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ABSTRACT Spinal motor neurons (MNs) constitute cellular substrates for several movement 
disorders. Although their early development has received much attention, how spinal MNs become 
and remain terminally differentiated is poorly understood. Here, we determined the transcriptome 
of mouse MNs located at the brachial domain of the spinal cord at embryonic and postnatal stages. 
We identified novel transcription factors (TFs) and terminal differentiation genes (e.g. ion channels, 
neurotransmitter receptors, adhesion molecules) with continuous expression in MNs. Interestingly, 
genes encoding homeodomain TFs (e.g. HOX, LIM), previously implicated in early MN development, 
continue to be expressed postnatally, suggesting later functions. To test this idea, we inactivated 
Hoxc8 at successive stages of mouse MN development and observed motor deficits. Our in vivo 
findings suggest that Hoxc8 is not only required to establish, but also maintain expression of several 
MN terminal differentiation markers. Data from in vitro generated MNs indicate Hoxc8 acts directly 
and is sufficient to induce expression of terminal differentiation genes. Our findings dovetail recent 
observations in Caenorhabditis elegans MNs, pointing toward an evolutionarily conserved role for 
Hox in neuronal terminal differentiation.

Editor's evaluation
This manuscript will be of interest to developmental geneticists interested in neuroscience, and how 
spinal motor neurons maintain their unique identities in adulthood after fate decisions are made in 
the embryo. The work here demonstrates that a Hox transcription factor acts as a terminal selector 
to control motor neuron identity, thus mirroring recent studies in C. elegans, and thus pointing 
towards this type of gene regulation as important in building diverse nervous systems.

Introduction
Motor neurons (MNs) represent the main output of our central nervous system. They control both 
voluntary and involuntary movement and are cellular substrates for several degenerative disorders 
(Arora and Khan, 2021). Due to their stereotypic cell body position, easily identifiable axons and 
highly precise synaptic connections with well-defined muscles, MNs are exceptionally well character-
ized in all major model systems. Extensive research over the past decades in worms, flies, and mice has 
focused on the early steps of MN development, thereby advancing our understanding of the molec-
ular mechanisms controlling specification of progenitor cells and young postmitotic MNs, as well 
as motor circuit assembly (Osseward and Pfaff, 2019, Philippidou and Dasen, 2013; Sagner and 
Briscoe, 2019; Thor and Thomas, 2002). In the vertebrate spinal cord, progenitor cell specification 
critically depends on morphogenetic signals, whereas initial fate determination of postmitotic MNs 
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relies on combinatorial activity of different classes of transcription factors (TFs) (di Sanguinetto et al., 
2008, Jessell, 2000; Lee and Pfaff, 2001; Stifani, 2014). The focus in early development, however, 
has left poorly explored the molecular mechanisms that control the final steps of MN differentiation. 
Once MNs are born and specified, how do they acquire their terminal differentiation features, such as 
neurotransmitter (NT) phenotype, electrical, and signaling properties? And perhaps most important, 
what are the mechanisms that ensure maintenance of such features throughout life?

The terminal differentiation features of every neuron type are determined by the expression of 
specific sets of proteins, such as NT biosynthesis components, NT receptors, ion channels, neuro-
peptides, signaling molecules, transmembrane receptors, and adhesion molecules (Hobert, 2008). 
The genes coding for these proteins (‘terminal differentiation genes’) are continuously expressed 
from development through adulthood, thereby determining the functional and phenotypic proper-
ties of individual neuron types (Hobert, 2008; Hobert, 2011). Therefore, the challenge of under-
standing how MNs acquire and maintain their functional features lies in understanding how the 
expression of MN terminal differentiation genes is regulated over time. Importantly, defects in 
expression of such genes constitute one of the earliest molecular signs of MN disease (Nutini et al., 
2011; Shibuya et al., 2011). However, the regulatory mechanisms that induce and maintain expres-
sion of terminal differentiation genes in spinal MNs are poorly defined. In part, this is due to: (a) a 
scarcity of temporally controlled gene inactivation studies that remove the activity of MN-expressed 
regulatory factors (e.g. TF, chromatin factor) at different life stages, and (b) a paucity of terminal 
differentiation markers for spinal MNs. Although recent RNA-Sequencing (RNA-Seq) studies have 
begun to address the latter (Blum et al., 2021; Delile et al., 2019; Alkaslasi et al., 2021), most 
genetic and molecular profiling studies on spinal MNs are not conducted in a longitudinal fashion, 
i.e., at embryonic and postnatal stages. Hence, how these cells become and remain terminally 
differentiated remains unclear.

To elucidate the molecular mechanisms that enable spinal MNs to acquire and maintain their 
terminal differentiation features, we took advantage of the orderly anatomical relationship between 
MN cell body location and muscle innervation, referred to as ‘topography’ (Dasen and Jessell, 2009). 
In the spinal cord, this topographic relationship is mostly evident along the rostrocaudal axis, where 
MN populations located in different spinal cord domains (e.g. brachial, thoracic, lumbar, sacral) inner-
vate different muscles. In this study, we focused on the brachial domain, where postmitotic MNs 
are organized into two columns: (a) the lateral motor column (LMC) contains limb-innervating MNs 
necessary for reaching, grasping, and locomotion, and (b) the medial motor column (MMC) contains 
axial muscle-innervating MNs required for postural control (Philippidou and Dasen, 2013). Through a 
longitudinal RNA-Seq approach, we identified multiple terminal differentiation markers and novel TFs 
with continuous expression in embryonic and postnatal brachial MNs. Interestingly, we also found that 
several homeodomain TFs (HOX, LIM) that were previously implicated in the early steps of brachial 
MN development (e.g. initial specification, circuit assembly) (Philippidou and Dasen, 2013; Stifani, 
2014) continue to be expressed in postnatal MNs. We therefore hypothesized that some of these TFs 
play additional roles in later steps of brachial MN development.

To test this hypothesis, we focused on Hox proteins because recent findings in the ventral nerve 
cord (equivalent to mouse spinal cord) of the nematode Caenorhabditis elegans identified Hox 
proteins as critical regulators of cholinergic MN terminal differentiation (Feng et al., 2020; Kratsios 
et al., 2017). Among the seven Hox genes retrieved from our RNA-Seq, Hoxc8 is highly expressed 
both in embryonic and postnatal brachial MNs. A previous study showed that Hoxc8 acts early to 
establish brachial MN connectivity (Catela et al., 2016). Here, we report a new role for Hoxc8 in 
later stages of mouse MN development. By inactivating Hoxc8 at successive developmental stages, 
we found that it is necessary for the establishment and maintenance of select terminal differentiation 
features of brachial MNs. Mechanistically, Hoxc8 acts directly to induce expression of terminal differ-
entiation genes. Similar to our observations in brachial MNs, we identified additional Hox genes with 
continuous expression in thoracic and lumbar MNs, suggesting maintained Hox expression in MNs is 
a broadly applicable theme to other rostrocaudal domains of the spinal cord. Because Hox genes are 
also expressed in the mouse and human brain during embryonic and postnatal stages (Lizen et al., 
2017; Takahashi et al., 2004; Hutlet et al., 2016; Krumlauf, 2016), similar Hox-based mechanisms to 
the one described here may be widely used in the nervous system for the control of neuronal terminal 
differentiation.

https://doi.org/10.7554/eLife.70766
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Results
Molecular profiling of mouse brachial MNs at embryonic and postnatal 
stages
We first sought to define the molecular profile of brachial MNs at embryonic and postnatal stages 
with the goal of identifying putative terminal differentiation markers for these cells. This longitudinal 
approach focused on postmitotic MNs at embryonic day 12 (e12) and postnatal day 8 (p8). We chose 
e12 because: (i) spinal e12 MNs begin to acquire their terminal differentiation features, such as NT 
phenotype (Martinez et  al., 2012), and (ii) MN axons at e12 have exited the spinal cord (Catela 
et al., 2016). We chose p8 because: (i) these are several days after neuromuscular synapse formation 
(Gautam et al., 1996), and (ii) pups at p8 become more active, indicating spinal MN functionality. 
To genetically label e12 MNs, we used the Mnx1-GFP (green fluorescent protein) reporter mouse 
(Wichterle et al., 2002) as it primarily labels embryonic MNs at e12 (Amin et al., 2015; Hanley et al., 
2016; Sawai et al., 2022; Wichterle et al., 2002; Figure 1A). Due to low expression of Mnx1-GFP 
at postnatal stages, we turned to an alternative labeling strategy and crossed ChatIRESCre mice (Rossi 
et al., 2011) with the Ai9 Cre-responder line (Rosa26-CAGpromoter-loxP-STOP-loxP-tdTomato) (Madisen 
et  al., 2010). At p8, we observed fluorescent labeling of spinal MNs with tdTomato (Figure  1A, 
Figure 1—figure supplement 1). Taking advantage of the topographic MN organization along the 
rostrocaudal axis, we followed a region-specific approach focused on the brachial region (segments 
C4-T1) that contains MNs of the MMC and LMC. Upon precise microdissection of this region (see 
Materials and methods), we used fluorescence-activated cell sorting (FACS) to isolate GFP-labeled 
brachial MNs from e12 Mnx1-GFP mice and tdTomato-labeled brachial MNs from p8 ChatIRESCre::Ai9 
mice (Figure 1A). Through RNA-Seq, we obtained and compared the molecular profile of these cells 
(see Materials and methods). We identified differentially expressed transcripts (>fourfold, p<0.05) 
in the e12 (3715 transcripts) and p8 (3209 transcripts) dataset (Figure 1B, Supplementary file 1), 
suggesting gene expression profiles of embryonic and postnatal brachial MNs differ. Two factors 
that could contribute to these transcriptional differences between the e12 and p8 datasets are: (1) 
different levels of gene expression (see next section), and (2) a small fraction of the FACS-sorted cells 
are not MNs. Indeed, Mnx1 and Chat, in addition to MNs, are also expressed in small, nonoverlapping 
neuronal populations in the spinal cord (Wilson et al., 2005; Zagoraiou et al., 2009; Wichterle et al., 
2002; Figure 1—figure supplement 1).

