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Abstract

The K* algorithm provably approximates partition functions for a set of states (e.g., protein,

ligand, and protein-ligand complex) to a user-specified accuracy ε. Often, reaching an ε-
approximation for a particular set of partition functions takes a prohibitive amount of time

and space. To alleviate some of this cost, we introduce two new algorithms into the OSPREY

suite for protein design: FRIES, a Fast Removal of Inadequately Energied Sequences, and

EWAK*, an Energy Window Approximation to K*. FRIES pre-processes the sequence space

to limit a design to only the most stable, energetically favorable sequence possibilities.

EWAK* then takes this pruned sequence space as input and, using a user-specified energy

window, calculates K* scores using the lowest energy conformations. We expect FRIES/

EWAK* to be most useful in cases where there are many unstable sequences in the design

sequence space and when users are satisfied with enumerating the low-energy ensemble

of conformations. In combination, these algorithms provably retain calculational accuracy

while limiting the input sequence space and the conformations included in each partition

function calculation to only the most energetically favorable, effectively reducing runtime

while still enriching for desirable sequences. This combined approach led to significant

speed-ups compared to the previous state-of-the-art multi-sequence algorithm, BBK*, while

maintaining its efficiency and accuracy, which we show across 40 different protein systems

and a total of 2,826 protein design problems. Additionally, as a proof of concept, we used

these new algorithms to redesign the protein-protein interface (PPI) of the c-Raf-RBD:KRas

complex. The Ras-binding domain of the protein kinase c-Raf (c-Raf-RBD) is the tightest

known binder of KRas, a protein implicated in difficult-to-treat cancers. FRIES/EWAK* accu-

rately retrospectively predicted the effect of 41 different sets of mutations in the PPI of the c-

Raf-RBD:KRas complex. Notably, these mutations include mutations whose effect had pre-

viously been incorrectly predicted using other computational methods. Next, we used FRIES/

EWAK* for prospective design and discovered a novel point mutation that improves binding
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of c-Raf-RBD to KRas in its active, GTP-bound state (KRasGTP). We combined this new

mutation with two previously reported mutations (which were highly-ranked by OSPREY) to

create a new variant of c-Raf-RBD, c-Raf-RBD(RKY). FRIES/EWAK* in OSPREY computation-

ally predicted that this new variant binds even more tightly than the previous best-binding

variant, c-Raf-RBD(RK). We measured the binding affinity of c-Raf-RBD(RKY) using a bio-

layer interferometry (BLI) assay, and found that this new variant exhibits single-digit nano-

molar affinity for KRasGTP, confirming the computational predictions made with FRIES/

EWAK*. This new variant binds roughly five times more tightly than the previous best

known binder and roughly 36 times more tightly than the design starting point (wild-type c-

Raf-RBD). This study steps through the advancement and development of computational

protein design by presenting theory, new algorithms, accurate retrospective designs, new

prospective designs, and biochemical validation.

Author summary

Computational structure-based protein design is an innovative tool for redesigning pro-

teins to introduce a particular or novel function. One such function is improving the

binding of one protein to another, which can increase our understanding of important

protein systems. Herein we introduce two novel, provable algorithms, FRIES and EWAK�,
for more efficient computational structure-based protein design as well as their applica-

tion to the redesign of the c-Raf-RBD:KRas protein-protein interface. These new algo-

rithms speed-up computational structure-based protein design while maintaining

accurate calculations, allowing for larger, previously infeasible protein designs. Addition-

ally, using FRIES and EWAK� within the OSPREY suite, we designed the tightest known

binder of KRas, a heavily studied cancer target that interacts with a number of different

proteins. This previously undiscovered variant of a KRas-binding domain, c-Raf-RBD,

has potential to serve as a tool to further probe the protein-protein interface of KRas with

its effectors and its discovery alone emphasizes the potential for more successful applica-

tions of computational structure-based protein design.

Introduction

Computational structure-based protein design (CSPD) is an innovative tool that enables the

prediction of protein sequences with desired biochemical properties (such as improved bind-

ing affinity). OSPREY (Open Source Protein Redesign for You) [1] is an open-source, state-of-

the-art software package used for CSPD and is available at http://www.cs.duke.edu/donaldlab/

osprey.php for free. OSPREY’s algorithms focus on provably returning the optimal sequences

and conformations for a given input model. In contrast, as argued in [2–7], stochastic, non-

deterministic approaches [8–10] provide no guarantees on the quality of conformations, or

sequences, and make determining sources of error in predicted designs very difficult.

When using OSPREY, the input model generally consists of a protein structure, a flexibility

model (e.g., choice of sidechain or backbone flexibility, allowed mutable residues, etc.), and

an all-atom pairwise-decomposable energy function that is used to evaluate conformations.

OSPREY models amino acid sidechains using frequently observed rotational isomers or “rota-

mers” [11]. Additionally, OSPREY can also model continuous sidechain flexibility [12–15] along
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with discrete and continuous backbone flexibility [16–19], which allow for a more accurate

approximation of protein behavior [13, 16, 20–23]. The output produced by CSPD generally

consists of a set of candidate sequences and conformations. Many protein design methods

have focused on computing a global minimum energy conformation (GMEC) [14, 18, 24–28].

However, a protein in solution exists not as a single, low-energy structure, but as a thermody-

namic ensemble of conformations. Models that only consider the GMEC may incorrectly

predict biophysical properties such as binding [12, 20–23, 29–31] because GMEC-based algo-

rithms underestimate potentially significant entropic contributions. In contrast to GMEC-

based approaches, the K� algorithm [12, 29, 30] in OSPREY provably approximates the Boltz-

mann-weighted partition function for a protein state, thereby modeling the thermodynamic

ensemble. When designing for binding affinity, this enables the designer to calculate the K�

score—a ratio of the Boltzmann-weighted partition functions for a protein-ligand complex

that estimates the association constant, Ka (further detailed in the Section entitled “Computa-

tional materials and methods”). BBK� [32] is an efficient, multi-sequence design algorithm

that calls the K� algorithm as a subroutine. Previous algorithms [12, 27, 29, 30, 33–35] that

design for binding affinity using ensembles are linear in the size of the sequence space N,

where N is exponential in the number of simultaneously mutable residue positions. BBK� is

the first provable ensemble-based algorithm to run in time sublinear in N, making it possible

not only to perform K� designs over large sequence spaces, but also to enumerate a gap-free

list of sequences in order of decreasing K� score.

OSPREY has been used successfully on several empirical, prospective designs including

designing enzymes [12, 16, 22, 29, 36], resistance mutations [2, 37, 38], protein-protein inter-

action inhibitors [30, 39], epitope-specific antibody probes [40], and broadly-neutralizing anti-

bodies [41, 42]. These successes have been validated experimentally in vitro and in vivo and are

now being tested in several clinical trials [43–45]. However, while OSPREY has been successful in

the past, as the size of protein design problems grows (e.g., when considering a large protein-

protein interface), enumerating and minimizing the necessary number of conformations and

sequences to satisfy the provable halting criteria in previous K�-based algorithms [12, 29, 30]

becomes prohibitive (despite recent algorithmic improvements [32]). The entire conformation

space can be monumental in size and heavily populated with energetically unfavorable

sequences and conformations. EWAK�, an Energy Window Approximation to K�, seeks to

alleviate some of this difficulty by restricting the conformations included in each sequence’s

thermodynamic ensemble. EWAK�guarantees that each conformational ensemble contains all
of the lowest energy conformations within an energy window of the GMEC for each design

sequence. FRIES, a Fast Removal of Inadequately Energied Sequences, also mitigates this com-

plexity problem by limiting the input sequence space to only the most favorable, low energy

sequences. Previous algorithms have focused on optimizing for sequences whose conforma-

tions are similar in energy to that of the GMEC. In contrast, FRIES focuses on optimizing for

sequences with energies better-than or comparable-to the wild-type sequence. FRIES guarantees
that the restricted input sequence space includes all of the sequences within an energy window

of the wild-type sequence, but excludes any potentially unstable sequences with significantly

worse partition function values. Wild-type sequences are generally expected to be near-optimal

for their corresponding folds [46]. Therefore, limiting the sequence space to sequences ener-

getically similar to or better than the wild-type sequence is reasonable.

