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Abstract

Naja atra is a major venomous snake found in Taiwan. The bite of this snake causes exten-

sive wound necrosis or necrotizing soft tissue infection. Conventional microbial culture-

based techniques may fail to identify potential human pathogens and render antibiotics

ineffective in the management of wound infection. Therefore, we evaluated 16S Sanger

sequencing and next-generation sequencing (NGS) to identify bacterial species in the oro-

pharynx of N. atra. Using conventional microbial culture methods and the VITEK 2 system,

we isolated nine species from snakebite wounds. On the basis of the 16S Sanger sequenc-

ing of bacterial clones from agar plates, we identified 18 bacterial species in the oropharynx

of N. atra, including Morganella morganii, Proteus vulgaris, and Proteus mirabilis, which

were also present in the infected bite wound. Using NGS of 16S metagenomics, we uncov-

ered more than 286 bacterial species in the oropharynx of N. atra. In addition, the bacterial

species identified using 16S Sanger sequencing accounted for only 2% of those identified

through NGS of 16S metagenomics. The bacterial microbiota of the oropharynx of N. atra

were modeled better using NGS of 16S metagenomics compared to microbial culture-

based techniques. Stenotrophomonas maltophilia, Acinetobacter baumannii, and Proteus

penneri were also identified in the NGS of 16S metagenomics. Understanding the bacterial
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microbiota that are native to the oropharynx of N. atra, in addition to the bite wound, may

have additional therapeutic implications regarding empiric antibiotic selection for managing

N. atra bites.

Author summary

Naja atra bites induce extensive wound necrotizing soft tissue infections in a substantial

proportion of patients. Empiric antibiotic administration in snakebite patients is a com-

mon practice, but clinical reports indicate that this treatment was ineffective in preventing

secondary infection given that the microbiota of the infected wound and oropharynx of

the culprit snake were not properly established. In this study, only 9 species were detected

in cobra bites using a conventional microbial culturemethod and the VITEK 2 system,

whereas 18 species were detected in the cobra oropharynx usingmicrobial culture-based

16S Sanger sequencing. Among these,Morganella morganii, Proteus vulgaris, and Proteus
mirabilis were identified as common bacteria. Compared tomicrobial culture-based 16S

Sanger sequencing, NGS-based 16S metagenomic sequencing detected more than 286

bacterial species. Stenotrophomonas maltophilia, Acinetobacter baumannii, and Proteus
penneri only appeared with 16S metagenomic sequencing. These results suggest that

NGS-based 16S metagenomic sequencing is a better tool for uncovering the bacterial

microbiota of the N. atra oropharynx, which may help in developing a proper therapeutic

strategy for patients with N. atra bites.

Introduction

Snakebites are one of the most neglected tropical diseases [1, 2]. Worldwide, more than five

million people are bitten and up to 2.7 million are envenomed every year [1]. Wound infection

is a severe complication after a snakebite and is associated with considerable mortality and

morbidity [3–6]. Among common venomous snakes in Asian regions, Naja species with cyto-

toxic venoms carry the highest risk of wound infection [7]. N. atra is the only Naja species dis-

tributed in Taiwan. This snake accounts for only 6% of all snake bite incidents but causes the

most severe infectious complications among the major venomous snakes [7, 8]. Furthermore,

wound necrosis or necrotizing soft tissue infections are frequently reported [5, 9, 10]. Using

conventional culturing techniques [11], Enterococcus spp. andMorganella morganii were the

most commonly isolated pathogens in infected N. atra bite wounds, which is similar to the

snake’s oral cavity [5, 7, 12, 13]. However, in spite of the aggressive administration of specific

antivenom, antibiotics, or both, more than 50% of patients underwent surgery because of

wound infection following a bite [5]. The high surgical proportion may be due to the poor effi-

cacy of the antivenom against the cytotoxic components of the venom, failure of conventional

culture-based techniques to report less significant or nonculturable microorganisms, including

potential human pathogens, or improperly chosen empiric antibiotics [14–16].

