine the processes of the
glioma cell–affected angiogenesis noted that glioma cells might
stimulate angiogenesis by transferring Linc-CCAT2 to
endothelial cells through exosomes (42). Also, Lang HL et al.
showed that gliomas stimulated angiogenesis by producing
exosomes with high linc-POU3F3 (43); linc-POU3F3 has been
reported to be involved in the development of glioma (43). On
the other hand, a study showed that exosomes generated from
hypoxic GBM cells relative to normoxic circumstances are
effective inducers of angiogenesis in vivo. Moreover, they do
the same in vitro via endothelial cell regulation, which increases
tumor progression (44). Also, a study conducted by Xu Sun et al.
noted that exosomes generated from glioma stem cells (GSCs)
enhance endothelial cells’ angiogenic capacity through the miR-
21/VEGF signaling pathway (45).

Moreover, different studies have revealed that exosomes are
also involved in promoting and facilitating metastasis, which is a
significant event in the progression and development of various
cancers, including glioma. For example, Q. Cai et al. showed
that miR-148a carried by exosomes facilitated cancer cell
October 2021 | Volume 11 | Article 733529
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proliferation and metastasis by directly targeting CADM1 to
trigger the STAT3 pathway (46), which plays an essential role in
the metastasis of different cancer types, including glioma (47).
Also, Zhanjun Ma et al. found that U251 cell–derived exosomes
promoted metastasis-related proteins such as MMP-2 and
MMP-9 (48), which facilitated the development of glioma.
Moreover, another study also showed that the exosome
EpCAM promotes the metastasis of glioma by targeting the
CD44 signaling molecule on the surface of glioma cells; this
exosome influenced the progression of glioma (49).

On the other hand, another study by Karma R Pace et al.
discovered that exosomal L1CAM enhances motility,
proliferation, and invasion in GBM cells, adding to the
intricacy of how exosomal L1CAM promotes cancer cells not
just through soluble ectodomains but also by exosomes (50).
Besides, by directly targeting FBXW7 and DKK3, Gang Peng and
his colleagues found that exosomal miR−25−3p significantly
promoted the proliferation and migration of glioma cells (51).
Furthermore, a recent study revealed that exosomal microRNA-
671-3p increases cell proliferation in glioma by directly targeting
CKAP4; this affected the proliferation and significantly increased
glioma cell migration, facilitating glioma growth (52). Epithelial–
mesenchymal transition is another vital factor that plays a
significant role in glioma progression, and exosomes have been
reported to be involved in glioma’s EMT. For instance, a study
showed that exosomal microRNA-708 repression increases cell
proliferation and EMT in glioma via promoting the SPHK2/
AKT/-catenin pathway (53). In addition, another study also
discovered that TGF-1 treatment substantially increased miR-
10b expression in GBM cells, and miR-10b upregulation
increases GBM cell proliferation, migration, and EMT; in
contrast, miR-10b deletion has an opposite impact (54).
Conclusively, the above facts show that exosomes play a crucial
role in many critical glioma occurrences, such as cell
proliferation, metastasis, angiogenesis, and EMT. More details
about the involvement of exosomes in the progression of glioma
are presented in Table 1.
Frontiers in Oncology | www.frontiersin.org 4
4 THE APPLICATION OF EXOSOMES AS
FUTURE BIOMARKERS AND
THERAPEUTIC OPTIONS FOR GLIOMA

4.1 Exosomes as Biomarkers for Glioma
GBMs are histologically varied tumors composed of many and
different cell types. Notably, managing GBM is a significant
problem for neurosurgeons. The current standard of care for
GBM is magnetic resonance imaging (MRI) followed by surgery
or brain biopsies. Both of these methods, however, have
drawbacks (61).

Additionally, it is difficult to differentiate between tumor
recurrence and postsurgical necrotic areas without histological
investigation. On the other hand, collecting histology samples
through immediate surgery or biopsies is time-consuming and
hazardous, owing to the accompanying surgical risks. In
addition, this is a one-time procedure with uncertain reliability
due to the tumor’s heterogeneity, so using exosomes would be
the best option to overcome those drawbacks in the future (62).
FIGURE 2 | The roles of exosomes in glioma’s development. The role of exosomes in cancer progression. Cancer cell–derived exosomes influence the formation of
the pre-metastatic microenvironment, tumor growth and advancement, immune escape, angiogenesis promotion, stopping of apoptosis, drug resistance, and
metastasis. Besides, exosomes from healthy cells, including dendritic cells (DCs), B cells, and T cells, play a role in the inhibition of tumor growth (BioRender.com
was used to create this figure).
TABLE 1 | Exosomes that are involved in glioma.