Subsequent gene ontology (GO) analysis on proteins from embryonically enriched (e12) transcripts 
revealed an overrepresentation of molecules associated with neuronal development, such as region-
alization, dendrite formation, and axon guidance (Figure 1C, Supplementary file 2). Notably, the 
most enriched class of proteins in the e12 dataset is TFs, many of which are known to control MN 
development (Figure 1D, see next section). On the other hand, GO analysis on proteins from post-
natally enriched (p8) transcripts uncovered an overrepresentation of molecules associated with cell 
metabolism, such as ATP synthesis, oxidative phosphorylation, and energy-coupled proton transport 
(Figure 1C–D, Supplementary file 2), perhaps indicative of the higher metabolic demands of p8 MNs 
compared to their embryonic (e12) counterparts.

To identify terminal differentiation markers with continuous expression in brachial MNs, we lever-
aged our e12 RNA-Seq dataset (Figure  1D, Supplementary file 1). We arbitrarily selected eight 
genes coding for NT receptors, ion channels, and signaling molecules (Slc10a4, Nrg1, Nyap2, Sncg, 
Ngfr, Glra2, Cldn1, Cacna1g) and evaluated their expression at different life stages. Through RNA ISH, 
we found six genes (Slc10a4, Nrg1, Nyap2, Sncg, Ngfr, Glra2) with continuous expression in putative 
brachial MNs at embryonic (e12) and early postnatal (p8) stages (Table 1, Supplementary file 1). 
Available RNA ISH data from the Allen Brain Atlas also confirmed their expression at p56 (Table 1). 
The ventrolateral location of the cells expressing these six genes in the spinal cord strongly suggests 
they constitute terminal differentiation markers for brachial MNs.

Developmental transcription factors continue to be expressed in spinal 
MNs at postnatal stages
Two simple, but not mutually exclusive mechanisms can be envisioned for the continuous expression 
of terminal differentiation genes (e.g. Slc10a4, Nrg1, Nyap2, Sncg, Ngfr, Glra2) in brachial MNs. Their 
embryonic initiation and maintenance could be controlled by separate mechanisms involving distinct 

https://doi.org/10.7554/eLife.70766
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Figure 1. Molecular profiling of mouse brachial motor neurons (MNs) at embryonic and postnatal stages. (A) Schematic representation of the workflow 
used in the comparison of embryonic and postnatal transcriptomes. The brachial domain (C4–T1) of Mnx1-GFP (in green) and ChatIRESCre::Ai9 (in red) 
mice was microdissected. Brachial GFP+ (at e12.5, scale bar: 20 μm) and tdTomato+ (at p8, scale bar: 100 μm) MNs were fluorescence-activated cell 
sorted and processed for RNA-sequencing. Spinal cord is outlined with white dashed line. (B) MA plot of differentially expressed genes. Green and 

Figure 1 continued on next page
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combinations of TFs solely dedicated to either initiation or maintenance. Alternatively, initiation and 
maintenance can be achieved through the activity of the same, continuously expressed TF (or combi-
nations thereof). Recent invertebrate and vertebrate studies on various neuron types support the 
latter mechanism (Deneris and Hobert, 2014; Hobert and Kratsios, 2019). We therefore sought to 
identify TFs with continuous expression, from embryonic to postnatal stages, in mouse brachial MNs.

First, we examined whether TFs from our embryonic (e12) RNA-Seq dataset continue to be 
expressed at postnatal stages (Figure 1D). We initially focused on 14 TFs from various families (e.g. 

red dots represent individual genes that are significantly (p<0.05) expressed (fourfold and/or higher) in embryonic and postnatal MNs, respectively. 
(C) Graphs showing fold enrichment for genes involved in specific biological processes. (D) Gene onthology analysis comparing protein class categories 
of highly expressed genes in embryonic (e12.5) and postnatal (p8) MNs. Green and red bars represent embryonic and postnatal genes, respectively.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Testing the specificity of genetic labeling of brachial motor neurons (MNs) at p8.

Figure supplement 2. RNA ISH analysis of terminal differentiation markers in Hoxc8 MNΔ early mice.

Figure 1 continued

Table 1. Summary of candidate and unbiased approaches to reveal Hoxc8 target genes in mouse brachial MNs.

Gene name Expression in WT brachial MNs Hoxc8 dependency

 �   �  e12 p8 p56 Allen Brain ISH
p60
snRNA-Seq dataset Hoxc8 MNΔ early mice Hoxc8 MNΔ late mice

Candidate approach

Slc10a4 + + + + No N.D

Nrg1 + + + + Yes Yes

Nyap2 + + N.D + No N.D

Sncg + + + + No N.D

Ngfr + + + – No N.D

Glra2 + + + + No Yes

Cldn1 N.D – N.D – N.D N.D

Cacna1g N.D – + + N.D N.D

RNA-Seq approach

Slc44a5 + + + + No N.D

Mcam + + + + Yes Yes

Pappa + + + + Yes Yes

Sema5a + + N.D + Yes N.D

Pex14 + + N.D + No N.D

Tagln2 + + + – No N.D

Cldn19 N.D – – – N.D N.D

Wwc2 N.D – + + N.D N.D

Septin1 N.D – N.D N.D N.D N.D

Irx2 + + + – N.D N.D

Irx5 + + + – N.D N.D

Irx6 + + + – N.D N.D

Known Hoxc8 targets

Ret + + N.D + Yes No

Gfra3 + – – – Yes N.D

Expression in p56 brachial MNs was determined using the Allen Brain Map (http://portal.brain-map.org). We also interrogated the single nucleus (sn) 
RNA-seq datasets of p60 spinal MNs from http://spinalcordatlas.org/.
N.D: Not determined; + denotes expression; – denotes no expression.
RNA-Seq: RNA-sequencing.

https://doi.org/10.7554/eLife.70766
http://portal.brain-map.org
http://spinalcordatlas.org/
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LIM, Hox) with previously known embryonic expression and function in brachial MNs (Ebf2, Islet1, 
Islet2, Hb9, Foxp1, Lhx3, Runx1, Hoxc4, Hoxa5, Hoxc5, Hoxa6, Hoxc6, Hoxa7, Hoxc8) (Arber et al., 
1999; Catela et al., 2019; Catela et al., 2016; Dasen et al., 2008; Ericson et al., 1992; Philippidou 
and Dasen, 2013; Sharma et al., 1998; Stifani et al., 2008; Thaler et al., 1999; Thaler et al., 2004; 
Thaler et  al., 2002; Tsuchida et  al., 1994). Through RNA ISH or antibody staining, we detected 
robust expression in brachial MNs at e12 for all 14 factors. Notably, 13 of these TFs continue to be 
expressed albeit at lower levels - in brachial MNs at p8 (Figure 2A, Table 2), suggesting these proteins 
- in addition to their known roles during early MN development - may exert other functions at later 
developmental and/or postnatal stages. Seven of these 13 proteins are TFs of the Hox family (Hoxc4, 
Hoxa5, Hoxc5, Hoxa6, Hoxc6, Hoxa7, Hoxc8) known to be expressed in brachial MNs at embryonic 
stages (Philippidou and Dasen, 2013), confirming the regional specificity of our RNA-Seq approach 
(Figure 2A). Moreover, our strategy is sensitive as it captured TFs with known expression in small 
populations of brachial MNs (e.g. MMC neurons), such as Ebf2 and Lhx3 (Figure 2A; Catela et al., 
2019; Sharma et al., 1998).
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Figure 2. Known and novel transcription factors (TFs) are continuously expressed in brachial motor neurons (MNs) during embryonic and postnatal 
stages. (A) The expression of TFs with previously published roles in MN development was assessed in embryonic (e12.5) and postnatal (p8) spinal cords 
(N = 4) with RNA ISH (Ebf2, Runx1, Hoxc4, Hoxa5, Hoxc5, Hoxa6, Hoxc6, Hoxa7, Hoxc8) and immunohistochemistry (Islet1/2, Mnx1 [Hb9], Lhx3, Foxp1). 
Zoomed area of one side of the ventral spinal cord is shown below each image. (B) The expression of novel TFs was assessed in embryonic (e12.5) and 
postnatal (p8) spinal cords with RNA ISH (N = 4). Scale bar for e12.5 images: 50 μm; scale bar for p8 images: 250 μm.
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Table 2. Validation of transcription factor expression in brachial MNs.