We compare BBK� with K� (henceforth referred to as BBK�) to BBK� with EWAK� and

FRIES (henceforth referred to as EWAK� and FRIES) to test our new methods. The implementa-

tion details of these algorithms involve some technical distinctions, which are discussed in S4

Text. Compared to the previous state-of-the-art algorithm BBK�, FRIES and EWAK� improve

runtimes by up to 2 orders of magnitude, FRIES decreases the size of the sequence space by up
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to 2 orders of magnitude, and EWAK� decreases the number of conformations included in

partition function calculations by up to almost 2 orders of magnitude. These improvements

are shown across 2,826 protein design problems spanning 40 different protein systems (see the

Section entitled “Computational experiments” for more details).

As a proof of concept to further test these algorithms and our design approach, we used

FRIES and EWAK� to study the protein-protein interface (PPI) of KRasGTP in complex with

its tightest-binding effector, c-Raf. As described in the Section entitled “Computational

redesign of the c-Raf-RBD:KRas protein-protein interface,” KRas is an important cancer

target that has been heavily studied and exhibits a thoroughly optimized protein-protein

interface in its interactions with its effectors [47–59]. For this study, we focused on the re-

design of the c-Raf Ras-binding domain (c-Raf-RBD), the tightest known naturally-occur-

ring binding partner of KRas, in complex with KRasGTP (c-Raf-RBD:KRasGTP). First, our

new algorithms successfully retrospectively predicted the effect on binding of mutations

in the c-Raf-RBD:KRasGTP PPI even where other computational methods previously failed

[60]. Next, we used FRIES/EWAK� prospectively to predict the effect of novel, previously

unreported mutations in the PPI of the c-Raf-RBD:KRasGTP complex. We then screened the

top OSPREY-predicted c-Raf-RBD variants using a bio-layer interferometry (BLI) assay sin-

gle-concentration screen. Looking at the dissociation rates, this screen suggested that one of

our new computationally-predicted c-Raf-RBD variants—c-Raf-RBD(Y), a c-Raf-RBD that

includes the mutation V88Y—exhibits improved binding to KRasGTP. Next, we created a c-

Raf-RBD variant, c-Raf-RBD(RKY), that included this new mutation, V88Y, together with

two previously reported mutations [60], N71R and A85K. FRIES/EWAK� computationally

predicted that c-Raf-RBD(RKY) would bind more tightly to KRasGTP than any other variant.

The single-concentration screen using BLI also suggested that c-Raf-RBD(RKY) binds more

tightly to KRasGTP than the previously reported best variant [60]. The Kd values for the most

promising variants were measured using a BLI assay with titration which confirmed our

computational predictions and that, to the best of our knowledge, the novel construct c-Raf-

RBD(RKY) is the highest affinity variant ever designed, with single-digit nanomolar affinity

for KRasGTP and binding roughly 36 times more tightly than the design starting point (wild-

type c-Raf-RBD).

Computational materials and methods

The K� algorithm’s [12, 29, 30] K� score serves as an estimate of the binding constant, Ka, and

is calculated by first approximating the Boltzmann-weighted partition function of each state:

unbound protein (P), unbound ligand (L), and the bound protein-ligand complex (C). Each

Boltzmann-weighted partition function Zx(s), x 2 {P, L, C}, is defined as:

Z
x
ðsÞ ¼

X

d2QðsÞ

expð� E
x
ðdÞ=RTÞ: ð1Þ

If s is any—generally amino acid—sequence of n residues, then Q(s) is the set of conforma-

tions defined by s, Ex(d) is the minimized energy of a conformation d in state x, and R and T
are the gas constant and temperature, respectively. Many protein design algorithms approxi-

mate these partition functions for each state using either stochastic [61–64] or provable [2, 12,

29–31, 33, 64] methods.

OSPREY’s K� algorithm approximates these partition functions to within a user-specified ε
of the full partition function as defined in Eq (1) where C, P, and L refer to the protein-ligand

complex, the unbound protein, and the unbound ligand, respectively. The binding affinity for
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sequence s is defined as:

KaðsÞ ¼
Z

C
ðsÞ

Z
P
ðsÞZ

L
ðsÞ

: ð2Þ

The K� algorithm provably approximates this binding affinity. This is enabled by the use

of A� [4, 12, 26, 65], which allows for the gap-free enumeration of conformations in order of

increasing lower bounds on energy [26]. However, enumerating a sufficient number of these

conformations to obtain a guaranteed ε-approximation can be very time consuming because

the set of all conformations Q(s) grows exponentially with the number of residues n. Also, the

K� algorithm was originally [12, 29, 30] limited to computing a K� score for every sequence in

the sequence space as defined by the input model for a particular design. However, BBK� [32]

builds on K� and returns the top m sequences along with their ε-approximate K� scores and

runs in time sublinear in the number of sequences. That is, BBK� does not require calculating

ε-approximate K� scores for (or even examining) every sequence in the sequence space before

it returns the top sequences. Nevertheless, BBK� may spend unnecessary time and resources

evaluating unfavorable sequences before deciding to prune them. These previous methods,

while efficient, suffer from two practical drawbacks. First, some returned sequences exhibit

a large K� score (i.e. are predicted to improve binding) due to a decrease in stability of the

unbound states. These sequences are rarely desirable in practice, since decreasing protein sta-

bility can result in poor folding and aggregation. Second, the approximation error for some

sequences is slow to approach epsilon which can lead to prohibitively slow designs.

To overcome the above limitations of BBK� and K�, we introduce FRIES, a Fast Removal of

Inadequately Energied Sequences, and EWAK�, an Energy Window Approximation to K�.
These two algorithms limit the input sequence space and the number of conformations

included in each partition function estimate when approximating a sequence’s K� score to

only the most energetically favorable options (see Fig 1). The FRIES/EWAK� approach limits the

number of conformations that must be enumerated (see the Section entitled “FRIES limits the

number of minimized conformations when approximating partition functions while main-

taining accurate K� scores”), which leads to significant speed-ups (see the Section entitled

“FRIES/EWAK� is up to 2 orders of magnitude faster than BBK�”) because each enumerated

conformation must undergo an energy minimization step. This minimization step is relatively

expensive, therefore, anything that reduces the number of minimized conformations while not

sacrificing provable accuracy is desirable. For the importance of this minimization step to bio-

logical accuracy, see the discussions of continuous flexibility and its comparison to discrete

flexibility in [4, 5, 7, 13, 14, 19]. EWAK� also maintains the advances made by BBK� including

running in time sublinear in the number of sequences N and returning sequences in order of

decreasing K� score. FRIES and EWAK� are described in further detail in the Section entitled

“Algorithms” below.

Algorithms

Fast removal of inadequately energied sequences (FRIES). Generally in protein design

when optimizing a protein-protein interface (PPI) for affinity, the designer aims to improve

the K� score of a variant sequence relative to the wild-type sequence, and, when performing a

design targeting a similar fold, to minimally perturb the native structure. To accomplish this,

FRIES guarantees to only keep sequences whose partition function values are not markedly

worse than the wild-type sequence’s partition function values for all of the design states (e.g.

protein, ligand, and complex). How many orders of magnitude worse a particular sequence’s

partition function values are allowed to be is determined by a user-specified value m. The FRIES
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algorithm prunes sequences that exhibit massive decreases in partition function values that sig-

nal an increased risk of disturbing the native structure of the states in a given system. However,

sequences with markedly worse, lower partition function values may be required when search-

ing for, for example, resistance mutations, where positive and negative design are necessary [2,

37, 38]. Importantly, FRIES does still allow for sequences that may have lower, worse partition

function values by allowing the user to specify how many orders of magnitude lower a candi-

date sequence’s partition function is allowed to be relative to the wild-type sequence’s partition

function.