Exosomes Target Outcome References

miR-9 MYC and OCT4 Promotes tumorigenesis and
angiogenesis

(55)

miR-1238 EGFR-PI3K-Akt-
mTOR

Promotes proliferation,
migration, and TMZ resistance

(56)

miR-148a CADM1/STAT3 Promotes proliferation and
metastasis

(46)

miR-1587 Inhibiting NCOR1 Increases tumorigenicity (57)
MicroRNA-
148a-3p

Inhibiting ERRFI1 Promotes tumor angiogenesis (58)

MicroRNA-
155-3p

Targeting Six1 Promotes glioma progression
and temozolomide

(59)

MicroRNA-
6807-3p

Targeting
downstream
DACH1

Promotes the tumorigenesis of
glioma

(60)
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Different significant studies have been conducted to assess if
exosomes can be used as diagnostic and prognostic biomarkers;
for example, a study reported that exosomal miR-181 could be a
potential biomarker for human glioma at its initial stage.
Interestingly, detecting miR-181 high rates may be a promising
alternative for diagnosing glioma, evaluating the World Health
Organization grade of tumors, and guiding in glioma medical
management (63). Subsequently, another research also noted
that exosomal miR-124 was involved in different glioma events
such as promoting angiogenesis and chemoresistance, and the
same study also found that exosomal miR-124 is a potential
diagnostic marker of glioma (64). However, the researchers did
not stop to continue to do more in-depth studiess on how
exosomes are suitable candidates for the diagnosis and
prognosis of glioma. That is why a study conducted by
Fengming Lan and his colleagues, which had the primary
purpose of determining both the diagnostic and prognostic
values of exosomal miR-301a in patients with glioma, reported
that exosomal miR-301a could show both cancer status and some
changes with pathological changes in human glioma, which
made miR-301a an excellent candidate for the diagnostic and
prognostic biomarkers of glioma (65).

Furthermore, another study reported that people who suffer
from glioma had increased levels of miR-205 and had improved
overall survival rates compared to those who had decreased
expression levels of miR-205. In addition, the authors of the
same study concluded that the exosomes mentioned above could
significantly be a prognostic biomarker for patients with
advanced pathological glioma grades; it can also be used as a
potential biomarker for the same cancer (66). Moreover, another
research that aimed to determine the predictive and diagnostic
significance of exosomal miR-221/miR-222 found that the
increased positive plasma of both miRNAs was paired with low
survival rates. They also found that both miR-221 and miR-222
are valuable tools to reveal glioma (67). Subsequently, a study
that aimed to determine the clinical significance and diagnostic
value of miR-128 reported that the diagnostic odds ratio was
considerably high; this meta-analysis study highlighted that miR-
128 could be a potentially non-invasive biomarker of glioma
(68). In the meantime, the analysis of miR-21, miR-222, and
miR-124-3p in serum exosomes in persons with glioma could
provide a minimally invasive and revolutionary method to the
differential diagnosis of glioma at their initiation in the brain and
forecast glioma grade and non-glial metastases before surgery
(69). Furthermore, it has also been revealed that the high rate of
small RNU6-1, together with miR-320 and miR-574-3p, was
found to be correlated with GBM IV diagnosis (70); more details
are shown in Table 2.

By employing quantitative real-time PCR, Tan et al.
determined HOTAIR expression in serum from 43 GBM
patients and 40 controls. It was found that HOTAIR levels
were substantially high in serum samples from GBM patients
than with matched controls. In addition, the expression of
HOTAIR was found to be strongly associated with high-grade
brain cancers, and Pearson’s correlation analysis revealed a
moderate association between serum and tumor HOTAIR
Frontiers in Oncology | www.frontiersin.org 5
levels. As a result, serum HOTAIR can predict and diagnose
GBM (72). Besides, another study performed on glioma patients
found that exosomal CircNFIX levels were high in the serum of
the patients resistant to TMZ, and CircNFIX high levels
predicted poor prognosis, making it a potential prognostic
biomarker for gliomas (71). Moreover, Chandran and
colleagues conducted a study to explore extracellular plasma
vesicles, and their research showed that Syndecan-1 is a critical
biomarker for differentiating low- and high-grade gliomas (73).
The tumorigenic epidermal growth factor receptor III is
frequently overexpressed in high-grade glial brain tumors
(EGFRvIII) (74). Combining both EGFRvIII and exosomes
might be a good platform to create new effective biomarkers
for glioma. For example, a study that had the main purpose of
establishing a clinically adaptive protocol as a non-invasive
diagnostic tool for EGFRvIII detection through serum
exosomes found that the accuracy of EGFRvIII detection
through exosomes was 80% for tissue EGFRvIII expression
with an overall sensitivity and specificity of 81.58% and
79.31%, respectively (75). This study concluded that using
exosome-based liquid biopsy to assess EGFRvIII expression for
high-grade glioma diagnosis is extremely promising. It may assist
in distinguishing high-grade gliomas from infective
demyelinating illnesses with comparable radiological features.
TABLE 2 | Various available exosomes considered as biomarkers for glioma.