TF Type Novel TF with MN expression e12 MNs p8 MNs
p56 MNs
ISH Allen Brain

p60
snRNA-Seq dataset Expression in other spinal cells at e12

Ebf2 Ebf/COE No + – – – +

Islet1 LIM HD No + + + N.D +

Islet2 LIM HD No + + + N.D +

Hb9 HD No + + + N.D +

Foxp1 FOX No + + – + –

Lhx3 LIM HD No + + N.D – +

Runx1 RUNX No + + + – –

Hoxc4 HOX No + + + + +

Hoxa5 HOX No + + N.D – +

Hoxc5 HOX No + + + + +

Hoxa6 HOX No + + – – +

Hoxc6 HOX No + + N.D – +

Hoxa7 HOX No + + + – +

Hoxc8 HOX No + + N.D – +

Irx1 IRO HD Yes + + + – +

Irx2 IRO HD Yes + + + – +

Irx3 IRO HD Yes + + + – –

Irx5 IRO HD Yes + + + – –

Irx6 IRO HD Yes + + + – –

Creb5 CRE Yes + + + + –

Esrrg NHR Yes + + – + +

Fos FOS Yes + + + – +

Arid5a ARID Yes + + – – +

Irf1 IRF Yes + + – – +

Irf8 IRF Yes + + – – +

Klf6 KLF Yes + + – + –

Tshz1 C2H2 Zn Yes + + + + +

Zfp296 ZFP Yes + + + – +

Neurod6 bHLH N.A – – N.D – Dorsal interneurons

Arid5b ARID N.A – – N.D + Dorsal interneurons

Pou3f3 POU N.A – – N.D + Dorsal interneurons

Mafb bZIP N.A – – N.D N.D Ventral interneurons

Zfhx4 Zn HD N.A – – N.D + Ventral interneurons

Elk3 ETS N.A – – N.D + Vasculature

Epas1 HIF N.A – – N.D – Vasculature

Heyl bHLH N.A – – N.D – Vasculature

Expression in p60 brachial MNs was determined using the Allen Brain Map (http://portal.brain-map.org). We also interrogated the single nucleus (sn) RNA-seq datasets of p60 spinal 
MNs from http://spinalcordatlas.org/. + denotes expression; – denotes no expression; N. D: Not determined; N. A: Not applicable.

RNA-Seq: RNA-sequencing.

https://doi.org/10.7554/eLife.70766
http://portal.brain-map.org
http://spinalcordatlas.org/
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We next sought to identify novel TFs with maintained expression in brachial MNs. We arbitrarily 
selected 22 genes from different TF families (15 TFs from the e12 dataset [Irx1, Irx2, Irx3, Irx5, Irx6, 
Creb5, Esrrg, Neurod6, Arid5b, Pou3f3, MafB, Zfhx4, Elk3, Epas1, Heyl] and 7 TFs from the p8 dataset 
[Fos, Arid5a, Irf1, Irf8, Klf6, Tshz1, Zfp296]). We detected persistent expression for 14 of these TFs 
in the embryonic (e12) and early postnatal (p8) brachial spinal cord. Expression was evident at the 
ventrolateral region, which is populated by MNs (Figure 2B, Table 2).

In conclusion, the expression of 13 TFs, with known roles in early MN development (e.g. cell spec-
ification, motor circuit assembly), is persistent at early postnatal stages (p8). Moreover, we identified 
14 novel TFs from different families with expression in embryonic and postnatal (p8) brachial MNs 
(Figure 2B, Table 2). The continuous expression of all these factors suggests they may exert various 
functions in postmitotic MNs at different life stages. Consistent with this notion, some of these TFs are 
also expressed at later postnatal (p56, p60) stages in brachial MNs (Table 2).

Hoxc8 controls expression of several terminal differentiation genes in 
e12 brachial MNs
In mice, Hox genes play critical roles during the early steps of spinal cord development, such as 
MN specification and circuit assembly (Dasen et al., 2008; Dasen et al., 2003; Dasen et al., 2005; 
Philippidou and Dasen, 2013). We found that several Hox genes (Hoxc4, Hoxa5, Hoxc5, Hoxa6, 
Hoxc6, Hoxa7, Hoxc8) are continuously expressed - from embryonic to postnatal stages - in brachial 
MNs (Figure 2A), but their function during later stages of MN development is largely unknown. This 
pattern of continuous Hox gene expression is reminiscent of recent observations in C. elegans nerve 
cord MNs (Feng et al., 2020; Kratsios et al., 2017). Importantly, C. elegans Hox genes are required 
not only to establish but also maintain at later stages the expression of multiple terminal differenti-
ation genes (e.g. NT receptors, ion channels, signaling molecules) in nerve cord MNs (Feng et al., 
2020).

Motivated by these findings in C. elegans, we sought to test the hypothesis that, in mice, Hox 
proteins control expression of terminal differentiation genes in spinal MNs. We focused on Hoxc8 
because it is expressed in the majority of brachial MNs (segments C6-T2) (Figure 2A; Catela et al., 
2016). Hoxc8 is not required for the overall organization of brachial MNs into columns, but - during 
early development (e12) - it controls forelimb muscle innervation by regulating Gfrα3 and Ret expres-
sion in brachial MNs (Catela et al., 2016). However, whether Hoxc8 is involved in additional processes, 
such as the control of MN terminal differentiation, remains unclear.

To test this, we removed Hoxc8 gene activity in brachial MNs. Because Hoxc8 is also expressed 
in other spinal neurons (Baek et al., 2019; Shin et al., 2020; Figure 2A), we crossed Hoxc8 fl/fl mice 
to Olig2Cre mice that enable Cre recombinase expression specifically in MN progenitors (Figure 3A; 
Zawadzka et al., 2010). This genetic strategy effectively removed Hoxc8 protein from postmitotic 
brachial MNs by e12 (Figure 3B). Because e12 is an early stage of MN differentiation (postmitotic MNs 
are generated between e9 and e11) (Sims and Vaughn, 1979), we will refer to the Olig2Cre::Hoxc8 fl/fl 
mice as Hoxc8 MNΔearly. Of note, the total number of brachial MNs (Mnx1+[HB9+] Isl1/2+) is unaffected 
in these animals at e12 (Figure 3C).

To test whether Hoxc8 controls expression of terminal differentiation genes, we initially followed 
a candidate approach. At e12, spinal MNs begin to acquire their terminal differentiation features, 
evident by the induction of genes coding for acetylcholine (ACh) biosynthesis proteins (Slc18a3 
[VAChT], Slc5a7[ChT1]) (Martinez et  al., 2012). Consistently, Slc18a3 and Slc5a7 transcripts were 
captured in our e12 RNA-Seq dataset (Figure  1D). However, Slc18a3 and Slc5a7 expression was 
not affected in brachial MNs of Hoxc8 MNΔ early mice (Figure 1—figure supplement 2). Next, we 
tested the six newly identified terminal differentiation markers (Slc10a4, Nrg1, Nyap2, Sncg, Ngfr, 
Glra2) summarized in Table 1. We found that expression of Neuregulin 1 (Nrg1), a molecule required 
for neuromuscular synapse maintenance and neurotransmission (Mei and Xiong, 2008; Wolpowitz 
et al., 2000), is reduced (but not eliminated) in e12 brachial MNs of Hoxc8 MNΔ early mice (Figure 3F), 
likely due to the existence of additional factors that partially compensate for loss of Hoxc8 gene 
activity. However, expression of the remaining five genes was unaffected in these animals (Figure 1—
figure supplement 2), prompting us to devise an unbiased strategy to identify Hoxc8 targets.

