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Abstract

Introduction: Human induced pluripotent stem cells (hiPSCs) offer great promise for regenerative therapies or

in vitro modelling of neurodegenerative disorders like Parkinson’s disease. Currently, widely used cell sources for the
generation of hiPSCs are somatic cells obtained from aged individuals. However, a critical issue concerning the
potential clinical use of these iPSCs is mutations that accumulate over lifetime and are transferred onto iPSCs
during reprogramming which may influence the functionality of cells differentiated from them. The aim of our
study was to establish a differentiation strategy to efficiently generate neurons including dopaminergic cells from
human cord blood-derived iPSCs (hCBiPSCs) as a juvenescent cell source and prove their functional maturation

in vitro.

Methods: The differentiation of hCBiPSCs was initiated by inhibition of transforming growth factor-3 and bone
morphogenetic protein signaling using the small molecules dorsomorphin and SB 431542 before final maturation
was carried out. hCBiPSCs and differentiated neurons were characterized by immunocytochemistry and quantitative
real time-polymerase chain reaction. Since functional investigations of hCBiPSC-derived neurons are indispensable
prior to clinical applications, we performed detailed analysis of essential ion channel properties using whole-cell
patch-clamp recordings and calcium imaging.

Results: A Sox1 and Pax6 positive neuronal progenitor cell population was efficiently induced from hCBiPSCs using
a newly established differentiation protocol. Neuronal progenitor cells could be further maturated into dopaminergic
neurons expressing tyrosine hydroxylase, the dopamine transporter and engrailed 1. Differentiated hCBiPSCs exhibited
voltage-gated ion currents, were able to fire action potentials and displayed synaptic activity indicating synapse
formation. Application of the neurotransmitters GABA, glutamate and acetylcholine induced depolarizing calcium signal
changes in neuronal cells providing evidence for the excitatory effects of these ligand-gated ion channels during
maturation in vitro.

Conclusions: This study demonstrates for the first time that hCBiPSCs can be used as a juvenescent cell source to
generate a large number of functional neurons including dopaminergic cells which may serve for the development of
novel regenerative treatment strategies.
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Introduction

Human induced pluripotent stem cells (hiPSCs) derived
from somatic cells hold great promise to study and treat
neurodegenerative diseases. IPSCs are self-renewing and
able to differentiate into neurons similarly to human
embryonic stem cells (hESCs), but without the negative
ethical connotation [1-3]. hiPSCs offer the advantage of
providing an unlimited source of genetically personal-
ized cells with a diminished risk of immunorejection,
which seems attractive for regenerative cell therapies,
such as the replacement of dopaminergic (DA) neu-
rons in Parkinson’s disease [4-11]. Even though the func-
tionality of neuronal cells generated in vitro is of high
relevance for preclinical and clinical studies, investigation
of the functional properties of hiPSCs-derived neurons is
rare [12-14].

In various studies somatic cells or stem cells from
adult individuals were used to generate hiPSCs [15-19].
The usage of juvenile rather than aged human cells for
generation of iPSCs is expected to have the advantage of
lacking genetic mutations that tend to accumulate in
adult stem and somatic cells over a lifetime, contributing
to aging processes and cancer formation [20-22]. Al-
though epigenetic reprogramming occurs and telomerase
activity is restored during the process of pluripotency in-
duction [23,24], genomic and chromosomal abnormalities
acquired in aged cells are not rectified and may influence
the functionality of cells differentiated from those iPSCs.
Besides their juvenile character, the utilization of human
cord blood endothelial cells for the generation of iPSCs
has further advantages. They can be easily collected with-
out invasive procedures and the emergence of public and
commercial cord blood banks predestines them for future
clinical applications.

Over the last decade, various tissue culture protocols
have emerged that recapitulate the DA differentiation
process in hESCs and hiPSCs. Some approaches focused
on stromal feeder cell co-cultures to promote DA differ-
entiation [9,11,25-35], others simply withdrew mitogens
crucial for the maintenance of pluripotency to induce
neuronal differentiation [6,10,36-46]. Stromal feeder cells
have the disadvantage of introducing greater variability
in the differentiation process by secreting undefined fac-
tors. Although media components are defined in differ-
entiation concepts in which mitogens were withdrawn,
the signaling cascades leading to neural induction are not
fully understood yet. Recently, the utilization of small mol-
ecule inhibitors of transforming growth factor-p (TGF-p)
and bone morphogenetic protein (BMP) signaling in the
differentiation process became more popular because they
induce neural conversion in a defined manner and have
been shown to enhance neural conversion efficiency
by inhibiting mesenchymal differentiation [5,31,39,47-51].
In general, TGF-B/BMP ligands initiate signaling by
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phosphorylation of cytoplasmatic SMAD proteins upon
receptor binding. Activated SMADs translocate to the
nucleus where they regulate the transcription of target
genes. The molecules dorsomorphin (DM) and SB 431542
(SB) antagonize the TGF-p and BMP pathways and,
therefore, affect biological processes including neuronal
patterning [52].