Exosomes Roles in Glioma References

CircNFIX CircNFIX augments TMZ resistance in glioma by
sponging miR-132, indicating a possible prognostic
biomarker.

(71)

HOTAIR The levels of HOTAIR in tumor samples are much
higher than in normal samples, and this research
indicated that HOTAIR might be utilized as a
prognostic and diagnostic biomarker for glioma.

(72)

miR-181 Detection of the level of miR181 family members
may be a potential method for glioma diagnosis,
determining the tumor WHO grade, and guiding
clinical treatment.

(63)

miR-301a Patients with an advanced pathological grade (III or
IV) and an increased serum exosomal miR-301a
level revealed a more prolonged overall survival than
those with a lower level; this made mi-301a an ideal
prognostic and diagnostic biomarker for glioma.

(65)

miR-205 Serum miR-205 levels were significantly increased in
postoperative samples over preoperative samples
and were reduced again during glioblastoma
recurrences. miR-205 expression is a novel and
valuable biomarker for diagnosing glioma and a
prognostic factor for those with a tumor at an
advanced pathological grade.

(66)

miR-128 circulating miR-128 is a promising non-invasive
biomarker for diagnosing glioma.

(68)

miR-21,
miR-222,
and miR-
124-3p

miR-21, miR-222, and miR-124-3p in serum
exosomes of patients affected by gliomas can
provide a minimally invasive and innovative tool to
help the differential diagnosis of gliomas at their
onset in the brain and predict glioma grading and
non-glial metastases before surgery

(69)
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Different advances have been made to produce new precision
therapeutic and diagnostic tools for different types of cancer,
including glioma. Theranostics is one of the new fast-expanding
disciplines that combines nanotechnology’s unique possibilities
with customized medicine for substantially improving
effectiveness with decreased off-target impacts by providing
therapy for targeted tissues (76). In 2021, Batla S. Al-Sowayan
et al. mentioned that diagnostic and forecast biomolecular
profiles may be developed utilizing nanogenomics and artificial
intelligence for breast tumors based on the exosome packed
content instead of free circulating miRNA and other
biomolecules, which is an integrated approach toward the
discovery of practical therapeutic and diagnostic tools for
various types of cancer including glioma (77). Moreover,
another study found that using both learning machines and
nanofluids that encapsulate exosomes distinguished cancer and
precancer mice from healthy controls and pancreatic cancer
patients from healthy controls. Furthermore, deep sequencing
is based on new and sophisticated technologies that enable
billions of nucleotides to be sequenced in one run. Using this
technology is crucial in discovering not only therapeutic agents
but also biomarkers for glioma. For example, using deep
sequencing technology, Saeideh Ebrahimkhani et al. noted that
serum exosomal miRNA signatures could accurately diagnose
GBM preoperatively; this makes this exosomal miRNA signature
a potential diagnostic biomarker for glioma (78). Altogether, the
above-mentioned facts show that exosomes are potential
candidates to be glioma biomarkers.