We performed RNA-Seq on FACS-sorted brachial MNs from Hoxc8 MNΔ early::Mnx1-GFP and control 
mice at e12 (see Materials and methods). We found dozens of significantly (p<0.05) upregulated (55) 

https://doi.org/10.7554/eLife.70766
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Figure 3. Early Hoxc8 gene inactivation in brachial motor neurons (MNs) affects the expression of terminal differentiation genes. (A) Diagram illustrating 
genetic approach for Hoxc8 gene inactivation during early MN development (Hoxc8 MNΔ early mice). (B) Immunohistochemistry showing that Hoxc8 
protein (green) is not detected in Foxp1+ MNs (red, indicated with dashed ellipse) of Hoxc8 MNΔearly spinal cords at e12.5. Images of one side of the 
spinal cord are shown (boxed region in schematic at left). Scale bar: 50 μm. (C) Quantification of Mnx1+(Hb9+) Isl1/2+ MNs in e12.5 brachial spinal 

Figure 3 continued on next page
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and downregulated (84) transcripts in MNs lacking Hoxc8 (Figure 3D). To test the hypothesis of Hoxc8 
being necessary to activate expression of MN terminal differentiation genes, we specifically focused 
on the list of 84 downregulated transcripts, which included two known Hoxc8 target genes (Ret, 
Gfrα3) (Catela et al., 2016) and Hoxc8 itself (Supplementary file 3). GO analysis (see Materials and 
methods) on these 84 transcripts identified several putative Hoxc8 target genes encoding proteins 
from various classes (Figure 3E, Supplementary file 3). We focused on ion channels, transmembrane 
proteins, cell adhesion, and signaling molecules, as these constitute putative terminal differentiation 
markers (Hobert, 2008; Hobert, 2011). We selected nine genes (Slc44a5, Mcam, Pappa, Sema5a, 
Pex14, Tagln2, Cldn19, Wwc2, Septin1) and evaluated their expression with RNA ISH in brachial 
MNs at different stages. Five of these genes (Slc44a5, Mcam, Pappa, Pex14, Tagln2) are continuously 
expressed in brachial MNs at embryonic and postnatal stages (Table 1, Figure 1—figure supplement 
2). Importantly, RNA ISH showed that expression of Mcam, a transmembrane cell adhesion molecule 
of the Immunoglobulin superfamily (Gu et al., 2015; Taira et al., 2004), and Pappa, a secreted mole-
cule involved in skeletal muscle development (Rehage et al., 2007), is reduced at e12 in brachial MNs 
of Hoxc8 MNΔ early mice (Figure 3F–G, Figure 1—figure supplement 2). Similar results for Mcam 
and Pappa were obtained with an RNA FISH method (Figure 3—figure supplement 1). In addition, 
we observed that Sema5a is expressed in embryonic (e12) but not postnatal brachial MNs, and this 
embryonic expression depends on Hoxc8 (Table 1, Figure 3F–G). Because Sema5a encodes a trans-
membrane protein of the Semaphorin protein family involved in axon guidance (Duan et al., 2014; 
Hilario et al., 2009; Lin et al., 2009), its dependency on Hoxc8 could, at least partially, account for 
the previously reported MN axonal defects of Hoxc8 MNΔ early mice (Catela et al., 2016).

Altogether, this analysis identified 11 terminal differentiation genes with continuous expression 
in brachial MNs (Slc10a4, Nrg1, Nyap2, Sncg, Ngfr, Glra2, Slc44a5, Mcam, Pappa, Pex14, Tagln2), 
3 of which (Nrg1, Mcam, Pappa) constitute Hoxc8 targets (Table 1). Although additional, yet-to-be 
identified TFs (potential Hoxc8 collaborators) must regulate the remaining eight genes, our findings 
do suggest Hoxc8 is involved in MN terminal differentiation. This new role for Hox in vertebrate MN 
development is consistent with recent studies in the C. elegans nerve cord, where Hox genes also 
control MN terminal differentiation (Feng et al., 2020; Kratsios et al., 2017).

Hoxc8 is required to maintain expression of terminal differentiation 
genes in brachial MNs
Our analysis of Hoxc8 MNΔ early mice at e12 suggests Hoxc8 controls the early expression of select 
terminal differentiation genes (Nrg1, Mcam, Pappa) in brachial MNs. However, the persistent expres-
sion of Hoxc8 both in embryonic and early postnatal MNs raises the intriguing possibility of a contin-
uous requirement (Figures  2A–4B, Figure  4—figure supplement 1). Is Hoxc8 required at later 
stages to maintain expression of terminal differentiation genes and thereby ensure the functionality 
of brachial MNs?

To address this, we crossed the Hoxc8fl/fl mice with the ChatIRESCre mouse line, which enables effi-
cient gene inactivation in postmitotic MNs around e13.5–e14.5 (Philippidou et al., 2012; Figure 4A). 
Given that postmitotic MNs are generated between e9.5 and e11.5 (Sims and Vaughn, 1979), this 
genetic strategy preserves Hoxc8 expression in MNs at least for 2 days after their generation. Consis-
tent with a previous study that used this ChatIRESCre line (Philippidou et al., 2012), we observed Hoxc8 
protein depletion in brachial MNs at e14.5 and later stages (Figure 4B, Figure 4—figure supplement 
1). We will therefore refer to the ChatIRESCre::Hoxc8fl/fl animals as Hoxc8 MNΔ late because Hoxc8 deple-
tion in MNs occurs later compared to Hoxc8 MNΔ early mice (Figure 4A). Interestingly, expression of 

cords of Hoxc8 MNΔearly and control (Hoxc8fl/fl) embryos (N = 4). (D) Heatmap showing upregulated and downregulated genes detected by RNA-Seq in 
control (Hoxc8 fl/fl) and Hoxc8 MNΔearly e12.5 MNs. Green and red colors, respectively, represent lower and higher gene expression levels. (E) Graphical 
percentage (%) representation of protein classes of the downregulated genes in Hoxc8 MNΔearly spinal cords. (F) RNA ISH showing downregulation of 
Nrg1, Mcam, Pappa, and Sema5a mRNAs in brachial MNs of e12.5 Hoxc8 MNΔearly spinal cords (N = 4). Spinal cord is outlined with a white dotted line. 
Scale bar: 50 μm. (G) RNA FISH for Sema5a coupled with antibody staining against Foxp1 (LMC marker) shows reduced Sema5a mRNA expression in 
Foxp1 +MNs of e12.5 Hoxc8 MNΔearly spinal cords (N = 4). Images of a cross-section of the entire e12.5 spinal cord are shown. Scale bar: 40 μm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. RNA FISH analysis of terminal differentiation markers in Hoxc8 MNΔ early mice.

Figure 3 continued
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Figure 4. Late Hoxc8 gene inactivation in brachial motor neurons (MNs) affects expression of terminal differentiation genes. (A) Diagram illustrating 
genetic approach for Hoxc8 gene inactivation during late MN development. Hoxc8 conditional mice were crossed with the ChatIRESCre mouse line (Hoxc8 
MNΔlate). (B) Immunohistochemistry showing that Hoxc8 protein (green) is not detected in ChAT-exprressing MNs (red) of Hoxc8 MNΔ late spinal cords at 
e14.5 (N = 4). MN location is indicated with white dashed line. Hoxc8 is also expressed in other cell types outside the MN territory. Images of one side of 
the spinal cord are shown (boxed region in schematic at left). Scale bar: 100 μm. (C) RNA ISH showing reduced expression of Pappa, Mcam, Glra2, and 

Figure 4 continued on next page
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the same terminal differentiation genes (Nrg1, Mcam, Pappa) we found affected in Hoxc8 MNΔ early 
mice is also reduced in brachial MNs of Hoxc8 MNΔ late mice at p8 (Figure 4C). This reduction is not 
due to secondary events affecting MN generation or survival because similar numbers of brachial MNs 
were observed in control and Hoxc8 MNΔ late spinal cords at p8 (Figure 4E). Taken together, our find-
ings on Hoxc8 MNΔ early and Hoxc8 MNΔ late mice strongly suggest a continuous requirement - Hoxc8 
is required to establish and maintain at later developmental stages the expression of several terminal 
differentiation genes in brachial MNs (Figure 4F).

In brachial MNs, Hoxc8 partially modifies the suite of its target genes 
across different life stages
In the context of C. elegans MNs, our previous work revealed ‘temporal modularity’ in TF function (Li 
et al., 2020). That is, the suite of target genes of a continuously expressed TF, in the same cell type 
(e.g. MNs), is partially modified across different life stages. Here, we provide evidence for temporal 
modularity in Hoxc8 function. We found that the terminal differentiation gene coding for the glycine 
receptor subunit alpha-2 (Glra2) (Young-Pearse et al., 2006) is affected in brachial MNs of Hoxc8 MNΔ 
late mice at p8 (Figure 4C). No effect was observed in MNs of Hoxc8 MNΔ early mice at e12 (Figure 1—
figure supplement 2), indicating a selective Hoxc8 requirement for maintenance of Glra2. Conversely, 
the expression of Ret, a known Hoxc8 target gene involved in MN axon guidance (Bonanomi et al., 
2012), is selectively reduced in brachial MNs of Hoxc8 MNΔ early animals at e12 (Catela et al., 2016), 
but remains unaffected in Hoxc8 MNΔ late animals at p8 (Figure 4D), suggesting Hoxc8 is only required 
for early Ret expression. Lastly, Hoxc8 can only activate expression of Sema5a (member of Sema-
phorin family) at embryonic stages (Figure 3F–G, Table 1). Contrary to these stage-specific Hoxc8 
dependencies (Hoxc8 controls Ret and Sema5a at e12 and Glra2 at p8), we also found that Hoxc8 
is continuously required (both at e12 and p8) for expression of several terminal differentiation genes 
(Nrg1, Mcam, Pappa) (Figures 3F and 4C).