In this study, we show for the first time that iPSCs
generated from human cord blood-derived endothelial
cells by means of lentiviral overexpression of the four
factors OCT4, SOX2, LIN28 and NANOG as described
by Haase et al. [53] are able to differentiate into DA
neurons by dual SMAD inhibition and exhibit functional
neuronal properties. The differentiated neurons revealed
large voltage-gated currents and were able to fire action
potentials (APs). Spontaneous synaptic activity indicated
the formation of synaptic connections. We demonstrated
neurotransmitter-induced calcium transients providing
evidence for ligand-gated receptor expression and excita-
tory GABA actions during maturation in vitro. These data
suggest that human cord blood-derived iPSC (hCBiPSC)-
derived neurons including dopaminergic cells develop es-
sential functional properties and may deliver a juvenescent
source for novel regenerative cell therapies.

Materials and methods

The use of human iPSCs in this study was approved by
the local ethics committee of Hannover Medical School
(Date: 08.07.2010, No. 776).

Human iPSC culture and in vitro differentiation

The hCBiPSC lines were generated and characterized by
Haase et al. [53]. In brief, all cord blood endothelial cell
isolates showed high expression of endothelial markers
including CD31 and CD146 [53]. Lentiviral transduc-
tions with OCT4, SOX2, NANOG and LIN28 lead to re-
programming efficiencies of cord blood endothelial cells
between 0.0001% and 0.03% [53]. The transplantation
of undifferentiated hCBiPSCs into immunodeficient
SCID-beige mice led to the formation of typical tera-
tomas containing derivatives of all three germ layers
[53]. Karyotype analyses revealed no abnormalities in
the hCBiPSC clones [53].

Human CBiPSCs were expanded as described pre-
viously [53]. Undifferentiated hCBiPSCs were main-
tained on a feeder layer of mouse embryonic fibroblasts
inactivated by gamma-irradiation (60 gray). Feeders were
seeded at 1x 10° cells/well in a six-well plate (Nunc,
Langenselbold, Germany) coated with 1% gelatin (Sigma-
Aldrich, Taufkirchen, Germany). If not otherwise stated all
media and medium supplements were purchased from
Life Technologies (Darmstadt, Germany). Cytokines were
obtained from Peprotech (Hamburg, Germany).
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For differentiation, hCBiPSC colonies were detached
from the feeder layer and cultured in suspension as em-
bryoid bodies (EBs) for four days in knockout medium
containing knockout DMEM, 20% knockout serum re-
placement, 0.1 mM MEM nonessential amino acids,
2 mM glutamax and 0.1 mM [-mercaptoethanol supple-
mented with 10 uM SB 431542 (SB, Biomol, Hamburg,
Germany) and 1 uM DM (R&D Systems, Wiesbaden-
Nordenstadt, Germany). On day four, the medium was
changed to DMEM/F12 consisting of glutamax, N2 sup-
plement, 10 uM SB, 1 uM DM, 0.6 uM purmorphamine
(PMA, Biomol) and 100 ng/ml fibroblast growth factor 8
(FGF8). After six days, SB and DM were withdrawn.
After six additional days in suspension, EBs were at-
tached to poly-L-ornithine (20 pg/ml)/laminin (10 pg/
ml)-coated cell culture plates and cultured in Neurobasal
medium supplemented with glutamax, N2, B27 minus
AO, 20 ng/ml BDNE, 20 ng/ml GDNFE, 25 ng/ml TGEp3,
200 pM ascorbic acid (Sigma-Aldrich) and 1 mM cAMP
(Sigma-Aldrich) for up to 30 days.

Immunocytochemistry

Cells were fixed in 4% paraformaldehyde and treated
with blocking buffer (5% goat serum, 1% BSA, 0.3% Tri-
ton X-100 in PBS) for 45 minutes. Primary antibodies
were applied overnight at 4°C. For visualization the ap-
propriate fluorescence-labeled secondary antibodies were
added for one hour at room temperature and nuclei
were counterstained with 4;6-diamidino-2-phenylindole
(DAPI, 10 mg/ml, Life Technologies). The following
primary antibodies were used: rabbit polyclonal anti-
Oct4 (1:500, Cell Signaling, Danvers, Massachusetts,
USA), mouse monoclonal anti-Pax6 (1:500, Millipore,
Schwalbach, Germany), rabbit monoclonal anti-FoxA2
(1:250, Cell Signaling), mouse monoclonal anti-beta
III tubulin (Tujl, 1:500, Millipore), rabbit polyclonal
anti-MAP2 (1:500, Millipore), rabbit polyclonal anti-
TH (1:500, Santa Cruz Biotechnology, Heidelberg,
Germany), rabbit polyclonal anti-GABA (1:1000, Sigma-
Aldrich) and rabbit polyclonal anti-GFAP (1:500, Dako,
Hamburg, Germany). Secondary antibodies were Alexa
Fluor goat anti-mouse or anti-rabbit 488 or 555 (1:500,
Life Technologies). All secondary antibodies were tested
for specificity and cross reactivity.