4.2 Exosomes as Therapeutic Agents
for Glioma
Cancer treatment is one field that is developing at a very
significant speed (17). Additionally, researchers realized that
exosomes might also be involved in the treatment of glioma.
For example, a study, which had the primary aim to evaluate
whether marrow stromal cell (MSC) exosomes can be used as a
vehicle for the delivery of anti-tumor miRNAs, found that
transfected MSCs with miR-146b plasmid expression harvested
MSC-released exosomes and intra-tumor injection of exosomes
extracted from miR-146-expression and MSCs significantly
decreased glioma development in the primary brain tumor in
the used mouse model (79). Chemoresistance is another issue in
treating different cancers, including glioma. Exosomes have been
linked positively to this issue by restoring chemosensitivity. For
example, the transmission of anti-miR-9 to resistant GBM cells
restored the multidrug transmitter’s function and attuned the
GBM cells to TMZ, as shown by increased cell death and caspase
activity. The findings showed the role of MSCs in the empirical
distribution of synthetic anti-miR-9 in overcoming GBM cells’
chemoresistance (80). Besides, exosomal transfer of long non-
coding RNA SBF2-AS1 enhances chemoresistance to
molozonide in GBM by secreting the oncogenic LincSBF2-
AS1-enriched exosomes (81). Yin J et al. showed that exosomal
miR-1238 contributes more to the modulation of gained GBM
chemoresistance; exosomal miR-1238 can induce the
chemoresistance microenvironment of the tumor (82).
Frontiers in Oncology | www.frontiersin.org 6
Furthermore, exosomes have been reported to be outstanding
candidates to stop the tumor from spreading in various cancers,
including glioma. For example, a study that aimed at
determining the clinical roles and the regulatory mechanism of
miR-454-3p in glioma found that regaining the expression of
miR-454-3p inhibited significantly different features such as cell
proliferation, migration, invasion, and autophagy in glioma,
which made miR-454-3p be considered as a glioma tumor
suppressor and a treatment agent for glioma (83). Moreover,
another study reported that exosomal miR-451 impeded the
proliferation, invasion, and apoptosis of GBM cells, and this
study concluded that exosomal miRNA-451 could act as a tumor
suppressor in human gliomas (84).

In the continuing movement of discovering new treatments
for glioma, various studies have been conducted and showed that
some exosomes could be potential therapeutic targets in glioma,
which is regarded as an excellent cancer treatment approach. For
instance, a study reported that the repression of miR-10b in the
human glioma mouse model results in a more significant tumor
progression decrease. Furthermore, their study briefly affirms the
essential role of miR-10b in glioma initiation, unveiling the novel
mechanism of miR-10b-mediated control and showing the
likelihood of its potential use as a therapeutic target in
glioma (85).

It has also been found that exosomal miR-34 can be used
as a tumor suppressor for glioma by targeting two essential
genes, c-Met and Notch (86). Also, it has been found that miR-
146a inhibits glioma growth by directly targeting and stopping
the Notch1 pathway activity (87). Lei Yu et al. also reported
that mesenchymal stem cells that transmitted miR-199a to the
glioma cells by exosomes suppressed different important
glioma features, such as cell proliferation, invasion,
and migration. Besides, high expression of miR-199a in
mesenchymal stem cells that restored TMZ chemosensitivity
miR-199a also suppressed glioma by downregulating AGAP2
(88). Another study revealed that miR-1246, detected in the
cerebrospinal fluid in patients suffering from GBM, could be
a diagnostic biomarker. This study also noted that targeting
microRNA-1246 may lead to anti-tumor immunotherapy (89).
Also, another study reported that GSCs produced exosomes
carrying Notch1 protein; when these exosomes were absorbed
into non-GSC glioma cells, Notch1 transferred from GSC
exosomes activated the Notch1 signaling pathway, increasing
the stemness and tumorigenicity of these non-GSC glioma
cells. In addition, GSC exosomes serve as information carriers,
facilitating the dedifferentiation of non-GSC glioma cells into
GSCs by conveying Notch1 protein and activating Notch1
signaling, maintaining the dynamic equilibrium state of GSCs
in the tumor microenvironment. GSC exosomes and the
Notch1 signaling pathway targeted to harm GSCs might
be a unique method for GBM eradication that needs
further exploration (Figure 3). The above facts show that
continuous studies will improve the likelihood of exosomes
to be used as future glioma treatments (90). More details
concerning the roles of exosomes in the treatment of gliomas
are summarized in Table 3.
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4.2.1 Exosomes as a Crucial Delivery Method of
Various Therapeutic Agents to Glioma Tumors
Drug loading may be done, whether endogenously or
exogenously (Figure 4). By employing normal cell culture
procedures, endogenous or passive loading is carried out by
overexpressing the RNA species or molecule of interest. This
passive loading is facilitated by the cell’s natural exosomal
loading processes and results in exosomes that contain the
medication before isolation. Exogenous or active loading starts
with exosome collection. Then, it involves either co-incubation
or electroporation of the exosomes with the drug, and afterwards,
the exosomes can be safely delivered to the target cells (99).