Patients with snakebites receive several forms of treatment (e.g., wound cleansing, topical

herb application, or prophylactic antibiotic administration) that might change the bacterial

composition and loads recovered from cultures [7]. Although empiric antibiotic administra-

tion in patients with snake bites is a common practice [17], it may be ineffective in preventing

secondary infection if the microbiology of the bite wound and oropharynx of the culprit snake

is not comprehensively determined [10]. Therefore, we first glance at the features of infected
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N. atra bite patients and the bacteria recovered from the bite wound based on a conventional

microbial culture method in clinical settings. We then compare the capacity of conventional

microbial culture-based 16S Sanger sequencing and next-generation sequencing (NGS) meth-

ods to evaluate the bacterial microbiota of the oropharynx of N. atra and to better appraise

microbial diversity and therapeutic implications.

Materials and methods

Ethics statement

The human study was approved by the Institutional Review Board (CE16225A) and the snake

study was conformed to the National Law.

Patient information

All N. atra bite cases were admitted to Taichung Veterans General Hospital between January

2001 and July 2006. Patients with suspected wound infections who received a deep tissue or

biopsy microbial culture were carefully examined. The following data were collected: age, sex,

bitten body part, clinical manifestations, and management (including the dosage and timing of

specific antivenom administration, indication and timing for surgery, and types of surgery).

We used the same criteria as Mao et al. [5, 7] to define wound infection and other complica-

tions. Some study participants overlapped with previous studies that had different reference

periods [5,7].

Deep tissue or biopsy microbial cultures (aerobic and anaerobic) were performed during

surgical debridement. Bacteria were identified using the VITEK 2 system (BioMérieux Inc.,

Durham, NC, USA). Culture sampling was performed as previously described [11].

Sample collection and identification of isolated bacteria in the N. atra
oropharynx

All cobras in this study were collected in 2020 from various locations in central Taiwan by a

snake rescue team. The cobras’ mouths were opened using a sterile mouth gag. Two oropha-

ryngeal swabs were collected using commercial sterile cotton-tipped swab sticks. We used the

same conditions for the cultivation and isolation of these bacteria from both the wound and

oropharynx [16]. Briefly, swabs were taken by rotating the cotton tip on the floor of the oral

cavity and then inoculated on cetrimide agar, eosin methylene blue agar, and thiosulfate-cit-

rate-bile salts-sucrose agar. The spread plates were incubated aerobically for 24–48 h at 37˚C.

Isolated pre-treatments before sampling strains were initially identified by colony morphology

and gram characteristics. Subsequently, Sanger sequencing of the 16S ribosomal RNA gene

was performed to confirm the identification of species.

DNA extraction and construction of a 16S rDNA metagenomic library for

N. atra oropharynx samples

Genomic DNA was extracted from each sample using the QIAamp DNA mini kit based on the

manufacturer’s instructions. The Illumina 16S library preparation protocol and two-step poly-

merase chain reaction (PCR) were followed. The V3–V4 hypervariable region (500–600 bp)

of the 16S rDNA gene segment was amplified using barcoded PCR: 16s_illumina_V3F 50-

CCTACGGGNGGCWGCAG-30 and 16s_illumina_V4R 50-GACTACHVGGGTATCTAA

TCC-30. PCR products were purified on 0.8% agarose gel at 80 V for 40 min. Then they were

quantified using the Qubit dsDNA HS assay kit (Invitrogen, Carlsbad, CA, USA) according to

the manufacturer’s protocol.
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Illumina MiSeq sequencing

Purified amplicons were pooled together and paired-end sequenced at 2 × 300 bp on an Illu-

mina MiSeq platform (Illumina, San Diego, CA, USA).

Analysis of 16S metagenomics

Taxonomic classification was performed using the Illumina BaseSpace (v1.0.1) 16S metage-

nomics workflow. The Illumina-curated version of Greengenes released in May 2013 was used

as the reference database. The algorithm is an implementation of the Naïve Bayesian Classifier

(The Ribosomal Database Project) described by Wang Q [18].