Altogether, these findings suggest that, in brachial MNs, Hoxc8 modifies the suite of its target 
genes at different developmental stages (Figure 4F). In Discussion, we elaborate on the functional 
significance of this phenomenon (temporal modularity).

Hoxc8 is sufficient to induce its target genes and acts directly
To gain mechanistic insights, we analyzed recently published RNA-Seq and chromatin 
immunoprecipitation-sequencing (ChIP-seq) datasets on MNs derived from mouse embryonic stem 
cells (ESC), in which Hoxc8 expression was induced with doxycycline (Bulajić et al., 2020). Our RNA-
Seq analysis showed that induction of Hoxc8 (iHox8) resulted in upregulation of previously known 
(Ret, Pou3f1 [Scip]) and new (Pappa, Glra2, Sema5a) Hoxc8 target genes (Figure  5A). Moreover, 
ChIP-Seq for Hoxc8 in the context of these iHoxc8 ESC-derived MNs revealed binding in the cis-
regulatory region of all these genes (Figure  5B), suggesting Hoxc8 acts directly to activate their 
expression. This in vitro data together with the in vivo findings in Hoxc8 MNΔ early and Hoxc8 MNΔ late 
mice (Figure 3F–G, Figure 3—figure supplement 1, Figure 4C) suggest that Hoxc8 is both necessary 
and sufficient for the expression of several of its target genes in spinal MNs.

Importantly, not all Hoxc8 target genes (e.g. Nrg1, Mcam) we identified in vivo are upregulated 
in iHoxc8 ESC-derived MNs (Figure 5—figure supplement 1). This is likely due to the lack of Hoxc8 
collaborating factors in these in vitro generated MNs. A putative collaborator is Hoxc6 because (a) 
Hoxc6 and Hoxc8 are coexpressed in embryonic brachial MNs (Catela et al., 2016), (b) animals lacking 
either Hoxc6 or Hoxc8 in brachial MNs display similar axon guidance defects (Catela et al., 2016), and 
(c) Hoxc6 and Hoxc8 control the expression of the same axon guidance molecule (Ret) in brachial MNs 

Nrg1 in Hoxc8 MNΔlate spinal cords at p8 (N = 4). Scale bar: 200 μm. (D) Ret expression is comparable between control and Hoxc8 MNΔlate spinal cords 
at p8 (N = 4). Scale bar: 200 μm. (E) Representative images and quantification of TdTomato-labeled MNs in p8 control (Hoxc8fl/fl::Ai9) and Hoxc8 MNΔ 
late (Hoxc8fl/fl::ChatIRESCre::Ai9) spinal cords (N = 4). Scale bar: 200 μm. (F) Schematic summarizing Hoxc8 target genes in brachial MNs. Asterisks indicate 
previously known Hoxc8 target genes.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Depletion of Hoxc8 in brachial motor neurons (MNs) of Hoxc8 MNΔ late mice.

Figure 4 continued
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Figure 5. Hoxc8 sufficiency and direct mode of action. (A) Analysis of RNA-sequencing (RNA-Seq) data from control and iHoxc8 motor neurons 
(MNs) shows Hoxc8 is sufficient to induce the expression of previously known (Ret, Pou3f1[Scip]) and new (Pappa, Glra2, Sema5a) Hoxc8 target genes. 
GEO accession numbers: Control (GSM4226469, GSM4226470, GSM4226471) and iHoxc8 (GSM4226475, GSM4226476, GSM4226477). (B) Analysis of 
chromatin immunoprecipitation-sequencing (ChIP-Seq) data from iHoxc8 MNs shows Hoxc8 directly binds to the cis-regulatory region of its target 

Figure 5 continued on next page
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(Catela et al., 2016). Supporting the notion of collaboration, our analysis of available ChIP-seq data 
for Hoxc6 and Hoxc8 from iHoxc6 and iHoxc8 ESC-derived MNs (Bulajić et al., 2020), respectively, 
showed that these Hox proteins bind directly on the cis-regulatory region of previously known (Ret, 
Gfra3) and new (Mcam, Pappa, Nrg1, Sema5a) Hoxc8 target genes (Figure 5—figure supplement 1).

Hoxc8 gene activity is necessary for brachial motor neuron function
We next sought to assess any potential behavioral defects in adult Hoxc8 MNΔ early and Hoxc8 MNΔ 
late animals by evaluating their motor coordination (Deacon, 2013), forelimb grip strength (Takeshita 
et al., 2017), and treadmill performance (Wozniak et al., 2019). No defects were observed in Hoxc8 
MNΔ early and Hoxc8 MNΔ late mice during the rotarod performance test (Figure 6—figure supplement 
1), suggesting balance and motor coordination are normal in these animals. Next, we evaluated fore-
limb grip strength because brachial MNs innervate forelimb muscles. We found a statistically signif-
icant defect in Hoxc8 MNΔearly mice, but not in Hoxc8 MNΔlate mice (Figure 6A–B). Lastly, we tested 
these animals for their ability to run on a treadmill for a period of 30 s. At a low speed (15 cm/s), we 
observed statistically significant defects in Hoxc8 MNΔearly mice. That is, 64.28% of Hoxc8 MNΔearly 
mice fell off the treadmill in the first 5 s of the trial compared to 28.57% of control mice (p=0.0108) 
(Figure 6C, Figure 6—videos 1; 2). Moreover, 0% of Hoxc8 MNΔearly mice were able to stay longer 
than 20 s on the treadmill compared to 42.85% of control mice (Figure 6C). On the other hand, statis-
tically significant defects were observed in Hoxc8 MNΔlate mice only when the treadmill speed was 
increased to 25 cm/s (Figure 6C–D). That is, 43.33% of Hoxc8 MNΔ late mice fell off the treadmill in 
the first 5 s of the trial compared to 17.39% of control mice (p=0.0461) (Figure 6D, Figure 6—videos 
3; 4). Together, these data show that Hoxc8 MNΔlate mice display a milder behavioral phenotype 
compared to Hoxc8 MNΔearly mice. This is likely due to the fact that Hoxc8 MNΔearly mice display a 
composite phenotype i.e. defects in early MN specification and axon guidance (Catela et al., 2016) 
combined with terminal differentiation defects (this study), whereas the Hoxc8 MNΔlate mice only 
display terminal differentiation defects (this study). Although we cannot exclude the possibility that 
the terminal differentiation defects of Hoxc8 MNΔearly mice are a consequence of their early MN spec-
ification defects, this is unlikely as Hoxc8 binds directly to the cis-regulatory region of terminal differ-
entiation genes (Mcam, Pappa, Glra2) (Figure 5B).

Hox gene expression is maintained in thoracic and lumbar MNs at 
postnatal stages
In brachial MNs, we found that the expression of multiple Hox genes (Hoxc4, Hoxa5, Hoxc5, Hoxa6, 
Hoxc6, Hoxa7, Hoxc8) is maintained from embryonic to early postnatal stages (Figure  2A). We 
wondered whether sustained Hox gene expression in MNs is a broadly applicable theme to other 
rostrocaudal domains of the spinal cord. We therefore performed RNA-Seq on thoracic and lumbar 
FACS-isolated MNs from ChATIRESCre::Ai9 mice at p8 (see Materials and methods) (Figure 6—figure 
supplement 2). Our analysis indeed revealed that, similar to our observations in the brachial domain, 
additional Hox genes are expressed postnatally (p8) in thoracic (Hoxd9) and lumbar (Hoxa10, Hoxc10, 
Hoxa11) MNs (Figure 6—figure supplement 2A-C). We further confirmed these findings with RNA 
ISH (Figure 6—figure supplement 2D). While the functions of some of these Hox genes are known 
during the early steps of MN development (Philippidou and Dasen, 2013), their continuous expres-
sion suggests additional roles at later embryonic and postnatal stages. Genetic inactivation of these 
genes at successive developmental stages will determine whether they function in a manner similar 
to Hoxc8, suggesting a more general Hox-based strategy for the control of spinal MN terminal 
differentiation.

genes (Ret, Mcam, Pappa, Glra2, Sema5a). GEO accession numbers: Input (GSM4226461) and iHoxc8 replicates (GSM4226436, GSM4226437). Snapshots 
of each gene locus were generated with Integrative Genomics Viewer (IGV, Broad Institute).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Hoxc6 and Hoxc8 bind to the same cis-regulatory regions of Hoxc8 target genes.