To enhance the efficacy of cancer therapy, medicines must be
delivered precisely to tumor cells. Clinically, medication delivery
techniques based on nanotechnology are one of the most
promising means to accomplish this task. Exosomes have been
effectively utilized as medicinal and functional RNA delivery
vectors for cancer treatments (100). Exosomes may be absorbed
by cells and medicines such as therapeutic miRNAs and proteins
that are securely transferred (101). For example, in 2018, Gang
Jia and His colleagues firstly loaded super-paramagnetic iron
oxide nanoparticles (SPIONs) and curcumin (Cur) into
exosomes. They then conjugated the exosome membrane with
neuropilin-1-targeted peptide by click chemistry to get glioma-
targeting exosomes with imaging and therapeutic functions.
When delivered to glioma cells and orthotopic glioma models,
they observed that these modified exosomes could cross the BBB
smoothly, and exosomes offered extraordinary outcomes for
targeted imaging and treatment of GBM. SPION-mediated
magnetic flow hyperthermia and Cur-mediated therapy also
had a powerful anti-cancer effect when used together (102).

Interestingly, another study by Hamideh et al. showed that
the administration of the exosomes carrying miR-21 into a
glioma mouse model reduced the volume of the tumor (91).
Moreover, Jessian L et al. also found that delivering the
mesenchymal stem cell–derived exosomes to GBM loaded with
anti-miR-9 increased the temozolomide chemosensitivity (80).
Improving the loading capacity of an anti-cancer agent into
exosomes is critical for enhancing anti-cancer medication
Frontiers in Oncology | www.frontiersin.org 7
delivery to glioma and keeping the proper drug dose in glioma
tissues. Thus, several approaches, including electroporation,
incubation, and chemical reagents, have been examined to
increase the loading efficiency of therapeutic medicines into
exosomes. Furthermore, the application of microfluidics to drug
loading and delivery to cells has been researched, especiallywith the
advancement of micro- and nanofabrication technologies (103).
Recently, therapeutic loading into exosomesusingmicrofluidics has
received attention and progress from different researchers. For
example, a recent study conducted by Thakur A et al. revealed
that Exo-Load microfluidic device fully incorporated two BBB-
impermeable anti-cancer drugs, DOX and PTX, into SF7761 stem
cell–like GM-derived exosomes in the presence of saponin, a
permeabilization agent, and shear stress in microfluidic channels.
The sigmoid Exo-Load type outperformed the linear kind of Exo-
Load in loading DOX intoU251 GM-derived exosomes, indicating
thatExo-Load-baseddrug loading into exosomesmaybepromising
with future modification and optimization techniques. This study
concluded that Exo-Load (microfluidic) device-based loading of
anti-cancer drugs into exosomes and autologous uptake of EXO-
DOXs might effectively suppress the proliferation of glioma cells
(104). The facts mentioned above show that exosomes play an
essential role in delivering different anti-cancer drugs, critical for
managing glioma.

4.2.2 Exosomes as Therapy Response Monitor
in Glioma
Monitoring treatment is another essentially major step in
different cancer treatments. As discussed earlier, exosomes play
essential roles in various vital events involved in glioma; besides,
exosomes monitor various therapies’ sensitivity in glioma. For
example, Ailiang Zeng et al. found that exosomal miR-151a is not
only a less invasive ‘liquid biopsy ’ that may predict
chemotherapy response, but miR-151a is also a promising
therapeutic target for refractory GBM therapy (105). Moreover,
in vivo studies verified MSC-derived exosomes’ ability loaded
with miR-133b to inhibit glioma tumor growth, and MSC-
derived exosomal miR-133b and the Wnt/b-catenin/EZH2
pathway could act as biomarkers for monitoring and prognosis
FIGURE 3 | The roles of glioma stem cell (GSC) exosomes in glioma. GSC exosomes improve the stemness and tumorigenicity of non-GSC glioma cells by conveying
Notch1 protein via the Notch1 signaling pathway (BioRender.com was used to create this figure).
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in glioma therapy (106). Moreover, another research highlighted
that exosomal miR185 and miR-205 are potential candidates to
help clinically track different treatment responses in glioma
(107). Recently, another study discovered that hypoxia-induced
malignant GMs significantly increased MCT1 and CD147
expression, thereby facilitating calcium-dependent exosome
secretion. Additionally, it was discovered that hypoxic GM-
derived exosomes consisted of substantially increased levels of
Frontiers in Oncology | www.frontiersin.org 8
MCT1 and CD147, which could be quantified using non-invasive
localized surface plasmon resonance and atomic force
microscopy biosensors, demonstrating that they could serve as
precise surrogate biomarkers for tracking metabolic
reprogramming and malignant progression of glioma (108).
Also, another recent study conducted by Chen Xu et al. used a
TiO2-CTFE-AuNIs plasmonic biosensor to identify BIGH3 in
exosomes produced from glioma cells to monitor the malignant
TABLE 3 | Exosomes that are involved in glioma treatment.