Results

Clinical characteristics of N. atra bite patients

Positive deep tissue or biopsy microbial cultures were identified in 15 (nine men (60%) and six

women (40%)) of 86 total cobra bite patients. The patients’ median age was 54 years (inter-

quartile range, IQR: 38–66 years). The bite site occurred on the upper limb in six cases (40%)

and the lower limb in eight cases (53.3%). The other case was bitten on the right side of the

neck while in bed. Local effects such as suspected acute compartment syndrome, skin necrosis,

bullae or blisters, local numbness, necrotizing adiposities, and necrotizing fasciitis were

observed in 2, 15, 5, 5, 3, and 12 patients, respectively. Systemic effects such as fever (�38˚C),

rhabdomyolysis, and gastrointestinal issues were observed in 12, 2, and 7 patients, respectively.

The median dose of bivalent antivenom for N. atra and B.multicinctus administration was 15

vials (IQR: 12–16). The elapsed times between the bite and the first dose of antivenom admin-

istration were<6, 6–12, and >12 h in 11, 1, and 3 patients, respectively. The surgical indica-

tion was wound necrosis with secondary infection for all 15 patients. Cleansing procedures

included fasciotomy or fasciectomy, debridement, and finger or toe amputation in 9, 12, and 1

patient, respectively. Reconstructive procedures comprised a split-thickness skin graft or full-

thickness skin graft and flap surgery in 12 and 7 patients, respectively. The median elapsed

time between the bite and the first operation was 3 days (IQR, 1–4 days). The median elapsed

time between the bite and obtaining deep tissue or a biopsy culture was 4 days (IQR, 2–8

days). Antibiotics were administered to all patients upon arrival at the emergency department

before obtaining a deep tissue or biopsy culture, and they included penicillin, oxacillin, amoxi-

cillin/clavulanic acid, ampicillin/sulbactam, cefazolin, gentamicin, and metronidazole in 1, 3,

2, 6, 12, 8, and 2 patients, respectively (Table 1).

Identification of bacteria from infected N. atra bite wounds based on the

VITEK 2 system

Nine bacteria were isolated from infected cobra bite wounds (Table 2). Enterococcus sp. (aero-

bic gram-positive bacteria) was present in seven cases and was the most common gram-posi-

tive pathogen. The most common aerobic gram-negative bacterial species wasMorganella
morganii (10 cases). Proteus vulgaris and Serratia marcescens were isolated from two cases. P.

mirabilis, P. penneri, Providencia rettgeri, Pseudomonas aeruginosa, and Shewanella sp. were

found in one case each. In addition, 10 patients had wounds with at least two bacterial patho-

gens. Simultaneously, an anaerobic culture was performed in 11 of the 15 patients, but no

anaerobic bacteria were found in the study.
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Table 1. Demographic data and management of patients with positive deep tissue or biopsy culture.

Demographic data Case number, n = 15

Age (median, IQR) 54 (38–66)

Male (%) 9 (60)

Body part of bitten

Upper limb 6

Lower limb 8

Trunk/Others 1 (neck)

Local complications

Tissue swellinga

Minimal 0

Mild 1

Moderate 8

Severe 5

Acute compartment syndrome, suspected 2

Skin necrosis 15

Bullae/blister 5

Local numbness 5

Lymphangitis/lymphadenitis 0

Necrotizing soft tissue infection

Necrotizing adiposities 3

Necrotizing fasciitis 12

Finger or toe gangrene 0

Systemic complications

Fever (�38˚C) 12

Rhabdomyolysisb 2

Gastrointestinal effectc 7

Ptosis or muscle weakness 0

Management

Time elapsed between bite and first dose of antivenomd in h

<6 h 11

6–12 h 1

>12 h 3

Total antivenom dose in vial (median, IQR) 15 (12–16)

Operation case

Fasciotomy/fasciectomy 9

Debridement 12

STSG/FTSGe 12

Flap 7

Finger or toe amputation 1

Time elapsed between bite and first operation in days (median, IQR) 3 (1–4)

Time elapsed between bite and obtaining deep tissue or biopsy culture in days (median,

IQR)

4 (2–8)