Figure 5 continued
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Figure 6. Brachial motor neuron (MN) function is impaired upon Hoxc8 depletion. (A) Forelimb grip strength analysis on control (Hoxc8 fl/fl, N = 7) and 
Hoxc8 MNΔ early (N = 8) adult mice. See Methods for details. (B) Forelimb grip strength analysis on control (Hoxc8 fl/fl, N = 7) and Hoxc8 MNΔ late (N = 8) 
adult mice. (C). Treadmill analysis (at 15 cm/s speed) on control (Hoxc8 fl/fl, N = 7) and Hoxc8 MNΔ early (N = 8) adult mice, as well as on control (Hoxc8 fl/

fl, N = 8) and Hoxc8 MNΔ late (N = 10) adult mice. See Methods for details. Asterisk (*) indicates p=0.0108. Experiment repeated twice. (D). Treadmill 

Figure 6 continued on next page
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Discussion
Somatic MNs in the spinal cord innervate hundreds of skeletal muscles and control a variety of motor 
behaviors, such as locomotion, skilled movement, and postural control. Although we are begin-
ning to understand the molecular programs that control the early steps of spinal MN development 
(Osseward and Pfaff, 2019, Philippidou and Dasen, 2013; Stifani, 2014), how these clinically rele-
vant cells acquire and maintain their terminal differentiation features (e.g. NT phenotype, electrical, 
and signaling properties) remains poorly understood. In this study, we focused on the brachial region 
of the mouse spinal cord and determined the molecular profile of postmitotic MNs at a develop-
mental and a postnatal stage. This longitudinal approach identified genes with continuous expression 
in brachial MNs, encoding novel TFs and effector molecules critical for neuronal terminal differen-
tiation (e.g. ion channels, NT receptors, signaling proteins, adhesion molecules). Interestingly, we 
also found that most TFs, previously implicated in the early steps of brachial MN development (e.g. 
initial specification, axon guidance, circuit assembly), such as LIM- and Hox-type TFs (di Sanguinetto 
et al., 2008, Philippidou and Dasen, 2013; Stifani, 2014), continue to be expressed in these cells 
postnatally (p8). Such maintained expression suggested additional roles for these factors during later 
developmental stages. To test this idea, we focused on Hoxc8, identified its target genes, and uncov-
ered a continuous requirement for Hoxc8 in the establishment and maintenance of select MN terminal 
differentiation features. Our findings dovetail recent Hox studies in the C. elegans nervous system 
(Feng et al., 2020; Kratsios et al., 2017; Zheng et al., 2015) and suggest an evolutionarily conserved 
role for Hox proteins in the control of neuronal terminal differentiation.

Hoxc8 partially modifies the suite of its target genes to control 
multiple aspects of brachial MN development
Despite their fundamental roles in patterning the vertebrate hindbrain and spinal cord (Krumlauf, 
2016; Parker and Krumlauf, 2017; Philippidou and Dasen, 2013), the downstream targets of Hox 
proteins in the nervous system remain poorly defined. In this study, we uncovered several Hoxc8 target 
genes encoding different classes of proteins (Sema5a - axon guidance molecule; Glra2, Nrg1, Mcam, 
Pappa - terminal differentiation genes) (Figures  3E and 4F), suggesting Hoxc8 controls different 
aspects of brachial MN development through the regulation of these genes.

In mice, Hoxc8 is expressed in MNs of the MMC and LMC columns between segments C6 and T1 of 
the spinal cord (Catela et al., 2016; Tiret et al., 1998), herein referred to as ‘brachial MNs’. Previous 
studies using either global Hoxc8 knock-out or Hoxc8 MNΔ early mice reported aberrant connectivity 
of forelimb muscles (Catela et al., 2016; Tiret et al., 1998). It was proposed that this early develop-
mental phenotype likely arises due to reduced expression of axon guidance molecules, such as Ret 
and Gfrα3, in brachial MNs of Hoxc8 MNΔ early mice (Catela et al., 2016). Another early developmental 
defect previously observed in Hoxc8 MNΔ early mice is the reduced expression of MN pool-specific 
markers (Pou3f1 [Scip], Etv4 [Pea3]) within the LMC (Figure 4F), albeit the overall organization of 

analysis (at 25 cm/s speed) on control (Hoxc8 fl/fl, N = 8) and Hoxc8 MNΔ late (N = 10) adult mice. Treadmill speed at 25 cm/s. Asterisk (*) indicates 
p=0.0461. Experiment repeated three times. The 30-s long videos were analyzed and data were binned into four categories based on the duration of 
each mouse’s stay on the treadmill (category 1 [black]: <5 s; category 2 [blue]: 5–10 s; category 3 [gray]: 10–15 s; category 4 [red]: >20 s).

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. Rotarod performance test on Hoxc8 MNΔ early and Hoxc8 MNΔ late mice.

Figure supplement 2. Different Hox genes are expressed in brachial, thoracic, and lumbar motor neurons (MNs) at postnatal day 8.

Figure 6—video 1. Treadmill test on control (Hoxc8 fl/fl) littermate of Hoxc8 MNΔ early mice.

https://elifesciences.org/articles/70766/figures#fig6video1

Figure 6—video 2. Treadmill test on a Hoxc8 MNΔ early mouse.

https://elifesciences.org/articles/70766/figures#fig6video2

Figure 6—video 3. Treadmill test on control (Hoxc8 fl/fl) littermate of Hoxc8 MNΔ late mice.

https://elifesciences.org/articles/70766/figures#fig6video3

Figure 6—video 4. Treadmill test on a Hoxc8 MNΔ late mouse.

https://elifesciences.org/articles/70766/figures#fig6video4

Figure 6 continued
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brachial MNs into MMC and LMC columns appears normal (Catela et  al., 2016). Although these 
findings implicate Hoxc8 in the early steps of brachial MN development, it remained unclear whether 
Hoxc8 controls additional aspects of MN development during later stages.

In this study, we propose that Hoxc8 controls select features of brachial MN terminal differentia-
tion, such as the expression of the glycine receptor subunit Glra2, the cell adhesion molecule Mcam, 
the secreted signaling protein Pappa, and a molecule associated with neurotransmission and neuro-
muscular synapse maintenance (Nrg1). We found that all these molecules are expressed continuously 
in embryonic and postnatal (p8) brachial MNs. By removing Hoxc8 gene activity either at an early 
(Hoxc8 MNΔ early mice) or late (Hoxc8 MNΔ late mice) developmental stage, we uncovered a continuous 
Hoxc8 requirement for the initial expression and maintenance of Mcam, Pappa, and Nrg1. Intrigu-
ingly, we also found evidence for temporal modularity in Hoxc8 function, that is, the suite of Hoxc8 
targets in brachial MNs is partially modified at different developmental stages. Two lines of evidence 
support this notion: (a) expression of the terminal differentiation gene Glra2 is only affected in Hoxc8 
MNΔ late mice, indicating a selective Hoxc8 requirement for Glra2 maintenance in MNs, and (b) expres-
sion of two axon guidance molecule (Sema5a, Ret) is only affected in MNs of Hoxc8 MNΔ early mice.

What is the purpose of such temporal modularity? We propose that Hoxc8 partially modifies the 
suite of its target genes at different life stages to control different facets of brachial MN develop-
ment, such as early MN specification, axon guidance, and terminal differentiation (Figure 4F). During 
early development, Hoxc8 controls early specification markers (Etv4 [Pea3], Pou3f1[Scip]), as well as 
axon guidance molecules, such as Ret (Bonanomi et  al., 2012; Catela et  al., 2016) and Sema5a 
(this study) in order to ensure proper MN-muscle connectivity. Consistent with this idea, similar axon 
guidance defects occur in Hoxc8 and Ret mutant mice (Catela et al., 2016). During late develop-
ment, Hoxc8 maintains the expression of the glycine receptor subunit Glra2, a terminal differentia-
tion marker necessary for glycinergic input to brachial MNs (Young-Pearse et al., 2006). Apart from 
Hoxc8, temporal modularity has been recently described for two other TFs: UNC-3 in C. elegans MNs 
and Pet-1 in mouse serotonergic neurons (Li et al., 2020; Wyler et al., 2016). Like Hoxc8, UNC-3 
and Pet-1 control various aspects of C. elegans motor and mouse serotonergic neurons (e.g. axon 
guidance, terminal differentiation) (Donovan et al., 2019; Kratsios et al., 2011, Liu et al., 2010; 
Prasad et al., 1998). Although the mechanistic basis of such modularity remains poorly understood, 
a possible scenario is the employment of transient enhancers – a mechanism recently proposed for 
maintenance of gene expression in in vitro differentiated spinal MNs (Rhee et al., 2016). We surmise 
that temporal modularity in TF function may be a broadly applicable mechanism enabling a single TF 
to control different, temporally segregated ‘tasks/processes’ within the same neuron type.