Exosomal
content

Experimental Design Mechanism Outcome References

miR-21
sponge
construct

In vitro and stereotaxically injected into a rat
model

Downregulates miR-21 and
upregulates miR-21 target genes
(PDCD4 and RECK)

Reduces tumor volume (91)

miR-34a In vitro and subcutaneously injected into a rat
model

Downregulates MYCN Suppresses GBM cell growth, invasion, migration,
and tumorigenesis and enhances chemosensitivity
of the GBM cells to TMZ

(92)

miR-375 In vitro and a rat model Suppresses SLC31A1 Promotes apoptosis and suppresses proliferation,
migration, and invasion

(93)

microRNA-
7-5p

A subcutaneous tumor model and tumor
metastasis model of nude mice were established
to validate the in vitro findings

Inhibits the activity of the EGFR/
PI3K/Akt signaling pathway

Suppresses the proliferation, migration, invasion,
and microtubule formation

(94)

miR-29a-
3p

In vitro and in vivo Target ROBO1 Stops migration and VM (vasculogenic mimicry)
formation in glioma cells

(95)

miR-15a
and miR-
92a

In vitro Inhibit the activity of the PI3K/
AKT/mTOR signaling pathway

Inhibit cell migration and invasion of glioma cells (96)

miR-199a In vitro Downregulates AGAP2 Suppresses tumor proliferation, invasion, and
migration

(88)

miR-454-
3p

In vitro Targets ATG12 Tumor suppressor in glioma (83)

microRNA-
512-5p

In vivo and in vitro Targets JAG1 Inhibition of glioblastoma progression (97)

microRNA-
133b

In vivo and in vitro Inhibits EZH2 and the Wnt/b-
catenin signaling pathway

Represses glioma cell proliferation, invasion, and
migration

(98)
October 2021 | Volume 11 | A
PDCD4, Programmed Cell Death 4; RECK, Reversion-inducing Cysteine-rich Protein with Kazal motifs; MYCN, MYCN proto-oncogene, bHLH transcription factor; SLC31A1, Solute
Carrier Family 31 Member 1; ROBO1, Roundabout Guidance Receptor 1; AGAP2, ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 2; ATG12, Autophagy Related 12;
JAG1, Jagged Canonical Notch Ligand 1; EZH2, Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit; EGFR, Epidermal Growth Factor Receptor; PI3K/Akt , Phosphoinositide-
3 kinase/Akt; GBM, Glioblastoma; TMZ, Temozolomide.
FIGURE 4 | Exosomes as a therapeutic carrier. There are two strategies to load exosomes with therapeutic cargo, like RNA species for gene silencing in targeted
cancer cells or small molecule compounds of concern: (1) endogenously, by collecting exosomes from cells overexpressing the molecule of interest, or (2)
exogenously, by collecting exosomes from an appropriate cell culture that produces exosomes suitable for specific targeting and then incubating or electroporating
the exosomes with the molecule of interest. (3) Once the exosomes are successfully loaded, (4) exosomes can be used for their respective therapeutic applications
(BioRender.com was used to create this figure).
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evolution of glioma. Thus, TiO2-CTFE-AuNIs was reported to
be capable of quantifying the dynamic change in exosomal
BIGH3 in response to hypoxia and TMZ therapy. This allows
the measurement of BIGH3 levels in parent GMs, revealing
TMZ’s anti-cancer impact; this makes the biosensor mentioned
above show significant promise for its applicability to the
identification of predictive biomarkers in GM-derived
exosomes for glioma liquid biopsy (109). Even though there is
a great job done about using exosomes as diagnostic and
prognostic biomarkers, there is a need for deep researches to
prove that exosomes can be used to monitor various therapies in
glioma, which can be used in daily clinical life. This will
significantly increase patients’ treatment outcomes.

4.2.3 Clinical Trials Related to Roles of Exosomes
in Glioma Diagnosis and Treatment
Clinical trials help scientists and clinicians test diagnostic and
treatment tools; this applies to other cancers, including gliomas.
Different clinical trials have been performed to highlight the
usefulness of exosomes in the treatment and diagnosis of various
cancers such as pancreatic cancer (NCT02393703) and colorectal
cancer. Even though there are not too many clinical trials dealing
with the potential roles of exosomes in glioma, one recruiting
clinical trial aims to determine if mir-10b expression levels are a
fit candidate to be a prognostic and diagnostic marker
(NCT01849952); the details on the mentioned clinical trials
and others are presented in Table 4. The facts mentioned
above show hope that exosomes are future diagnostic and
treatment tools for glioma. However, there is still a need for
more clinical trials to prove the use of exosomes’ roles as routine
diagnostic and treatment agents for glioma.
5 THE INVOLVEMENT OF EXOSOMES IN
GLIOMA IMMUNE RESPONSES