Antibiotics administered prior to obtaining deep tissue or biopsy culture 15

Penicillin 1

Oxacillin 3

Amoxicillin/clavulanic acid 2

Ampicillin/sulbactam 6

Cefazolin 12

(Continued)
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Identification of bacteria from the N. atra oropharynx through

conventional microbial culture-based 16S Sanger sequencing

Because N. atra is rarely found, we collected five adult snakes for the experiment. After obtain-

ing swabs from their oropharynx, 54 single colonies were recovered on a culture plate. We

then identified 18 bacterial species using the 16S Sanger sequencing method (S1 Table). The

colonies consisted ofM.morganii in 17 clones (31.5%), followed by Bordetella petrii in 6 clones

(11.1%) and Corynebacterium freneyi in 5 clones (9.3%). Therefore,M.morganii was the prin-

cipal bacterium isolated from both cobra bite wounds and the cobra oropharynx (Tables 2

and S1).

A comparison between bacterial microbiota in N. atra bite wounds and the

cobra oropharynx

To understand the microbial diversity of snakebite wounds and identify the relative propor-

tion and types of species in the wound, we compared cultured bacteria between cobra bite

wounds and the cobra oropharynx. Among bacterial strains, 18 species were isolated from the

cobra oropharynx using 16S Sanger sequencing, and 9 species were isolated from cobra bite

wounds using the VITEK 2 system (Fig 1A). Overall, the microbial culture method identified

only three bacterial species (i.e.,M.morganii, P. vulgaris, and P.mirabilis) in both cobra bite

Table 1. (Continued)

Demographic data Case number, n = 15

Gentamicin 8

Metronidazole 2

a: minimal: local swelling at the bite site; mild: swelling involving a whole hand or foot; moderate: swelling from the

hand to the forearm, or from the foot to the leg; severe: swelling extending to the arm, thigh, or the above area, from

a hand or foot bite. Because Blaylock’s classification cannot be applied to bites on the body or trunk, the patient

bitten on the neck was not included in the swelling grade analysis despite serious tissue swelling;
b: creatine kinase level of 2599 and 4306 U/L, respectively;
c: including nausea, vomiting, abdominal upset, or diarrhea;
d: bivalent specific antivenom for Naja atra and Bungarus multicinctus;
e: split-thickness skin graft and full-thickness skin graft.

https://doi.org/10.1371/journal.pntd.0009331.t001

Table 2. Bacteria isolated from infected cobra bite wound culture.

Species Case number

Aerobic gram-positive bacteria

Enterococcus sp. 7

Aerobic gram-negative bacteria

Morganella morganii 10

Proteus mirabilis 1

Proteus penneri 1

Proteus vulgaris 2

Providentia rettgeri 1

Pseudomonas aeruginosa 1

Serratia marcescens 2

Shewanella sp. 1

polymicrobial:� 2 pathogens 10

https://doi.org/10.1371/journal.pntd.0009331.t002
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Fig 1. Bacteria in N. atra bite wounds and cobra oropharyngeal swabs. (A) Venn diagram indicates that 18 bacterial species strains

(yellow) were detected in the oropharynx ofN. atra by culture-based method, and 9 species were detected from bite wounds (blue) by using

the VITEK 2 system. Three bacteria were both present in the oropharynx of snake and the bite wounds. (B) The most commonly species

wereMorganella morganii, Proteus vulgaris, and Proteus mirabilis.

https://doi.org/10.1371/journal.pntd.0009331.g001
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wounds and the oropharynx of cobras (Fig 1A), and these three bacterial species accounted for

31.5%, 3.7%, and 3.7% of those in the cobra oropharynx, respectively (Fig 1B, right vertical

bar), and appeared in the bite wounds of 10, 2, and 1 patients, respectively (Fig 1B, left vertical

bar).