Immunostainings were visualized by fluorescence mi-
croscopy (BX61; Olympus). Digital images were acquired
with an Olympus DP72 camera using the image-analysis
software Cell" (Olympus). The number of cells immuno-
reactive for Tujl, MAP2, TH, GABA or GFAP was de-
termined related to the number of DAPI stained nuclei
from at least three independent differentiation experi-
ments. Approximately 1,000 cells were counted within
three randomly selected visual fields.
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Reverse transcription and quantitative real-time PCR
Total RNA was extracted using the RNeasy kit (Qiagen,
Hilden, Germany) and treated with DNase I according
to the manufacturers’ instructions. For each reaction,
1 pg of total RNA was reversely transcribed using oligo-
dT primer and Superscript II reverse transcriptase (Life
Technologies).

Quantitative real-time PCR experiments were per-
formed with ¢cDNA from 50 ng total RNA, 1.75 uM for-
ward and reverse primer and Power SYBR-Green PCR
Master Mix (Life Technologies) in a StepOnePlus ins-
trument (Applied Biosystems, Darmstadt, Germany) un-
der the following amplification conditions: 95°C for 10
minutes, followed by 40 cycles of 95°C for 15 seconds
and 60°C for 1 minute. The specificity of the PCR prod-
ucts was ensured by melting curve analysis. The correct
amplicon size was confirmed by agarose gel electrophor-
esis using a low molecular weight DNA ladder (New
England Biolabs, Ipswich, MA, USA; see Additional file 1:
Figure S1). Equal PCR efficiency of all primer pairs was
validated by serial cDNA dilution. For primer information
see Additional file 2: Table S1.

For the quantification of target gene expression the
threshold cycle (Ct) values of the targets were nor-
malized against that of the endogenous reference (2-
microglobulin (Ct (target) — Ct (reference) = ACt). ACt
values were plotted as relative levels of gene expression
and are given as means + standard error of the mean
(SEM) from three differentiation experiments.

Electrophysiology
Patch pipettes were formed from borosilicate glass (Sci-
ence Products, Hotheim, Germany) with a DMZ-universal
puller (Zeitz-Instruments, Martinsried, Germany) and
fire-polished to final resistances of 3 to 4 MQ when filled
with the internal solution consisting of 153 mM KCl,
1 mM MgCl2, 10 mM HEPES, 5 mM EGTA and
2 mM Mg-ATP, adjusted to pH 7.3 with KOH (305
mOsm). The bath solution contained 142 mM NaCl,
8 mM KCl, 1 mM CaCl2, 6 mM MgCl2, 10 mM glucose
and 10 mM HEPES, adjusted to pH 7.4 with NaOH
(325 mOsm). Tetrodotoxin (TTX, 1 uM), tetraethy-
lammonium chloride (TEA, 10 mM), bicuculline (BIC,
10 pM) and 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)
quinoxaline (NBQX, 10 uM, all purchased from Sigma-
Aldrich) were diluted in the bath solution and applied via
gravity using a SF-77B perfusion fast-step system (Warner
Instruments, Hamden, Connecticut, USA) as described
previously [54]. The stock solution of BIC was dissolved
in an external solution containing dimethyl sulfoxide
(DMSO) at a maximal final concentration of 0.1%.
Whole-cell patch clamp experiments were performed
at 20°C to 22°C under optical control (inverted microscope,
Zeiss, Jena, Germany). Cells with leak currents <100 pA
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were used for further analysis. Whole-cell currents were
low-pass filtered at 2.9 kHz, digitized at 10 kHz using an
EPC-10 amplifier (HEKA, Lambrecht, Germany) and ana-
lyzed with Patch Master (HEKA).