The following algorithm is applied to each of the three states (protein, ligand, and protein-

ligand complex) independently. The resulting, filtered sequence space is determined by taking

the intersection of the output from the algorithm for the three states. To prune the input

sequence space, FRIES exploits A� over a multi-sequence tree (as is described and used in COMETS

Fig 1. Design example using the structure of the LecB lectin Pseudomonas aeruginosa strain PA14 (PDB ID: 5A6Y [67]) and the OSPREY workflow for FRIES/

EWAK�. In the top panel, the full, 4 domain structure of lectin is shown on the left-hand side. (A) Zooming in on the region where domains A (green) and D

(yellow) interact, showing the two mutable residues (Q80 and I82) along with the surrounding flexible shell of residues as lines. There were 11 flexible residues

included in this design with Q80 and I82 allowed to mutate to all other amino acids except for proline. This design consisted of 8.102 × 1011 conformations and 441

sequences. FRIES limited this space to 5.704 × 1011 conformations and 206 sequences. FRIES/EWAK� in combination reduced the amount of time taken by about 75%

compared to BBK�. FRIES alone was responsible for roughly 50% of this speed-up. (B) 10 low-energy conformations included in the thermodynamic ensemble of the

design sequence with mutations Q80I and I82F. For this particular sequence, BBK� minimized 10,664 conformations while EWAK� minimized only 4,104

conformations. The bottom panel shows the general workflow for FRIES/EWAK�. The workflow begins with the input model (as described in the Section entitled

“Computational materials and methods”), which defines the design space for the first algorithm, FRIES. FRIES proceeds to prune the sequence space as described in

the Section entitled “Fast Removal of Inadequately Energied Sequences (FRIES)” and as illustrated in the Venn diagram with the unpruned space shown as a yellow

disk. Next, the remaining FRIES sequence space defines the conformation space (which contains multiple sequences as well as conformations) searched with

EWAK�. EWAK� limits the conformations included in each partition function as described in the Section entitled “Energy Window Approximation to K�

(EWAK�).” EWAK� generally searches over only a subset of the conformations (green area) that previous K�-based algorithms like BBK� [32] search (orange area).

EWAK� then returns the top sequences based on decreasing K� score.

https://doi.org/10.1371/journal.pcbi.1007447.g001
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[66]), which enjoys a fast sequence enumeration in order of lower bound on minimized

energy. Each sequence v in this multi-sequence tree [66] has a corresponding single-sequence
conformation tree, viz., a tree that can be searched for the lowest energy conformations for a

sequence v. FRIES first enumerates sequences (in order of energy lower bounds) in the multi-
sequence tree until the wild-type sequence is found. Then, FRIES searches the wild-type’s corre-

sponding single-sequence conformation tree using A�. The first conformation enumerated

according to monotonic lower bound on pairwise minimized energy is then subjected to

a full-atom minimization [30] to calculate the minimized energy of one of the wild-type

sequence’s conformations EWT. It is worth noting that FRIES only descends into and searches

the single-sequence conformation tree for the wild-type sequence in order to calculate the

provable halting criteria for Eq 3. FRIES then continues enumerating sequences in the multi-
sequence tree in order of increasing lower bound on minimized energy (as described in more

detail in [66]) until the lower bound on the optimal conformational energy for a sequence v,

E�
v

, is greater than EWT + w where EWT is as described above and w is a user-specified energy

window value (see Fig 2). Any variant sequence v with a lower bound on minimized energy E�
v

not satisfying the following criterion is pruned:

E�
v
� E

WT
þ w: ð3Þ

Fig 2. How FRIES chooses which sequences to keep and which sequences to prune. The solid curve represents the energy

landscape of the conformation space that spans across, in this example, 7 different sequences (separated by dotted lines). Each

sequence is labeled on the x-axis with an index indicating the order with which it is (or would be) enumerated with FRIES in

order of increasing lower bound on minimized energy (red dotted curve). FRIES continues to enumerate in this way until it

encounters the wild-type sequence (green), at which point FRIES calculates the minimized energy EWT of the conformation with

the lowest lower bound on minimized energy for the wild-type sequence (marked with a green dot). EWT then becomes the

baseline from which FRIES can provably enumerate all remaining sequences within some user-specified energy window w
(yellow lines). Finally, FRIES prunes the sequences with energies provably higher than EWT + w (black) and keeps the sequences

that occur within the shaded yellow region (colored in blue and green). More sequences are also pruned according to their

partition function values as described in the Section entitled “Fast Removal of Inadequately Energied Sequences (FRIES)” and

Eq (4).

https://doi.org/10.1371/journal.pcbi.1007447.g002
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This criterion guarantees that the remaining, unpruned sequence space includes all

sequences within an energy window of the wild-type sequence’s energy. FRIES enumerates

sequences in order of increasing lower bound on minimized energy. Therefore, it calculates

an upper bound q�
v

on the partition function for each sequence v by Boltzmann-weighting the

lower bound on its energy E�
v

and multiplying it by the size of the conformation space for that

particular sequence |Q(v)|:

q�
v
¼ jQðvÞj expð� E�

v
=RTÞ: ð4Þ

The lower bound for the wild-type sequence q�
WT

is calculated by Boltzmann-weighting the

minimized energy of the single conformation found during the sequence search for the wild-

type sequence EWT:

q�
WT
¼ expð� E

WT
=RTÞ: ð5Þ

q�
WT

is a lower bound because, in the worst case, at least this one conformation will contrib-

ute to the partition function for the wild-type sequence. FRIES then uses these bounds to remove

all of the sequences whose partition function value is not within some user-specified m orders

of magnitude of the lower bound on the wild-type partition function q�
WT

. If the following crite-

rion is not met, the sequence v is pruned from the space:

ln q�
v
� ln q�

WT
þm: ð6Þ

FRIES prunes sequences for the protein, the ligand, and the protein-ligand complex indepen-

dently, limiting the input sequence space to exclude unfavorable sequences for all of the states.

The resulting smaller sequence space is subsequently used as input for EWAK�. The set of

sequences remaining is guaranteed to include all of the sequences within a user-specified

energy window w of the wild-type sequence that also satisfy the partition function criterion

given in Eq (4). Importantly, FRIES can be used to limit the size of the input sequence space in

this fashion for any of the protein design algorithms available within OSPREY.

Energy window approximation to K� (EWAK�). After reducing the size of the input

sequence space using FRIES, as described in the Section entitled “Fast Removal of Inadequately

Energied Sequences (FRIES),” EWAK� proceeds by using a variation on an existing algorithm:

BBK� (described in [32]). The crucial difference between BBK� and EWAK� is that with

EWAK� the ensemble of conformations used to approximate each K� score is limited to those

within a user-specified energy window of the GMEC for each sequence. This guarantees to

populate the partition function for a particular sequence and state with all of the lowest, most-

favorable conformations (that fall within the user-specified energy window). Limiting the par-

tition functions to only these energetically favorable conformations can effectively reduce run-

time while still enriching for desirable sequences. These conformations often account for the

majority of the full ε-approximate partition function (see the Section entitled “Computational

materials and methods”) in traditional K� calculations [12]. Hence, EWAK� also empirically

enjoys negligible loss in accuracy of K� scores (see the Sections labeled “EWAK� limits the

number of minimized conformations when approximating partition functions while main-

taining accurate K� scores” and “FRIES/EWAK� retrospectively predicted the effect mutations

in c-Raf-RBD have on binding to KRas”). EWAK� retains the beneficial aspects of BBK�,
including returning sequences in order of decreasing predicted binding affinity and running

in time sublinear in the number of sequences. For a discussion of the relationship between ε
and the energy window w, the interested reader is invited to refer to the SI.
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Computational experiments

We implemented FRIES/EWAK� in the OSPREY suite of open source protein design algorithms

[1]. FRIES was tested on 2,662 designs that range from an input sequence space size of 441 to

10,164 total sequences. The size of the reduced input sequence space produced by FRIES was

compared to the size of the full input sequence space size for each design. For these tests, FRIES

returned every sequence within 8 kcal/mol of the wild-type sequence and was set to include

only those sequences that are at most 2 orders of magnitude worse in partition function value

than the wild-type. The results for these tests are described in the Section entitled “FRIES can

reduce the size of the input sequence space by more than 2 orders of magnitude while retaining

the most favorable sequences.” Computational experiments were also run comparing FRIES/

EWAK� with the previous state-of-the-art algorithm in OSPREY: BBK� [32]. Using BBK� and

FRIES/EWAK�, we computed the top 5 best binding sequences for 167 different designs to com-

pare the running time of BBK� vs. FRIES/EWAK�. FRIES was limited to sequences within 4 kcal/

mol of the wild-type sequence that are at most 2 orders of magnitude worse in partition func-

tion values than the wild-type. The EWAK� partition function approximations were limited to

conformations within an energy window of 1 kcal/mol of the GMEC for each sequence. BBK�

was set to return the top 5 sequences with an accuracy of ε = 0.68 (as was described in [32]).