Identification of bacterial microbiota in the cobra oropharynx through

next-generation sequencing

To better understand the bacterial microbiota in the cobra oropharynx, oropharynx swabs

from five cobras were collected, and 16S metagenomic sequencing was performed. To model

oropharynx bacterial microbiota, we calculated the number of identified species using opera-

tional taxonomic units (OTUs) and the abundance of species using the Shannon species diver-

sity index. The OTU range and the Shannon species diversity index were 286–416 and 1.907–

2.224 in the cobra oropharynx, respectively (Table 3). Taxonomic classification was conducted

using the Ribosomal Database Project Classifier and Greengenes Database. The five most

abundant bacterial species accounted for 84% ± 2.9% of those in the oropharynx bacterial

microbiota. The 16S metagenomic sequencing data revealed that the most common bacterial

species in the oropharynx of all five cobras were P. azotoformans, P. lundensis, Delftia tsuruha-
tensis, andMethylobacterium goesingense. These species accounted for 27.7% ± 8.7%, 22.3% ±
11.6%, 20.3% ± 1.9%, and 9.0% ± 1.7% of the oropharynx bacterial microbiota, respectively. In

addition, through the NGS method, we found that the only four bacteria present in both N.

atra bite wounds and the oropharynx were Enterococcus sp.,Morganella morganii, Proteus
mirabilis, and Proteus penneri (Table 4).

Comparison of bacterial microbiota in N. atra oropharynx identified

through 16S Sanger sequencing of bacterial culture and 16S metagenomic

sequencing

We grouped the bacteria by genus to compare the bacterial microbiota of the cobra orophar-

ynx identified through 16S Sanger and metagenomic sequencing. The 16S metagenomic

Table 3. Bacteria identified in the oropharynx of N. atra based on the 16S metagenomics method.

Sample ID Shannon

Species

Diversity

Number of Species

Identified (OTU)

Top 5 species

1 2 3 4 5

MS18121-1 1.907 404 Pseudomonas
azotoformans

Pseudomonas
lundensis

Delftia tsuruhatensis Methylobacterium
goesingense

Delftia lacustris

29.82% 22.44% 20.73% 9.21% 2.78%

MS18121-2 2.224 362 Pseudomonas
azotoformans

Pseudomonas
lundensis

Delftia tsuruhatensis Methylobacterium
goesingense

Kushneria
indalinina

25.55% 20.65% 18.65% 8.71% 6.46%

MS18121-3 2.065 411 Pseudomonas
lundensis

Delftia
tsuruhatensis

Pseudomonas
azotoformans

Methylobacterium
goesingense

Dysgonomonas
wimpennyi

39.58% 18.09% 14.52% 6.36% 2.59%

MS18121-4 2.015 286 Pseudomonas
azotoformans

Delftia
tsuruhatensis

Methylobacterium
goesingense

Pseudomonas
fluorescens

Pseudomonas
lundensis

38.12% 22.33% 11.06% 8.84% 7.06%

MS18121-5 1.998 416 Pseudomonas
azotoformans

Delftia
tsuruhatensis

Pseudomonas
lundensis

Methylobacterium
goesingense

Delftia lacustris

30.52% 21.67% 21.52% 9.75% 2.99%

https://doi.org/10.1371/journal.pntd.0009331.t003
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sequencing data indicated that the most representative bacterial genera were Pseudomonas
(62%), Delftia (19%), andMethylobacterium (9%), but none of these genera were detected in

the bacterial culture (Fig 2A, left). By contrast, the most representative genera, as obtained

from the cultured clones, wereMorganella in 31.5% of the clones, Corynebacterium in 22.2%,

Proteus in 7.4%, and Enterococcus in 7.4% (Fig 2B). Only 2% of the bacteria identified through

16S metagenomic sequencing were found by Sanger sequencing of the bacterial culture (Fig

2A, right). The proportions of each genus in 2% of the bacteria were identical in these two

methods, i.e., 0.83%, 0.3%, and 0.32% for the genera Corynebacterium,Morganella, and

Proteus, respectively (Fig 2A, right). Notably, the pathogenic bacteria Stenotrophomonas

Table 4. Identification of the bacterial species in N. atra oropharynx and bit wounds.