A new role for Hox in the mouse nervous system: establishment and 
maintenance of neuronal terminal differentiation
Much of our current understanding of Hox protein function in the nervous system stems from studies 
in the vertebrate hindbrain and spinal cord, as well as the Drosophila ventral nerve cord (Baek et al., 
2013; Baek et al., 2019; Estacio-Gómez and Díaz-Benjumea, 2014; Estacio-Gómez et al., 2013; 
Karlsson et al., 2010; Mendelsohn et al., 2017; Miguel-Aliaga and Thor, 2004; Moris-Sanz et al., 
2015; Parker and Krumlauf, 2017; Philippidou and Dasen, 2013). This large body of work has 
established Hox proteins as critical regulators of the early steps of neuronal development including 
cell specification, migration, survival, axonal path finding, and circuit assembly. However, the functions 
of Hox proteins in later steps of nervous system development remain poorly understood. Recent work 
on invertebrate Hox genes has begun to address this knowledge gap. In Drosophila MNs necessary 
for feeding, Deformed (Dfd) is required to maintain neuromuscular synapses (Friedrich et al., 2016). 
In C. elegans touch receptor neurons, the anterior (ceh-13) and posterior (egl-5) Hox genes control 
the expression levels of the LIM homeodomain protein MEC-3, which in turn controls touch receptor 
terminal differentiation (Zheng et al., 2015). In the C. elegans ventral nerve cord, midbody (lin-39, 
mab-5) and posterior (egl-5) Hox genes control distinct terminal differentiation features of midbody 
and posterior MNs, respectively (Kratsios et al., 2017). LIN-39 binds to the cis-regulatory region of 
multiple terminal differentiation genes (e.g. ion channels, NT receptors, signaling molecules) and is 
required for their maintained expression in MNs during postembryonic stages (Feng et al., 2020).

Our Hoxc8 findings in mice support the hypothesis that Hox-mediated control of later aspects of 
neuronal development (e.g. terminal differentiation) is evolutionarily conserved from invertebrates to 

https://doi.org/10.7554/eLife.70766
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mammals. Similar to C. elegans Hox genes, mouse Hoxc8 is continuously expressed in brachial MNs 
from embryonic to early postnatal stages, and sustained Hoxc8 gene activity is required to establish 
and maintain at later developmental stages the expression of several terminal differentiation genes. 
This noncanonical, late function of Hoxc8 may be shared by other Hox genes in the mouse nervous 
system. In the spinal cord, we found several other Hox genes (Hoxc4, Hoxa5, Hoxc5, Hoxa6, Hoxc6, 
Hoxa7) to be continuously expressed in brachial MNs, potentially acting as Hoxc8 collaborators. We 
made similar observations in thoracic (Hoxd9) and lumbar (Hoxc10, Hoxa11) MNs (Figure 6—figure 
supplement 2). Moreover, expression of multiple Hox genes has been observed in the adult mouse 
and human brain, leading to the hypothesis that maintained Hox gene expression is necessary for 
activity-dependent synaptic pruning and maturation (Hutlet et al., 2016; Takahashi et al., 2004). 
To date, the functional significance of maintained Hox gene expression in the CNS remains largely 
unknown, and temporally controlled genetic approaches are required to fully elucidate the late func-
tions of this remarkable class of highly conserved TFs.

The quest for terminal selectors of spinal motor neuron identity
Numerous genetic studies in the nematode C. elegans support the idea that continuously expressed 
TFs (termed ‘terminal selectors’) establish during development and maintain throughout postembry-
onic life the identity and function of individual neuron types by activating the expression of terminal 
differentiation genes (e.g. NT biosynthesis components, ion channels, adhesion, and signaling mole-
cules) (Deneris and Hobert, 2014; Hobert, 2008; Hobert, 2016). Multiple cases of terminal selectors 
for various neuron types have already been described in flies, cnidarians, marine chordates, and mice, 
suggesting deep conservation for this type of regulators (Allan and Thor, 2015; Deneris and Hobert, 
2014; Hobert, 2008; Hobert, 2016; Hobert and Kratsios, 2019; Tournière et al., 2020). However, 
it remains unclear whether spinal MNs in vertebrates employ a terminal selector type of mechanism to 
acquire and maintain their terminal differentiation features. Addressing this knowledge gap could aid 
the development of in vitro protocols for the generation of mature and terminally differentiated spinal 
MNs, a much anticipated goal in the field of MN disease modeling (Sances et al., 2016).

Three lines of evidence implicate Hoxc8 in the control of MN terminal differentiation. First, Hoxc8 
is expressed continuously, from embryonic to early postnatal stages, in brachial MNs. Second, our in 
vivo data and in vitro analysis suggest Hoxc8 is both necessary and sufficient for the expression of 
several of its target genes in MNs - such mode of action is reminiscent of terminal selectors (Flames 
and Hobert, 2009; Kratsios et al., 2011). Third, both early and late removal of Hoxc8 in brachial 
MNs affected the expression of several terminal differentiation genes, suggesting a continuous 
requirement. However, Hoxc8 does not act alone - loss of Hoxc8 did not completely eliminate the 
expression of its target genes (Figures 3F–G and 4C). This residual expression indicates that addi-
tional TFs are necessary to control brachial MN terminal differentiation. As mentioned in Results, 
one such factor is Hoxc6, which is coexpressed with Hoxc8 in brachial MNs during embryonic and 
postnatal stages (Catela et  al., 2016; Figure  2A). Importantly, Hoxc6 and Hoxc8 bind directly 
on the cis-regulatory regions of the same terminal differentiation genes in the context of mouse 
ESC-derived MNs (Figure 5—figure supplement 1). Another putative Hoxc8 collaborator is the 
LIM homeodomain protein Islet1 (Isl1), which is required for early induction of genes necessary for 
ACh biosynthesis in mouse spinal MNs and the in vitro generation of MNs from human pluripotent 
stem cells (Cho et al., 2014; Qu et al., 2014; Rhee et al., 2016). Interestingly, Isl1 is expressed 
continuously in brachial MNs (Figure 2) and amplifies its own expression (Erb et al., 2017) - both 
defining features of a terminal selector gene. In addition to Hoxc6 and Isl1, our expression anal-
ysis revealed multiple TFs from different families (e.g. Hox, Irx, LIM) with continuous expression in 
brachial MNs (Figure 2, Table 2). In the future, temporally controlled gene inactivation studies are 
needed to determine whether these TFs participate in the control of spinal MN terminal differen-
tiation. Intriguingly, the majority of the TFs with continuous expression in brachial MNs belong to 
the homeodomain family. Homeodomain TFs are overrepresented in the current list of C. elegans 
and mouse terminal selectors (Deneris and Hobert, 2014; Reilly et al., 2020; Serrano-Saiz et al., 
2013), suggesting an ancient role for this family of regulatory factors in the control of neuronal 
terminal differentiation.

https://doi.org/10.7554/eLife.70766
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Materials and methods
Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent (Mus 
musculus) Mnx1-GFP PMID:12176325 Not available Not available

Genetic reagent (M. 
musculus) Ai9 PMID:20023653 MGI: J:155,793 Not available

Genetic reagent (M. 
musculus) Hoxc8 fl/fl PMID:19621436 Not available Not available

Genetic reagent (M. 
musculus) Olig2Cre PMID:18046410 MGI: 3774124 Not available

Genetic reagent (M. 
musculus) ChatIRESCre PMID:21284986 MGI: J:169,562 Not available

Antibody
anti-ChAT
(Goat polyclonal) Millipore

Cat# AB144P, 
RRID:AB_2079751 IF (1:100)

Antibody anti-FoxP1 (Rabbit polyclonal) Dasen lab CU1025 IF(1:32000)

Antibody anti-RFP (Rabbit polyclonal) Rockland
Cat# 600-401-379S, 
RRID:AB_11182807 IF(1:500)

Antibody
anti-Alexa 488-Hoxc8 (mouse 
monoclonal) Dasen lab Not applicable IF(1:1500)

Antibody anti-GFAP (Chicken polyclonal) Millipore
Cat# AB5541, 
RRID:AB_177521 IF(1:200)

Antibody anti-CD11b (Rat monoclonal) Bio-Rad
Cat# MCA711, 
RRID:AB_321292 IF(1:50)

Antibody anti-mPea3 (Rabbit polyclonal) Dasen lab Not applicable IF(1:32000)

Antibody
anti-Digoxigenin-POD, Fab 
fragments (Sheep polyclonal)

Roche Diagnostics Deutschland 
GmbH Cat# 11207733910 IF(1:3000)

Antibody
Cy3 AffiniPure anti-Goat IgG 
(Donkey polyclonal) Jackson ImmunoResearch Labs

Cat# 705-165-147, 
RRID:AB_2307351 IF(1:800)

Antibody
Alexa Fluor 488 anti-Rabbit IgG 
(Donkey) Thermo Fisher Scientific

Cat# A-21206, 
RRID:AB_2535792 IF(1:1000)

Antibody
Cy3 AffiniPure anti- Rabbit IgG 
(Donkey polyclonal) Jackson ImmunoResearch Labs