Using these same EWAK� and BBK� parameters, we also compared the change in the size of

the conformation space necessary to compute an accurate K� score for BBK� vs. EWAK� for

661 partition functions from 161 design examples. The results for these tests are described in

the Sections labeled “FRIES/EWAK� is up to 2 orders of magnitude faster than BBK�” and “FRIES

can reduce the size of the input sequence space by more than 2 orders of magnitude while

retaining the most favorable sequences”. The number of conformations that undergo minimi-

zation (as described in [12–15]) for each partition function calculation with EWAK� was also

compared across different energy window sizes for 350 partition function calculations from

87 design examples. These partition function calculations were compared to BBK�’s partition

function calculations with a demanded accuracy of ε = 0.10. This smaller ε allowed for more

accurate approximations of the K� scores. The results for these tests are described in the Sec-

tion entitled “FRIES can reduce the size of the input sequence space by more than 2 orders of

magnitude while retaining the most favorable sequences”.

Every design included a set of mutable residues along with a set of surrounding flexible resi-

dues (see Fig 1 for an example). All of these residues were allowed to be continuously flexible [12–

15]. The designs were selected from 40 different protein structures (listed in S1 Table and also

used in [32, 68]), and were run on 40-48 core Intel Xeon nodes with up to 200 GB of memory.

Computational results

FRIES can reduce the size of the input sequence space by more than 2 orders

of magnitude while retaining the most favorable sequences

The number of remaining sequences after FRIES was compared to the size of the complete input

sequence space. In the best case, when using FRIES, the sequence space was decreased by more

than 2 orders of magnitude and the conformation space was decreased by just over 4 orders of

magnitude. The sequence space was reduced an average of 49% and the conformation space

was reduced an average of 40%. These results are broken down further in Fig 3.

FRIES/EWAK� is up to 2 orders of magnitude faster than BBK�

The overall runtime was compared between BBK� and FRIES/EWAK�. FRIES/EWAK� was an

average of 62% faster than BBK� on 167 example design problems. FRIES removed unfavorable
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sequences (as described in the Section entitled “Fast Removal of Inadequately Energied

Sequences (FRIES)”) from the search space for 156 out of the 167 design problems. For the cases

described in the Section entitled “Computational experiments,” FRIES/EWAK� performed con-

sistently faster than BBK� (in 92% of the design examples) as shown in Fig 4, Panel A. The lon-

gest running BBK� design problem took nearly 8 days, whereas FRIES/EWAK� completed the

same example in just under 2 hours. In contrast, the design problem that took the longest for

FRIES/EWAK� out of the 167 tested only required about 22 hours (the same design took BBK�

just over 178 hours).

EWAK� limits the number of minimized conformations when

approximating partition functions while maintaining accurate K� scores

We examined 661 K� score calculations, and concluded that the total number of conforma-

tions minimized to approximate the K� score was decreased by an average of 27%. In the best

case the number of conformations minimized to approximate the K� score was decreased by

93%. These results are plotted in Fig 4, Panel B. Even though the partition function approxima-

tions were limited to a smaller conformation space with EWAK�, the K� scores did not differ

by more than 0.2 orders of magnitude between EWAK� and BBK� for these 661 example K�

score calculations.

Fig 3. Reduction in input sequence space size using FRIES. (A) A pie chart representing the reduction in the sequence

space in percentages across all 2,662 designs. 7% of the designs had a reduction in sequence space over 95%, 24% of the

designs had a reduction in sequence space between 66-95%, 31% of the designs had a reduction in sequence space

between 36-65%, 32% of the designs had a reduction in sequence space between 6-35%, and 6% of the designs had a

reduction in sequence space under 5%. (B) and (C) plot the number of sequences remaining after using FRIES starting

with 441 and 9,261 sequences total, respectively. The number of sequences remaining for each design are sorted in

order of decreasing size of the remaining conformation space after FRIES.

https://doi.org/10.1371/journal.pcbi.1007447.g003
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A total of 350 of these 661 partition functions were subsequently re-estimated using BBK�

with a more accurate, stringent ε value of 0.1 and using EWAK� with varied energy windows:

1.0 kcal/mol, 3.0 kcal/mol, and 5.0 kcal/mol. We examined the number of conformations min-

imized for each complex partition function calculation across the examples. When using 1.0

kcal/mol, EWAK� minimized up to 1.7 orders of magnitude fewer conformations (see Fig 4,

Panel C for more details). Despite this decrease in the number of included conformations,

EWAK� reported accurate K� scores. The largest difference in scores between BBK� and

EWAK� was 0.3 orders of magnitude. This indicates that EWAK� retains accuracy when com-

pared to previous provable algorithms, which have been extensively validated using experi-

mental measurements of binding, crystal structures, and NMR structures on a variety of

systems [22, 30, 36–38, 40–42]. The accuracy of EWAK� is explored further in the Section

entitled “FRIES/EWAK� retrospectively predicted the effect mutations in c-Raf-RBD have on

binding to KRas,” where we perform additional retrospective validation against experimental

measurements.

Computational redesign of the c-Raf-RBD:KRas protein-protein interface

We previously showed, investigating 58 mutations across 4 protein systems, that OSPREY can

accurately predict the effect of mutations on PPI binding [1]. Herein, we tested the biological

accuracy of the new modules FRIES and EWAK� after adding them to OSPREY in the case of a par-

ticular system: c-Raf-RBD in complex with KRas. The c-Raf Ras-binding domain (c-Raf-RBD)

is a small self-folding domain that does not include the kinase signaling domains normally

present in c-Raf. The c-Raf-RBD normally binds to KRas when KRas is GTP-bound

Fig 4. Comparing runtimes and the number of minimized conformations between FRIES/EWAK� and BBK� for a variety of designs. (A) A plot of the runtime in

seconds (the y-axis is on a log scale) for FRIES/EWAK� (blue dots) and BBK� (yellow dots) for 167 design examples. Each point represents one design and is plotted in

increasing order of BBK� running time. FRIES/EWAK� was faster than BBK� 92% of the time with an average improvement of 62% over BBK� and a maximum

improvement of 2.2 orders of magnitude. This improvement was evident in (A) since the blue dots (FRIES/EWAK� times) fall mostly below the yellow dots (BBK�
times). (B) A plot of the number of conformations minimized (y-axis is on a log scale) for 661 partition function calculations from 161 design examples. The number

of conformations minimized by EWAK� (blue dots) was less than the number of conformations minimized by BBK� (yellow dots) in 68% of these cases, as is

evidenced by the blue dots landing mostly below the yellow dots. In the best case, EWAK� decreased the number of conformations by 1.1 orders of magnitude. The

average percent reduction in the number of minimized conformations was 27%. (C) Each dot represents a calculated partition function. Yellow dots are partition

functions limited to within a 1.0 kcal/mol window of the GMEC, red dots are partition functions limited to a 3.0 kcal/mol window of the GMEC, and green dots are

partition functions limited to within a 5.0 kcal/mol window of the GMEC. These dots are plotted according to the number of minimized conformations required for

each corresponding BBK� partition function calculation. The solid black line represents the number of BBK� minimized conformations, so dots that fall below the

black line represent examples that required fewer minimized conformations than with BBK�. As they approach the 5.0 kcal/mol window, the dots begin to converge

with the BBK� line. However, as the number of BBK� minimized conformations rises beyond� 104, even the green dots drop below the BBK� line.