Species 16S Metagenomics NGS

(oropharynx)

Sanger sequencing of bacterial culture

(oropharynx)

Vitek2 system of bacterial culture (bite

wounds)

Stenotrophomonas
maltophilia

O X X

Acinetobacter baumannii O X X

Morganella morganii O O O

Proteus mirabilis O O O

Proteus penneri O X O

Enterococcus spp. O O O

https://doi.org/10.1371/journal.pntd.0009331.t004

Fig 2. Pie charts of the abundance of 16S bacteria from the oropharynx of N. atra identified through next-

generation sequencing (NGS) and culturing (genus level). (A) Bacterial abundance identified through the swabs of

the oropharynx ofN. atra and 16S rDNA through NGS (left). The culture-based method only detected 2% of all

bacteria uncovering by NGS method (right). (B) The proportion of detected bacteria at the genus level through

culturing.

https://doi.org/10.1371/journal.pntd.0009331.g002
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maltophilia and Acinetobacter baumannii were identified by 16S metagenomic sequencing,

which were undetected in both wounds using the VITEK 2 system and the cobra oropharynx

using 16S Sanger sequencing of the microbial culture (Table 4).

Discussion

N. atra belongs to the family Elapidae, but its bite causes minimal or insignificant neurotoxic-

ity. Furthermore, necrotizing soft tissue infection was the principal manifestation of its bite [5,

19]. We demonstrated that the use of empiric antibiotics in N. atra bite management was

probably widespread but may not have been directly effective on pathogens. The most com-

mon pathogen recovered from deep tissue or biopsy culture after wound debridement wasM.

morganii. This bacterium is naturally resistant to various antibiotics, including penicillin,

amoxicillin, ampicillin, oxacillin, cefazolin, and sulfamethoxazole [20]. In Taiwan, Chen et al.

suggested that amoxicillin/clavulanate with ciprofloxacin or piperacillin/tazobactam is the

antibiotics of choice in the management of snakebites because Enterococcus spp. andM.

morganii are frequently present in the infected bite wound [21]. Mao et al. and Chiang et al.

suggested that first-generation cephalosporin with aminoglycoside or sulfamethoxazole/tri-

methoprim is the preferable antibiotics in the management of infected Protobothrops mucros-
quamatus and Trimeresurus stejnegeri stejnegeri bites [22, 23]. These suggestions are based on

conventional wound microbial culture without prior determination of antibiotic administra-

tion before obtaining cultures, thus rendering these suggestions biased.

In Thailand, Theakston et al. recommended benzylpenicillin with gentamicin as a prophy-

lactic antibiotic regimen after Calloselasma rhodostoma envenomation because Enterobacter,
Pseudomonas, Staphylococcus, and Clostridium spp. were cultured from the venom and mouth

of this snake [24]. In Brazil, Jorge et al. suggested the use of chloramphenicol as the antibiotic

of choice for managing Bothrops envenomation because the most frequently isolated patho-

gens from these wounds includeM.morganii, Providencia rettgeri, Enterobacter sp., Escheri-
chia coli, Enterococcus sp., and Bacteroides sp. [25]. However, in Ecuador, a controlled study

suggests that chloramphenicol and gentamicin were ineffective in preventing abscess forma-

tion (9 cases among 114 snake bites) given that they are administered for 24 h and less than

half of the patients are identified as Bothrops bites [26]. In the United States, prophylactic anti-

biotic administration is not recommended for treating rattlesnake bites given the low inci-

dence of wound infection (0.98%) [27]. Although the administration of specific antivenom

remains the standard of care in the management of snakebites, administration of prophylactic,

empiric antibiotics, or both is controversial. This is not only because the diagnosis of second-

ary infection is confounded by the venom’s effects but also because the microbiology of the

infected wound and oropharynx of the culprit snake is not well established [7]. In addition, a

recent study demonstrated that the bivalent antivenom for N. atra and B.multicinctus is inef-

fective against the necrotic effect of the venom [15]. Because most N. atra bite patients under-

went surgery for secondary wound infections, this seems to be a role for empiric antibiotics in

the management of severe local or systemic septic complications following a bite.