Cat# 711-165-152, 
RRID:AB_2307443 IF(1:800)

Antibody
Alexa Fluor 488 anti-Goat IgG 
(Donkey polyclonal) Thermo Fisher Scientific

Cat# A-11055, 
RRID:AB_2534102 IF(1:1000)

Antibody
Alexa Fluor 488 anti-mouse IgG 
(Donkey polyclonal) Thermo Fisher Scientific

Cat# A-21202, 
RRID:AB_141607 IF(1:1000)

Antibody
Alexa Fluor 488 anti-Chicken IgY 
(Goat polyclonal) Thermo Fisher Scientific

Cat# A32931, 
RRID:AB_2762843 IF(1:1000)

Antibody
Alexa Fluor 488 anti-Rat IgG (Goat 
polyclonal) Thermo Fisher Scientific

Cat# A-11006, 
RRID:AB_2534074 IF(1:1000)

Software, algorithm ZEN ZEISS RRID: SCR_013672
Version 2.3.69.1000, Blue 
edition

Software, algorithm Fiji Image J RRID: SCR_003070 Version 1.52i

Mouse husbandry and genetics
All mouse procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of 
the University of Chicago (Protocol No. 72463). The generation of Hoxc8 floxed/floxed (Blackburn et al., 
2009), Olig2Cre (Dessaud et  al., 2007), Mnx1-GFP (Wichterle et  al., 2002), ChAT-IRES-Cre (Rossi 
et al., 2011), and Ai9 (Madisen et al., 2010) mice has been previously described. Mendelian ratios at 
weaning stage for Hoxc8 MNΔ early and Hoxc8 MNΔ late animals are provided in Supplementary file 4.
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Fluorescence-activated cell sorting and RNA-Seq of brachial motor 
neurons
For the analysis shown in Figure 1, spinal cord segments C4-T1 of e12.5 Mnx1-GFP and p8 ChatIRES-

Cre::Ai9 animals were microdissected using the dorsal root ganglia as reference. For the analysis shown 
in Figure 3, segments C7-T2 were used. The spinal cord tissue was dissociated using papain and 
filtered (using 50 μm filters) for sorting. A GFP negative spinal cord was also included as a negative 
control for the FACS setup. DAPI staining was used to exclude dead cells from the sorting. FACS-
sorted MNs were collected into Arcturus Picopure extraction buffer and immediately processed for 
RNA isolation. RNA was extracted from purified MNs, using the Arcturus Picopure RNA isolation kit 
(Arcturus, #KIT0204). For the RNA-Seq analysis on e12.5 Mnx1-GFP embryos, three biological repli-
cates were used; five to six spinal cords were pooled per replicate. For the RNA-Seq analysis on p8 
ChatIRESCre::Ai9 animals, three biological replicates were used; three spinal cords were pooled per repli-
cate. RNA quality and quantity were measured with an Agilent Picochip (Agilent 2100 Bioanalyzer). 
All samples had high quality scores between 9 and 10 RIN. After cDNA library preparation, RNA-Seq 
was performed using an Illumina HiSeq 4000 sequencer (50-nucleotide single-end reads, University of 
Chicago Genomics Core facility).

RNA-Seq analysis
Raw sequence data were subjected to quality control using the FastQC algorithm (http://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/). Unique reads were aligned into the mouse genome 
(GRCm38/mm10) using the HISET2 alignment program Kim et  al., 2015 followed by transcript 
counting with the featureCounts program (Liao et al., 2014). Differential gene expression analysis was 
performed with the DESeq2 program (Love et al., 2014). All analyses were performed using the open 
source, web-based Galaxy platform (https://usegalaxy.org). The heatmaps were generated using the 
Morpheus program developed by the Broad Institute (https://software.broadinstitute.org/morpheus). 
Gene hierarchical clustering was performed using a Pearson’s correlation calculation.

RNA in situ hybridization
E12.5 embryos and p8 spinal cords were fixed in 4% paraformaldehyde for 1.5–2  hr and overnight, 
respectively, placed in 30% sucrose overnight (4 °C) and embedded in optimal cutting temperature 
compound. Cryosections were generated and processed for ISH or immunohistochemistry as previ-
ously described (Dasen et al., 2005; De Marco Garcia and Jessell, 2008).

Fluorescent RNA ISH coupled with antibody staining
Cryosections were postfixed in 4% paraformaldehyde, washed in PBS, endogenous peroxidase was 
blocked with a 0.1% H2O2 solution and permeabilized in PBS/0.1% Triton-X100. Upon hybridization 
with DIG-labeled RNA probe overnight at 72°C and washes in SSC, the anti-DIG antibody conjugated 
with peroxidase (Roche) and primary antibody against Foxp1 (rabbit anti-Foxp1, Dr. Jeremy Dasen) 
were applied overnight (4 °C) to the sections. The next day, the sections were incubated with the 
secondary antibody (Alexa 488 donkey anti-rabbit IgG, Life Technologies, A21206), and detection of 
RNA was performed using a Cy3 Tyramide Amplification system (Perkin Elmer). Images were obtained 
with a high-power fluorescent microscope (Zeiss Imager V2) and analyzed with Fiji software (Schin-
delin et al., 2012).

Immunohistochemistry
Fluorescence staining on cryosections was performed as previously described (Catela et al., 2016).

Gene ontology analysis
Protein classification was performed using the Panther Classification System Version 15.0 (http://www.​
pantherdb.org). Embryonic (1381 out of 2904) and postnatal (1348 out of 2699) MN genes were cate-
gorized into protein classes using the algorithms built into Panther (Mi et al., 2013; Thomas et al., 
2003).

Rotarod performance test
Female mice were trained on an accelerating rotarod for 5 days. The experimenter was blind to the 
genotypes. For the Hoxc8 MNΔ early analysis, seven control (Hoxc8fl/fl) and seven (Olig2Cre::Hoxc8fl/fl) 
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mice were used at the age of 4–5 months. For the Hoxc8 MNΔ late analysis, 8 control (Hoxc8fl/fl) and 10 
(ChatIRESCre::Hoxc8fl/fl) mice were used at the age of 2–5 months. A computer-controlled rotarod appa-
ratus (Rotamex-5, Columbus Instruments, Columbus, OH, USA) with a rat rod (7-cm diameter) was set 
to accelerate from 4 to 40 revolutions per minute (rpm) over 300 s, and recorded time to fall. Mice 
received five consecutive trials per session, one session per day (about 60 s between trials).

Forelimb grip strength test
The forelimb strength of female mice was measured using a grip strength meter from Bioseb (model 
BIO-GS3). For the Hoxc8 MNΔ early analysis, seven control (Hoxc8fl/fl) and seven (Olig2Cre::Hoxc8fl/fl) mice 
were used at the age of 4–5 months. For the Hoxc8 MNΔ late analysis, 8 control (Hoxc8fl/fl) and 10 (Chat-
IRESCre::Hoxc8fl/fl) mice were used at the age of 2–5 months. We followed the manufacturer’s protocol. 
In brief, the meter was positioned horizontally on a heavy metal shelf (provided by the manufacturer), 
assembled with a grip grid. Mice were held by the tail and lowered toward the apparatus. The mice 
were allowed to grasp the metal grid only with their forelimbs and were then pulled backward in the 
horizontal plane. The maximum force of grip was measured, and we used the average of six measure-
ments for analysis. Force was measured in Newton and Grams. The experimenter was blind to the 
genotypes.

Treadmill test
The treadmill test was conducted on female mice by using the DigiGait system (MouseSpecifics, Inc), 
which is equipped with a motorized transparent treadmill belt and a high-speed digital camera that 
provides images of the ventral side of the mouse (Figure 6—videos 1–4). For the Hoxc8 MNΔ early 
analysis, seven control (Hoxc8fl/fl) and seven (Olig2Cre::Hoxc8fl/fl fl) mice at the age of 4–5 months were 
placed onto the walking compartment. The treadmill was turned on at a speed of 15 cm/s. For the 
Hoxc8 MNΔ late analysis, 8 control (Hoxc8fl/fl) and 10 (ChatIRESCre::Hoxc8fl/fl) mice at the age of 2–5 months 
were placed onto the walking compartment. The treadmill test was conducted at two different speeds 
(15 cm/s and 25 cm/s). The 30-s long videos were obtained for each mouse. Videos were analyzed and 
data were binned into four categories based on the duration of each mouse’s stay on the treadmill 
(category 1: <5 s; category 2: 5–10 s; category 3: 10–15 s; category 4: >20 s).

Statistical analysis
For data quantification, graphs show values expressed as mean ± SEM. With the exception of the 
rotarod and treadmill experiments, all other statistical analyses were performed using the unpaired 
t-test (two-tailed). Differences with p<0.05 were considered significant. For the rotarod performance 
test, two-way ANOVA was performed (Prism Software). For the treadmill experiment, we used Fisher’s 
exact test.
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