https://doi.org/10.1371/journal.pcbi.1007447.g004
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(KRasGTP). KRas has been implicated in difficult-to-treat cancers such as pancreatic ductal

adenocarcinoma (PDAC) and has therefore been thoroughly studied [47, 47, 48, 48, 49, 49–55,

55, 56, 56–60, 69, 70]. So, to further verify the accuracy and utility of FRIES/EWAK�, we focused

on this already heavily optimized PPI between KRasGTP and one of its many effectors, c-Raf-

RBD. First, in the Section entitled “FRIES/EWAK� retrospectively predicted the effect mutations

in c-Raf-RBD have on binding to KRas,” we retrospectively investigated previously reported

mutations in the c-Raf-RBD [48, 49, 60] and how they effect the binding of c-Raf-RBD to

KRas. This retrospective study lays the groundwork for the prospective study we present that

investigates novel mutations. So, following the retrospective study, we computationally rede-

signed the PPI using FRIES/EWAK� in search of new c-Raf-RBD variants with improved affinity

for KRasGTP (see the Section entitled “Prospective redesign of the c-Raf-RBD:KRas protein-

protein interface toward improved binding” for details). To perform these computational

designs, we first made a homology model of c-Raf-RBD bound to KRasGTP (see S1 Text for

details).

FRIES/EWAK� retrospectively predicted the effect mutations in c-Raf-RBD

have on binding to KRas

Each previously reported c-Raf-RBD variant [48, 49, 60] was tested computationally using

FRIES/EWAK� by calculating a K� score, a computational approximation of Ka, for each variant

along with its corresponding wild-type sequence. A percent change in binding was then calcu-

lated by comparing the variant’s K� score to the corresponding wild-type sequence’s K� score.

The log10 of this value was then calculated and normalized to the wild-type by subtracting 2. A

similar procedure was completed using the reported experimental data in order to easily com-

pare the computationally predicted effect with the experimentally measured effect. The result-

ing value, called Δb, represents the change in binding. If a variant has a Δb less than 0, it is

predicted to decrease binding. If a variant has a Δb greater than 0, it is predicted to increase

binding. Δb values that are roughly equivalent to 0 indicate variants that have little to no effect

on binding since the wild-type sequence was normalized to 0. The Δb values for the 41 compu-

tationally tested variants were plotted and compared to experimental values in Fig 5 (a table of

these values is also presented in S2 Table).

Out of the 41 variants tested (see S2 Table), EWAK� predicted the experimentally-reported

effect (increased vs. decreased binding) correctly in 38 cases. The three designs where the effect

was predicted incorrectly are marked with a star in Fig 5. To make these predictions, the corre-

sponding computational designs ranged in size from single point mutations up to 6 simulta-

neous mutations. Results are outlined in Fig 5 and data is presented in S2 Table. The Pearson’s

r of the Δb values when comparing the experimental data to the computational predictions is

0.64. Furthermore, the Spearman’s ρ value—a measure of the correlation between two sets of

rankings—when comparing the experimental data to the computational predictions is 0.81.

This ρ value indicates that not only can EWAK� correctly predict the effect of a particular set

of mutations, but that EWAK� also does a good job ranking the variants in order according to

change in binding upon mutation (see Fig 6). We emphasize Spearman’s ρ here as opposed to

a Pearson’s correlation since our current designs likely underestimate entropic contributions

to binding due to solvent entropy, backbone entropy, and rotating methyl groups. Neverthe-

less, by explicitly modeling side-chain configurational entropy, our method considers more

conformational entropy than GMEC-based methods—in [1, 38] large changes in K� score cor-

responded to significant changes in energy, and rankings correlated well with experimental

binding measurements. The Spearman’s ρ for the study presented here is comparable to the
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values for other PPI systems when using OSPREY [1, 38]. Furthermore, an accurate ranking can

guide an experimental lab in choosing the rank order in which to test computational predic-

tions [2, 12, 16, 22, 29, 30, 36–42].

BBK� produced similarly accurate results, but took up to 10 times longer and failed to pro-

duce results in 4 cases. In particular, in 2 cases (marked in green in Fig 5), BBK� ran out of

Fig 5. Predicting the effect of mutations in c-Raf-RBD on binding with KRas. Each bar represents either the experimental (red) or computationally predicted

(blue) effect each variant has on binding. The bars are sorted in increasing order of Δb value (see the Section entitled “FRIES/EWAK� retrospectively predicted the

effect mutations in c-Raf-RBD have on binding to KRas”) of the experimental (red) bars. If the Δb value is less than 0, binding decreases. If the Δb value is greater

than 0, binding increases. If the Δb value is close to 0, the effect is neutral. Quantitative values of K� tend to overestimate the biological effects of mutations (leading

to the much larger blue bars) due to the limited nature of the input model compared to a biologically accurate representation. However, K� in general does a good

job ranking variants, as can be seen here in Fig 6, in [1], and in [38]. Out of the 41 variants listed on the x-axis, only 3 were predicted incorrectly (marked with

black asterisks) by EWAK�. In terms of accuracy, BBK� performed very similarly to EWAK�, however, in 2 cases (marked with green boxes), BBK� ran out of

memory and was unable to calculate a score. BBK� also did not return values for the 2 variants marked with orange boxes. The variants marked with purple dots

were tested in [60] experimentally—not computationally—and decreased binding of c-Raf-RBD to KRasGTP was observed, which EWAK� was able to predict

correctly. The two variants marked with yellow triangles were computationally predicted in [60] to improve binding of c-Raf-RBD to KRasGTP. However, the

experimental validation in [60] showed that these variants exhibit decreased binding, which EWAK� accurately predicted.

https://doi.org/10.1371/journal.pcbi.1007447.g005
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memory. These cases in particular serve as examples of large designs where EWAK� outper-

forms BBK� and highlight the utility of FRIES/EWAK� when considering larger designs. In

the 2 other cases (marked in orange in Fig 5), BBK� failed to return a result for the requested

sequence in the top 5 reported sequences. This illustrated how EWAK� and FRIES are particu-

larly helpful when performing these types of bigger designs that contain more simultaneous

mutations and more flexible residues.

Finally, we compared our predictions to the interesting biological predictions in [60]. It is

unclear how many mutants were computationally evaluated, but the authors do report compu-

tational predictions for 6 point mutations. Of those, point mutants R67L, N71R, and V88I

were predicted to improve the intermolecular interactions between c-Raf-RBD and KRasGTP.

However, experiments found that R67L and V88I actually reduced the binding of c-Raf-RBD

to KRasGTP [48, 60]. In contrast to [60], EWAK� accurately predicted that these mutations

decrease binding of c-Raf-RBD to KRasGTP. For a more detailed view of one of these designs,

V88I, see Fig 7. Additionally, a number of mutations were combined and experimentally

tested in [60]. Unfortunately, none of these variants improved binding to either KRasGTP or

KRasGDP, which FRIES/EWAK� correctly predicted computationally (see Fig 5). In [60], the

authors do not present any computational predictions for these combined variants, but our

results show that a computational prediction using OSPREY’s EWAK� would have saved the time

and resources taken to experimentally test these variants.