The snake oral cavity contains various aerobic and anaerobic bacteria, particularly fecal

gram-negative rods because their prey (e.g., mammals, reptiles, and fish) usually defecate

while being ingested [3, 28, 29]. The bacterial composition varies across snake species and may

be influenced by venom properties [24, 30, 31] and the fecal flora of the prey in different geo-

graphic regions [29]. On the basis of conventional microbial culture methods, Enterobacter,
Proteus, and Pseudomonas were the most frequently isolated gram-negative rods, Enterococcus
andMicrococcus were the most common gram-positive cocci, and Clostridium was the most

common anaerobic bacteria found in the fangs or venom of Crotalus atrox [32]. P. aeruginosa,
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coagulase-negative Staphylococcus sp., Alcaligenes sp., and Enterobacter cloacae were all iso-

lated from the venom of C. viridis helleri, and Bacillus sp., Proteus rettgeri, and coagulase-nega-

tive Staphylococcus sp. were observed in C. scutulatus [29]. Furthermore, Stenotrophomonas
maltophilia, P. aeruginosa, and Diphtheroid bacillus were obtained from Trimeresurus albolab-
ris [13]. In contrast to crotaline snakes, the oral cavity of N. atra harbors more complex patho-

genic bacteria, including gram-negative bacterial speciesM.morganii, Aeromonas hydrophila,

and Proteus, and gram-positive bacteria, like Enterococcus faecalis, coagulase-negative Staphy-
lococcus sp., and anaerobic species (Clostridium), which may be associated with higher inci-

dences of bite wound infection (i.e., 76%–81%) [12, 13]. However, in N.mossambica bites,

patients had serious wound necrosis or necrotizing soft tissue infection even with the use of

specific antibiotics or third-generation cephalosporin [10]. This can be caused by additional

wound necrosis-inducing bacteria that were undetected, unreported, or both in conventional

microbial culture in addition to venom-induced cytotoxicity and local tissue damage.

Currently, microbial culture remains the principal method to detect bacteria in clinical

practice. Meanwhile, the accuracy and reliability of NGS of 16S metagenomics have rapidly

improved [33]. We used NGS to examine the bacterial microbiota of the oropharynx of N. atra
and to construct a better model of a snake oropharynx microbial profile, which may have ther-

apeutic implications. Our NGS data indicated that the bacterial microbiota, as identified using

OTUs, included more than 286 species. However, using the culture-based method, only 18

bacterial species could be identified in the same sample from the cobra oropharynx and only 9

species in infected wounds. The lower number of bacterial species identified in deep tissue or

biopsy culture in this study compared with the Mao et al. study is probably due to the lower

number of bacteria in deep tissue or from biopsy compared with wound swab sampling, fastid-

ious or uncultivable bacteria, antibiotic therapy, or several of these aspects initiated before

sampling [7, 34]. Only three bacterial species recovered from deep tissue or biopsy cultures

were also present in the oropharynx swab culture of N. atra, which suggests the requirement of

simultaneous determination of both the bite wound and snake oropharynx bacterial micro-

biota. Given the considerable variability in the incidence of infection in snake bite wounds

(1%–81%) [35, 36], the causative organisms, and the methods used to isolate a pathogen in var-

iable clinical settings [5, 10, 27, 37–39], an institutional protocol for antibiotic selection during

snake bite wound management should be adapted based on the regional microbiology data of

both snake bite wounds and snakes.

Rampini et al. suggested that the 16S rRNA gene sequencing method identifies many more

culture-negative bacteria compared with microbial culture [40]. Pseudomonas was the most

abundant genus found in the cobra oropharynx cavity. In particular, P. azotoformans is an

environmental bacterium that can be isolated from soil and plants. In 2020, a bacterial isolate

from rabbit meat samples was treated with blue and fluorescent pigments, and the growth of

uniform bacterial colonies that were visible through fluorescent pigmentation indicated P. azo-
toformans, which belongs to the fluorescent group [41]. P. lundensis is a new species of the