Exosomes play a crucial function in tumor-immune cell
cooperation. Besides, exosomes secreted by tumor cells carry
Frontiers in Oncology | www.frontiersin.org 9
tumor-specific antigens that, in extraordinary circumstances,
enable and suppress the immune system and promote the
proliferation, invasiveness, and chemoresistance of glioma.
miRNAs released from the tumor-derived exosomes can regulate
the differentiation and function of the immune cells. These tumor-
derived exosomes havemany physiopathological roles and act on a
rangeof immune cells, includingeffectorT cells, naturally occurring
Treg cells, and natural killer cells synonymous with immune
suppression and tumor progression (110, 111). Also, serum
exosomes from GBM patients have been shown to cause M2
polarization in normal monocytes, indicating a tendency toward
T-helper 2 cells (Th2). Th2 responses are considered unacceptable
in tumor immunotherapy since they alleviate cytotoxic anti-tumor
immune processes and help inhibit cell-mediated immunity (112).
Microglia-derived exosomes often mediate essential immune
responses to tumorigenesis, degeneration, and central nervous
system infections (113). Antigen-dendritic cells induce T-cell
activation upon incubation with genes with different expression
levels (GDEs) and mediate cytotoxicity against in vitro (114). Hell
Winkel and his colleagues observed that immunosuppressive
phenotypes and elevated cytokine concentrations in exosomes
extracted from tumors lead to decreased development of other
cytokines, including interleukin 2 (IL-2)CD69, andT-cell function,
obstructing the migration of lymphocytes and inhibiting the
immunity of tumors (115). Exosomes derived from GBM GL26
cells reduced cytotoxic CD8+ T cells’ number and function,
fostering tumor growth (116). GDEs help to classify peripheral
blood monocytes into alternately triggered M2 tumor-supporting
macrophages (117) and regulate the development of cytokines and
mononuclear migratory ability mitogen-stimulated, healthy,
peripheral blood cells.
6 THE INVOLVEMENT OF EXOSOMES IN
GLIOMA TME

A glioma’s TME is incredibly diverse, comprising various cancer
and non-cancer cells, such as endothelial cells, immune cells,
TABLE 4 | Examples of clinical trials done on the roles of exosomes as biomarkers or in treatment agents for glioma and other cancers.

Status of the
Clinical Trials

Objectives Condition of the Disease Clinical Trial
Identifier

Completed Establishment of a signature of circulating microRNA as a tool to aid
diagnosis of primary brain tumors in adults

Brain tumors NCT03630861

Recruiting Evaluating the expression levels of microRNA-10b in patients with gliomas Astrocytoma, oligodendroglioma, oligoastrocytoma,
and others

NCT01849952

Recruiting Assessing blood and cerebrospinal fluid metabolomic profile in glioma
patients

Glioma, glioblastoma multiforme NCT03865355

Completed Evaluating microRNAs as disease markers for central nervous system tumors
in patients with neurofibromatosis type 1

Glioma, neurofibromatosis type 1 NCT01595139

Recruiting Assessing the ability of exosomes in treating participants with metastatic
pancreatic cancer with KrasG12D mutation

KRAS NP_004976.2: p.G12D,
Metastatic pancreatic, adenocarcinoma, pancreatic
ductal adenocarcinoma, stage IV pancreatic

NCT03608631

Recruiting To characterize exosomal biomarker levels in patients with locally advanced
rectal cancer undergoing neoadjuvant chemoradiation therapy