Fig 6. Comparing the computational EWAK� ranking with the experimental ranking for 41 c-Raf-RBD variants

binding to KRas. Each green dot represents a variant of c-Raf-RBD and is plotted according to the experimental

ranking along with the corresponding computational ranking of its binding to KRas. A least squares fit line is shown in

gray. Calculating the Pearson correlation coefficient between the two sets of rankings yields a Spearman’s ρ of 0.81.

https://doi.org/10.1371/journal.pcbi.1007447.g006
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Prospective redesign of the c-Raf-RBD:KRas protein-protein interface

toward improved binding

The ability to accurately predict the effect mutations have on the binding of c-Raf-RBD to

KRasGTP (see the Section entitled “FRIES/EWAK� retrospectively predicted the effect mutations

in c-Raf-RBD have on binding to KRas”) gave us confidence in the EWAK� algorithm’s ability

to predict new mutations in this interface toward a c-Raf-RBD variant that exhibits an even

higher affinity for KRasGTP than previously reported variants which focused on targeting

KRasGDP [60]. Therefore, to do a prospective study, we computationally redesigned 14 posi-

tions in c-Raf-RBD in the c-Raf-RBD:KRas PPI to identify promising mutations. After extend-

ing OSPREY to include FRIES and EWAK�, 14 different designs were completed where each

design included 1 mutable position that was allowed to mutate to all amino acid types except

for proline. Each design also included a set of surrounding flexible residues within roughly 4 Å

Fig 7. Redesign of c-Raf-RBD residue position 88 from valine to isoleucine. The left-hand side shows c-Raf-RBD (yellow) in complex with KRas (pink). Panels

(A-D) zoom in on one particular design at residue position 88 and are rotated 180˚. Residue position 88 has a valine in the native, wild-type sequence (panels A & C)

which was redesigned to an isoleucine (panels B & D). A mutation to isoleucine at this position was computationally predicted by EWAK� to decrease the binding of

c-Raf-RBD to KRasGTP. This was experimentally validated in [60], where the authors incorrectly computationally predicted the effect of this particular mutation on

the binding of c-Raf-RBD to KRasGTP. (A) The wild-type residue (valine) is shown in green with dots that indicate molecular interactions [71] with the surrounding

residues (residues allowed to be flexible in the design are shown as lines). (B) The mutant residue (isoleucine) is shown in blue with dots that indicate molecular

interactions [71] with the surrounding residues (residues allowed to be flexible in the design are shown as lines). Contacts made by the wild-type valine residue

(circled dots in (A)) were lost upon mutation to isoleucine (circled space in (B)). (C & D) A set of 10 low-energy conformations that were included in the

corresponding partition function calculation are shown for the wild-type (green) and the variant (blue).

https://doi.org/10.1371/journal.pcbi.1007447.g007
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of the mutable residue. These designs were run using FRIES and EWAK� and included continu-

ous flexibility [12–15]. FRIES was first used to limit each design to only the most favorable

sequences (as described in the Section entitled “Fast Removal of Inadequately Energied

Sequences (FRIES)”) and then EWAK� was used to estimate the K� scores (as described in the

Section entitled “Energy Window Approximation to K� (EWAK�)”). We report the upper and

lower bounds on the EWAK� score for each design in Table 1 and S3 Table, where the listed

sequences are those that were not pruned during the FRIES step. From these results, the pre-

dicted binding effect (increased vs. decreased) was determined based on comparing each

variant’s K� score to its corresponding wild-type K� score. We then selected 5 novel point

mutations—that to our knowledge are not reported in any existing literature—for experimen-

tal validation (see Table 1). It is worth noting that these 5 point mutations were selected out of

an initial 294 possible mutations. We limited our experimental validation to only these 5 new

mutations and 2 previously reported mutations. This greatly reduced the amount of resources

necessary for experimental validation compared to testing all 294 possibilities. Of the muta-

tions selected, T57M was selected to act as a variant that we computationally predicted to be

comparable to wild-type. This variant was included to further verify the accuracy of OSPREY’s

predictions. On the other hand, some of OSPREY’s top predictions were excluded, for instance,

T57R (included in S3 Table) was not selected for experimental testing because it has an unsat-

isfied hydrogen bond as evidenced in the structures calculated by OSPREY. Another example

is position V69 where 3 different mutations are predicted to improve binding, however, this

position was included in our retrospective study (see the Section entitled “FRIES/EWAK� retro-

spectively predicted the effect mutations in c-Raf-RBD have on binding to KRas” and Fig 5)

and was 1 of only 3 positions where OSPREY incorrectly predicted the effect of the mutation.

Therefore, we do not believe that the scores accurately represent the effect the mutations will

have in these few cases. Other excluded top predictions (see S3 Table) displayed similar charac-

teristics or have been reported and tested previously [48, 49, 60]. One special case that is not

Table 1. Computational predictions by OSPREY/FRIES/EWAK� that were selected for experimental validation. Each

row of the table shows the results of the redesign of a residue position in c-Raf-RBD in the c-Raf-RBD:KRas PPI that

were also selected for experimental validation (all of the computational results are listed in S3 Table). The table contains

the values for upper and lower bounds on log(K�) values (the calculation of these bounds is described in detail in [32]).

Mutations highlighted in yellow, blue, and pink were selected for experimental testing and validation. The two residues

highlighted in blue are the best previously discovered [60] mutations that improve binding (independently and addi-

tively) and are included in our tightest binding variant, c-Raf-RBD(RKY) (Figs 8, 9 and 10). The variants highlighted in

yellow are, to the best of our knowledge, never-before-tested variants that are predicted to increase the binding of c-

Raf-RBD to KRasGTP. The variant highlighted in pink was selected for experimental testing to act as a mutation pre-

dicted to be comparable to wild-type to test how accurately OSPREY predicted the effects of these mutations.

Mutation Lower Bound log(K�) Upper Bound log(K�)
T57M 3.43 3.46

T57 3.82 3.92

T57K 5.01 5.07

N71 7.25 7.49

N71R 9.66 10.10

A85 26.3 26.9

A85K 30.7 32.3

K87 13.4 14.1

K87Y 14.1 14.2

V88 16.5 16.6

V88Y 17.3 17.6

V88F 18.0 18.2

https://doi.org/10.1371/journal.pcbi.1007447.t001
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shown in our experimental validation below is V88W which caused poor expression of c-Raf-

RBD so we were unable to test it.

Experimental validation of mutations in the c-Raf-RBD:KRas protein-

protein interface

The mutations selected (highlighted in Table 1) from computational design were first screened

using a bio-layer interferometry (BLI) single concentration assay (see the Section entitled

“Bio-layer interferometry (BLI) dissociation rate and response screening” below). For this

assay, we plotted response vs. dissociation rate constant (see Fig 9). This allowed us to quickly

obtain a qualitative probe of c-Raf-RBD variant binding to KRas. It has been shown that off-

rate measurements correlate to overall binding affinity [72–74]. A potential pitfall of depend-

ing only on off-rate observations is the potential for a slow off-rate to be paired with a slow

on-rate, resulting in lower than expected affinity. Results from this initial single-concentration

BLI screen (see Fig 8) suggested that, contrary to the computational predictions, the T57K and

V88F variants decrease binding, whereas the T57M and K87Y mutations both have a roughly

neutral effect on binding, which is consistent with the computational predictions. The final

computationally predicted point mutant, V88Y, improves binding a comparable amount to

the improvement seen with A85K or N71R, two previously reported variants that improve

binding as correctly predicted by OSPREY and also experimentally tested herein. With the dis-

covery of this new variant containing the point mutant V88Y (referred to herein as c-Raf-

RBD(Y)) the next natural step was to combine it with the mutations found in the best reported

variant, N71R and A85K (referred to herein as c-Raf-RBD(RK)). Therefore, we also included

the double-mutant, c-Raf-RBD(RK), and the new triple-mutant—which contains N71R,

Fig 8. Single-concentration experimental screening of c-Raf-RBD variants binding to KRas using BLI. c-Raf-RBD

variants at 250 nM were allowed to associate with KRasGppNHp immobilized on a Ni-NTA OctetRed96 BLI tip for 180 s

and then dissociation was measured and fitted for 120 s. All dissociation fits were performed in a local 1:1 model and

showed strong agreement with the data, every fit having greater than a R2 of 0.99 and a χ2 lower than 0.01. The fitted

dissociation rate constant (kd (1/s)) is plotted versus the response rate for each variant. Each point is labeled with its

corresponding variant boxed in the corresponding color. A triplicate repeat was performed for the c-Raf-RBD wild-

type (WT) variant (red). Variants fall into three groups: variants similar to WT (T57K in blue, T57M in cyan, WT in

red, K87Y in orange, and V88F in forest green), variants better than WT (A85K in pink, N71R in sand, and V88Y in

black), and variants with a response more than twice as large as WT (RK in purple and RKY in green). These results

were used as a screen with the most promising variants being studied further by full titration BLI experiments (see Fig