Pseudomonas genus and can produce fluorescent pigments and catalase and grow at 0˚C. Fur-

thermore, they are spoilage and pathogenic bacteria found in refrigerated meat [42]. D. tsuru-
hatensis, which was initially considered an environmental bacterium, was later confirmed as a

human pathogen [43]. In addition, it can be misidentified as a closely related nonpathogenic

species, D. acidovorans, using the VITEK 2 system with a probability level of 98% [43]. More-

over, the pathogenic bacteria Stenotrophomonas maltophilia and A. baumannii detected in the

N. atra oropharynx were not found in deep tissue or biopsy cultures of infected wounds. It is

worth noting that S.maltophilia is a multiple-drug-resistant pathogenic bacterium that is fre-

quently involved in pneumonia and bacteremia in humans [44].
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Several reports have presented potential advantages of molecular diagnostics over microbial

culture, namely, a shorter turnaround time, detection of difficult to grow bacteria, or detection

after prior administration of antibiotics that inhibit bacterial growth [34]. Although PCR

amplification bias and 16S rRNA copy variation may cover up real relative abundance, numer-

ous studies have shown that the NGS method of 16S metagenomics can achieve reasonable

quantification accuracy for complex microbial communities [33]. In addition, a traditional

microbiology laboratory only reports a few bacteria in the culture and clinically associates it

with polymicrobial infections. The advantage of the NGS method 16S metagenomics assay is

not only the identification but also the quantification of the relative abundance of all bacteria

in polymicrobial infections [33]. Furthermore, 16S rRNA sequencing identifies anaerobic bac-

teria better than the VITEK 2 system [45].

Advances in sequencing technology in the last decades have made the molecular identifi-

cation of bacteria widely available, and an increasing number of studies have focused on the

clinical applications of this technology. The main advantage of NGS-based sequencing is that

it permits the identification of 16S rRNA on uncultured samples and provides fast and com-

prehensive analysis of the microbial profile, thereby reducing the time required for clinical

diagnosis and treatment. However, we are in the early stages of understanding the micro-

biome of snakes and snakebite wounds. Generally, bacterial isolates from the oral cavity of

snakes are not all pathogenic: they may cause wound infections or abscesses in humans but

so do normal environmental contaminants or soil pathogens [46]. Although bacterial patho-

gens can make some people critically ill, many people who asymptomatically carry these

organisms are often unaware that they are infected, and it is difficult to draw a line between

the asymptomatic presence of such pathogens and the normal microflora [47]. We do not

know if antibiotic treatment must be directed at each isolated organism, at only presumed

bacterial ringleaders, or even at organisms that were once considered probably nonpatho-

genic lab weeds [46]. Nevertheless, ascertaining this information should be the initial

stage of any study that attempts to establish appropriate antimicrobial therapy for N. atra
envenomation.

Limitations

There are several limitations in our study. First, there was usually a delay of several days

between the bite and the debridement surgery (to allow demarcation of the necrosis). Empiric

antibiotic administration for wound infection and before obtaining microbial cultures during

debridement surgery might have changed the bacterial microbiota of the wound. However,

owing to the high incidence of wound infection following an N. atra bite [5, 7], it is not possi-

ble or even ethical to postpone the antibiotic administration while waiting for the culture

report. Although the clinical data in 2001–2006 were analyzed, no optimized protocol is cur-

rently established in the management of N. atra bites because the diversity of pathogens might

have been underestimated in the clinical setting based on conventional culture techniques and

various pretreatments before sampling. Second, we did not submit the deep or biopsy tissues

for 16S Sanger sequencing or NGS evaluation because the techniques are not available during

the patients’ enrollment period and N. atra bites are rare in Taiwan. Third, only five adult N.

atra were analyzed, and hence, these data may not be properly representative of the wild popu-

lation of this snake. In addition, the changing patterns of bacterial microbiota in snakebite

wounds and the N. atra oropharynx throughout the year remain unknown, although numer-

ous studies reported the increasing resistance of various bacteria [48, 49]. Nevertheless, this is

the first study to investigate the bacterial microbiota of the oropharynx of N. atra with utiliza-

tion of NGS and Sanger sequencing methods. Our study findings may have therapeutic
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implications for N. atra bite wound infections and shed light on the complex mechanisms of

wound necrosis following a bite.
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