Rectal cancer NCT03874559

Recruiting Identification of new diagnostic protein markers for colorectal cancer Colorectal cancer NCT04394572
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glioma stem-like cells, and atrocities’ non-cellular elements,
including the extracellular matrix (118, 119). The tumor
microenvironment is progressively recognized as a strong
promoter of glioma advancement, playing a leading role in
controlling tumor growth (120). Therefore, exosomes have
been viewed as a necessary two-way contact between the
tumor and the tumor microenvironment (121). Different
studies have been conducted to reveal the linkage between
exosomes and the glioma’s microenvironment. For instance, a
study reported that the miR-340-5p-macrophage virtuous cycle
changed GBM development and TM (122). Over the last few
years, studies suggested EVs produced by GBM cells interact
with the activation of this tumor-supporting Tumor-Associated
Macrophage (TAM) phenotype modulation. For example, a
study showed that EVs derived from GBMs’ primary cultures
had manipulated the TAM phenotype in vitro, converting it into
an M2-like anti-inflammatory phenotype that resembles a
tumor-supporting phenotype found in patients. Phenotypic
changes included changed expression of a wide range of cell
surfaces and enhanced release of cytokines such as interleukin-6
(IL-6) and vascular endothelial growth factor. In addition, GBM-
derived exosomes mediated and enhanced macrophages’
phagocytic activity, enhancing the extracellular matrix’s
deterioration and promoting the migration of tumor cells
(117). It has been shown that exosomes, isolated from GBM
cell line U87 and the GSCs, primarily target monocytes
to cause the restructuring of the actin cytoskeleton and
immunosuppressive phenotype M2, with the release of
cytokines like MCP-3 and CXCL1 (123). Exosomes are among
the many ways GBM cells interact with the tumor
Frontiers in Oncology | www.frontiersin.org 10
microenvironment to their advantage. Based on the researches
mentioned above, it is very clear that exosomes play essential
roles in glioma TME. However, different advanced studies are
needed to deeply highlight the extended functions of exosomes in
gliomas’ tumor microenvironment.
7 LIMITATIONS AND FUTURE
PROSPECTIVE

Exosome research in gliomas is a new and fast-developing area. It
is clear that exosomes can be used to create therapeutic strategies
to prevent and treat glioma growth and development.
Nevertheless, many issues remain unresolved, such as the lack
of consistency and consistency in exosome detection, isolation,
and purification methods. Table 5 summarizes the benefits and
drawbacks of exosome isolation techniques. Second, the
approach by which exosomes are taken up by recipient cells is
unknown. Additionally, brain tissue collection is more
complicated. Additional researches are necessary to thoroughly
understand the pathophysiology of exosomes in gliomas and
show exosomes’ involvement in the illness.
8 CONCLUSIONS

Exosomes are a novel mode of cell communication that facilitates
communication between parent and target cells and changes the
tumor microenvironment, promoting cancer progression.
TABLE 5 | Exosome’s isolation methods, advantages, and disadvantages.

Methods Theory Advantages Disadvantages References

Ultracentrifugation
techniques

The required components
are obtained according to
the size and density
differences for each
element in the sample.

There is no need to mark the outer cut
body to avoid cross-contaminations.

High cost, time-consuming, structural failure, aggregation,
and lipoprotein separation is not conducted to downstream
analysis

(124, 125)

Density gradient
centrifugation

Usually used in
combination with the
overspeed centrifuge
method

Improves the purity of exosomes The high viscosity of sucrose solution will reduce the settling
velocity of exosomes and lead to more time consumed.

(126, 127)

Size-based
isolation
techniques

Based on the size
differences between
exosomes and other
components of a biological
sample

Fast, simple, low-cost, and separated
exosomes have complete structure and
uniform size. Their biological
characteristics will not be significantly
affected.

Other particles of similar size are difficult to separate,
resulting in reduced purity.

(128)

Ultrafiltration Ultrafiltration membranes
with different molecular
weight cutoffs were used to
separate the samples
selectively.

The sample cost is low, the
concentration efficiency is high, and the
activity of the exosomes is not affected.

Low purity and poor binding of the exosomes to the
ultrafiltration membrane resulted in a low recovery rate.

(129)

Immunoaffinity
chromatography

The specificity of antibodies
and the ligand is combined
to separate the required
exosomes from
heterogeneous mixtures.

The sample size needed is small. It can
be used to qualitatively and
quantitatively detect exosomes. This
method has strong specificity, high
sensitivity, high purity, and high yield.

The preservation condition of the exosomes obtained by this
method is harsh. It is not suitable for large-scale separation
of the exosomes. The non-specific interference adsorption of
matrix produces interfering proteins, which limits the broad
application of this method.

(130)
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Recent research has highlighted their involvement in the
pathways through which gliomas develop, infi l trate
surrounding tissue, create resistance to therapy, and spread
throughout the body. Continuously studying exosomes will
a l t e r and complement current unders tandings of
carcinogenesis and development, thus contributing to a
complete understanding of tumor-related molecular processes.
It will also help discover efficient biomarkers and targeted tumor
therapies using exosomes, improving efficacy and medication
usage for glioma. However, more deep studies are needed that
incorporate new advanced technologies such as machine
learning, scRNA-seq, and high-throughput screening to
enhance the characterization of exosomal drugs as carriers to
get more reliable therapeutic and diagnostic results. In addition,
more clinical trials are needed to prove exosomes’ usefulness as
future daily therapeutic agents and biomarker tools for gliomas
and other types of cancers.
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