10). The corresponding BLI response curves for this experiment are presented in S1 Figure.

https://doi.org/10.1371/journal.pcbi.1007447.g008
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A85K, and V88Y and is referred to herein as c-Raf-RBD(RKY)—in our initial BLI screen. The

c-Raf-RBD(RKY) variant was computationally predicted by FRIES/EWAK� to bind to KRasGTP

more tightly than the previous best known binder, c-Raf-RBD(RK) (results are detailed in Fig

9). Given the promising screening and computational predictions for the c-Raf-RBD(Y) and c-

Raf-RBD(RKY) variants, we measured Kd values for each variant by titrating the analyte over

the ligand in a full titration BLI-based assay (see Fig 10 and the Section entitled “Bio-layer

interferometry (BLI) dissociation rate and response screening” below). Titration experiments

showed strong qualitative agreement with our single concentration screen. Excitingly, c-Raf-

Fig 9. Computational predictions in the protein-protein interface of the c-Raf-RBD:KRas complex for c-Raf-RBD(RK) and the novel variant c-Raf-RBD(RKY).

Shown on the left is only the relevant protein-protein interface between c-Raf-RBD and KRas. Each panel zooms in on this interface and details a different c-Raf-RBD

variant and its corresponding computational predictions. The upper and lower bounds on the log(K�) score for each design variant (wild-type, c-Raf-RBD(RK), and c-

Raf-RBD(RKY)) are given in the bottom table. These computational predictions correspond with and are supported by the experimental results presented in the

Section entitled “Experimental validation of mutations in the c-Raf-RBD:KRas protein-protein interface.” Panels (A) and (B) show the wild-type sequence, panels (C)

and (D) show the variant c-Raf-RBD(RK), and panels (E) and (F) show the novel computationally predicted variant c-Raf-RBD(RKY). Panels (A), (C), and (E) show

the wild-type, c-Raf-RBD(RK), and c-Raf-RBD(RKY), respectively, along with probe dots [71] that represent the molecular interactions within each structure

calculated by OSPREY. These probe dots were selected to only show interactions between the residues included in the computational designs (shown as green and blue

lines) with their surrounding residues. Panels (B), (D), and (F) show 10 low-energy structures from each conformational ensemble calculated by OSPREY/EWAK�. Panel

(G) shows a zoomed-in overlay of the wild-type variant with the c-Raf-RBD variant that includes only the V88Y mutation. Purple arrows indicate the change in

positioning of the lysine at residue position 84 upon mutation of residue position 88 from valine to tyrosine. When valine is present at position 88, the lysine residue

(shown in green) primarily hydrogen bonds with an aspartate (labeled) in KRas. When valine is mutated to tyrosine (shown in cyan), the lysine at position 84 moves to

make room for the tyrosine and positions itself to hydrogen bond with both the aspartate and the glutamate (labeled) in KRas.

https://doi.org/10.1371/journal.pcbi.1007447.g009
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RBD(RKY) is calculated by the data from the full titration BLI assay (see Fig 10) to bind

KRasGTP roughly 5 times better than the previous best known binder, c-Raf-RBD(RK), and

approximately 36 times better than wild-type c-Raf-RBD, the design starting point. Given how

heavily studied the KRas system is, with many reported mutational and structural studies [47,

47, 48, 48, 49, 49–55, 55, 56, 56–60, 69, 70], this is a surprising discovery.

Experimental materials and methods

Each variant of c-Raf-RBD was expressed and purified (see S2 Text) with cysteine residues at

positions 81 and 96 substituted for isoleucine and methionine, respectively. These mutations

were previously reported to have a minimal affect on the stability of c-Raf-RBD [55] and their

substitution allows for the use of the c-Raf-RBD constructs in other assays (not mentioned

herein). Additionally, we do not believe these residue substitutions have a large effect since the

Kd values determined herein align with previously reported Kd values [60] (see Fig 10). KRas

was expressed and purified (see S3 Text) with a poly-histidine protein tag (His-tag) and loaded

with a non-hydrolyzable GTP analog, GppNHp. KRas was also made to include a substitution

at position 118 from cysteine to serine in order to increase expression and stability [75].

Fig 10. BLI titration experiments to calculate Kd values for select c-Raf-RBD variants. BLI titration experiments to calculate Kd values for select c-Raf-RBD

variants. The plots shown here are representative and the data from replicate experiments is presented in S4 Table along with curves in S2 and S3 Figures. Each plot

shows the data collected from a titration BLI experiment where the concentration of the c-Raf-RBD variant is incrementally increased. The concentrations for the

wild-type variant were 10, 50, 150, 200, and 300 nM. The concentrations for all of the other variants were 10, 25, 25, 75, 75, 125, and 200 nM. Repeat intermediate

concentrations were used as loading controls. These curves were then fit using a mass transport model within the Octet Data Analysis HT software provided by

FortéBio in order to calculate the Kd value for each variant’s binding to KRas. The values in the table here (bottom right) are average Kd values shown with 2 standard

deviations calculated from replicate experiments (see S4 Table, S2 and S3 Figures). The values presented here for wild-type, A85K, and c-Raf-RBD(RK) agree well with

previously reported Kd values [60]. The best binding variant, c-Raf-RBD(RKY), binds to KRas about 5 times better than the previous tightest-known binder, c-Raf-

RBD(RK), and about 36 times better than the design starting point, wild-type c-Raf-RBD.

https://doi.org/10.1371/journal.pcbi.1007447.g010
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Bio-layer interferometry (BLI) dissociation rate and response screening. His-tagged

KRasGppNHp was immobilized in nickel-nitrilotriacetic acid (Ni-NTA) biosensors tips and

dipped into a single concentration of 250 nM for each c-Raf-RBD variant using an Octet

Red96 instrument (FortéBio). All samples were previously diluted in kinetics buffer (PBS

[pH 7.2], 0.01% [w/v] BSA, 0.002% [v/v] Tween 20) supplemented with 200 mM NaCl, 5 mM

MgCl2 and 1 mM TCEP. After steady state was achieved for all samples, samples were allowed

to dissociate in kinetics buffer (PBS [pH 7.2], 0.01% [w/v] BSA, 0.002% [v/v] Tween 20) sup-

plemented with 200 mM NaCl 5mM MgCl2 and 1mM TCEP. A buffer blank and binding of

c-Raf-RBD variants to Ni-NTA tips in the absence of KRasGppNHp were used as references for

double subtraction. Curves (see Fig 8) were aligned on the y-axis to the average baseline, and

an inter-step correction was aligned to the dissociation step. A dissociation only 1:1 binding

model was used to fit the dissociation rate for a window of 120 s.

Bio-layer interferometry (BLI) titration assay. Binding of wild-type and variants of

c-Raf-RBD were experimentally measured using a bio-layer interferometry (BLI) titration

assay. Ni-NTA tips were then used to perform the BLI experiments to determine binding of

the c-Raf-RBD variants to KRasGppNHp (results along with replicates are shown in Figs 8 and

10, S4 Table, S2 and S3 Figures). All experiments were carried out in 30 mM phosphate pH

7.4, 327 mM NaCl, 2.7 mM KCl, 5 mM MgCl2, 1.5 mM TCEP, 0.1% BSA, and 0.02% Tween-

20 + Kathon at 25˚C with 1000 RPM shaking and a KRas loading concentration of 20 μg/ml.

Each curve presented (see Fig 10) was fit using the built-in mass transport model within the

Octet Data Analysis HT software provided by FortéBio. We only accepted fits with a sum of

square deviations χ2 less than 1 (FortéBio recommends a value less than 3) and a coefficient of

determination R2 greater than 0.98.

Discussion

FRIES and EWAK� are new, provable algorithms for more efficient ensemble-based computa-

tional protein design. Efficiency and efficacy were tested and shown across a total of 2,826 dif-

ferent design problems. An implementation of FRIES/EWAK� is available in the open-source

protein design software OSPREY [1] and all of the data has been made available (see Data

Availability Statement). FRIES/EWAK� in combination achieved a significant runtime improve-

ment over the previous state-of-the-art, BBK�, with runtimes up to 2 orders of magnitude

faster. EWAK� also limits the number of minimized conformations used in each K� score

approximation by up to about 2 orders of magnitude while maintaining provable guarantees

(see the Section entitled “Energy Window Approximation to K� (EWAK�)”). FRIES alone is

capable of reducing the input sequence space while provably keeping all of the most energeti-

cally favorable sequences (see the Section entitled “Fast Removal of Inadequately Energied

Sequences (FRIES)”), decreasing the size of the sequence space by more than 2 orders of magni-

tude, and leading to more efficient design given the smaller search space.

To further validate OSPREY with FRIES/EWAK�, we applied these algorithms to a well-studied

and biomedically interesting system: the c-Raf-RBD:KRas PPI. First, we performed a series

of retrospective designs where FRIES/EWAK� accurately predicted how a variety of mutations

affect the binding of c-Raf-RBD to KRasGTP that previous computational methods had failed

to accurately predict [60]. This success supports the use of OSPREY and FRIES/EWAK� to evaluate

the affect mutations in the protein-protein interface of c-Raf-RBD:KRas have on binding

(more, similar successes of the K� algorithm are presented and discussed in [1]). FRIES/EWAK�

also prospectively predicted the effect of new mutations in the c-Raf-RBD:KRas PPI and dis-

covered a novel c-Raf-RBD mutation V88Y with improved affinity for KRas. We went on to

combine this new mutation with two previously reported mutations, N71R and A85K [60], to
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create c-Raf-RBD(RKY), an even stronger binding c-Raf-RBD variant, which FRIES/EWAK�

accurately predicted. We biochemically screened top predicted variants using an initial bio-

layer interferometry (BLI) single-concentration assay. Only a promising subset of the compu-

tationally predicted and initially screened variants were then evaluated using a BLI titration

assay to calculate Kd values for individual c-Raf-RBD variants. We determined that c-Raf-RBD

(RKY) binds to KRasGTP roughly 36 times more tightly than wild-type c-Raf-RBD, making it

the tightest known c-Raf-RBD variant binding partner of KRasGTP.

Given that numerous groups have explored this protein-protein interaction [47–59] and

performed mutagenesis on c-Raf-RBD either, through rational means [47, 48, 56, 69], compu-

tational methods [49, 60] or high-throughput evolutionary methods [55, 70] and that none

identified V88Y, this discovery validates our computational approach and the use of computa-

tional algorithms such as FRIES and EWAK� to re-design protein-protein interfaces toward

improved binding. Additionally, previous mutations that enhanced the affinity of c-Raf-RBD

to KRas did so by supercharging c-Raf-RBD [48, 49, 60]. In contrast, our mutation V88Y

introduces a novel, aromatic residue. The discovery that such a mutation can improve the

binding of c-Raf-RBD to KRasGTP suggests that previous work has not completely explored the

sequence space available to this binding interaction. These new c-Raf-RBD variants could be

fused to cell-penetrating peptides and used as in-cell tools to further characterize KRas:effector

signalling.
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tion of the table shows the results of the redesign of a residue position in c-Raf-RBD in the

c-Raf-RBD:KRas PPI in order of increasing upper bound on log(K�). The table contains the

values for upper and lower bounds on log(K�) values (these bounds are described in detail in
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S4 Table. Kd values for each tested variant for all replicates of BLI titration experiments.

For each listed variant, we give the dissociation constant Kd for each BLI titration experiment

calculated from the fit done using the built-in mass transport model within the Octet Data

Analysis HT software provided by FortéBio. We only accepted fits with a sum of square devia-

tions χ2 less than 1 (FortéBio recommends a value less than 3) and a coefficient of determina-

tion R2 greater than 0.98. Presented in the table in Fig 10 are averages of these Kd values.

(PDF)

S1 Figure. Curves for single concentration BLI screen of c-Raf-RBD variants. c-Raf-RBD

variants at 250 nM were allowed to associate with KRasGppNHp immobilized on a Ni-NTA

OctetRed96 BLI tip for 180 s and then dissociation was measured and fitted for 120 s. All disso-

ciation fits were performed in a local 1:1 model and showed strong agreement with the data,

every fit having greater than a R2 of 0.99 and a χ2 lower than 0.01. Each curve is labeled with

its corresponding c-Raf-RBD variant boxed in the matching color. A triplicate repeat was per-

formed for the c-Raf-RBD wild-type (WT) variant (Red). Curves grouped into three groups:

variants similar to WT (T57K in blue, T57M in cyan, WT in red, K87Y in orange, and V88F in

forest green), variants better than WT (A85K in pink, N71R in sand, and V88Y in black), and

variants with a response greater than twice that of the WT (RK in purple and RKY in green).

(PDF)

S2 Figure. Replicate BLI titration curves of c-Raf-RBD(RKY) binding to immobilized

KRas on NiNTA tips. Titration experiments were conducted over different concentration

ranges and for different association and dissociation times in order to avoid artifacts. Within

each titration experiment, curves were fit globally to a mass transport model using the FortéBio

Data Analysis HT software. All fits achieved an R2 greater than 0.99 and a χ2 smaller than 0.65.

The two titration experiments on the left are replicates with concentrations ranging from

150 nM to 4.69 nM in a 2-fold serial dilution. The titration experiment on the top right has

titrations ranging from 150 nM to 9.38 nM in a 2-fold serial dilution but with an extended

association step. The titration in the bottom right contains binding curves with the following

concentrations of c-Raf-RBD(RKY): 200 nM, 125 nM, 75 nM, 75 nM, 25 nM, 25 nM, and 10

nM. Note the in-experiment repetition of two concentrations (75 nM and 25 nM). This was

done in order to control for response and curve shape within an experiment. Curves for the

repeat concentrations show strong reproducibility and alternating what repeat curves are

used for the global fit changes the Kd within a range of 1.99 nM to 2.34 nM. Results from these

four titration experiments were averaged to generate a dissociation constant and standard

deviation for c-Raf-RBD(RKY). Results are reported in the manuscript as the dissociation

constant ± two standard deviations.

(PDF)
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S3 Figure. Replicate BLI titration curves of c-Raf-RBD(RK) binding to immobilized KRas

on NiNTA tips. Titration experiments were conducted over different concentration ranges

and for different association and dissociation times in order to avoid artifacts. Within each

titration experiment, curves were fit globally to a mass transport model using the FortéBio

Data Analysis HT software. All fits achieved an R2 greater than 0.98 and a χ2 smaller than 0.25.

The titration experiment on the top left was done with the following concentrations of c-Raf-

RBD(RK): 200 nM, 125 nM, 75 nM, 75 nM, 25 nM, 25 nM, and 10 nM. Note the in-experi-

ment repetition of two concentrations (75 nM and 25 nM). This was done in order to control

for response and curve shape within the experiment. Curves for the repeat concentrations

show strong reproducibility and alternating what repeat curves are used for the global fit

changes the Kd within a range of 15.1nM to 15.48nM. The bottom left and top right titration

experiments are replicates with concentrations ranging from 150 nM to 4.69 nM in a 2-fold

serial dilution. Results from these three titration experiments were averaged to generate a

dissociation constant and standard deviation for c-Raf-RBD(RK). Results are reported in the

manuscript as the dissociation constant ± two standard deviations.

(PDF)
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