Calcium imaging
Monitoring of cytosolic calcium transients in individual
neurons was carried out using the membrane permeable
fluorescent indicator Fura 2-AM (Sigma-Aldrich) in com-
bination with the Till Vision Imaging System (T.LL.L.
Photonics, Grifelfing, Germany) coupled to an upright
microscope (Axioskop 2 FS plus, Zeiss). Emitted fluores-
cence was collected by a charge-coupled device (CCD)
camera. Cultured cells were incubated for 30 minutes at
37°C with Fura 2-AM in a standard bath solution contain-
ing 140 mM NaCl, 5 mM KCl, 2 mM CaCl,, 10 mM glu-
cose and 10 mM HEPES, adjusted to pH 7.4 with NaOH.
The intracellular Ca** was imaged by exciting Fura 2-
AM at 340 and 380 nm with its emission monitored in
intervals of 300 ms at 510 nm. Recordings were termi-
nated by a 50 mM KClI stimulation to ensure the viabil-
ity of the recorded cells. After background subtraction,
the 340/380 nm excitation ratio for Fura 2-AM was cal-
culated, which increases as a function of the cytosolic
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free Ca* concentration ([Ca**];). To determine [Ca®']; a
calibration measurement in the presence of 5 uM iono-
mycin or with a 10 mM EGTA solution free of Ca®* was
conducted. [Ca®*]; was calculated according to [Ca®*]; =
B x Kp(R - Riin)/(Rmax - R) [55] with B = Fag0,max/F3go,min =
3.6, Kp = 245 nM, R,,;, = 0.38 and R, = 1.6.

Statistics

Data were analyzed with GraphPad Prism (GraphPad
Software, San Diego, CA, USA) by a two-way analysis of
variance (ANOVA) and Bonferroni posttest or unpaired
t-test as appropriate. All data are presented as means +
SEM and the significance level was set as P <0.05.

Results

Dorsomorphin, SB 431542, purmorphamine and FGF8
efficiently direct neural conversion and midbrain
regionalization of hCBiPSCs

To explore the neuronal differentiation potential of
hCBiPSCs in vitro, we evaluated four hCBiPSC lines gen-
erated by Haase et al. [53] by lentiviral transduction of the
four pluripotency associated transcription factors OCT4,
SOX2, NANOG and LIN28 into human cord blood-
derived endothelial cells. All hCBiPSC lines exhibited
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Figure 1 The utilization of dorsomorphin (DM) and SB 431542 (SB) in the hCBiPSCs differentiation process significantly improved
neural conversion. Relative gene expression was measured by quantitative real-time PCR. (A) A marked increase in the expression of the neural
stem cell markers Sox1 and Pax6 was observed during the first four days of differentiation by application of DM/SB (DIFF+) compared to cells
differentiated without these molecules (DIFF-). (B) Downregulation of the pluripotency marker Oct4 was found as the maturation proceeded
under both conditions. Midbrain regionalization, monitored by the expression of the midbrain marker FoxA2, was induced by PMA/FGF8
treatment (DIFF+) on day 4 of differentiation. A significantly higher FoxA2 level was observed in PMA/FGF8 treated cells compared to controls
(DIFF-) from day 10 on. Values are calculated as means + SEM. P-values (*P <0.05, **P <0.01, ***P <0.001) were determined using two-way ANOVA
and Bonferroni posttest. ANOVA, analysis of variance; FGF8, fibroblast growth factor 8; hCBiPSCs, human cord blood induced pluripotent stem
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morphological features typical for hESCs and expressed
hESC markers [53]. Based on previous studies showing a
highly efficient neuronal induction by dual inhibition of
SMAD signaling using the small molecules DM and SB
[48,56], we first compared the efficiency of neural induc-
tion in our hCBiPSCs with and without SMAD inhibition
by DM/SB during the first six days of differentiation.
Already four days after the initiation of differentiation, the
expression of the neural progenitor cell (NPC) markers
Pax6 and Sox1 was significantly enhanced in cells treated
with DM/SB (Figure 1A). Whereas the expression of Sox1
under DM/SB/PMA/FGE8 treatment was stable until
12 days of differentiation, the addition of PMA and FGEF8
on day 4 reduced Pax6 expression to levels measured in
untreated cells [57]. The loss of pluripotency during the
maturation process monitored by Oct4d expression was
comparable under both conditions (Figure 1B). After four
days of differentiation, midbrain patterning was induced
by addition of FGF8 and PMA, a small molecule known
to be an effective substitute for sonic hedgehog [48,58].
Foxa2 expression, as an early marker for midbrain re-
gionalization, was significantly elevated from day 10 on in
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cells incubated with PMA/FGE8 for eight days (Figure 1B).
These data suggest a reduction of pluripotency associated
with a rapid and efficient differentiation towards neuroec-
toderm in DM/SB-treated cells and an efficient midbrain
patterning induced by PMA and FGF8.

hCBiPSCs differentiate into DA neurons in vitro

Figure 2A gives a schematic overview of the differen-
tiation protocol used in this study. Figures 2B-F de-
monstrate representative light microscopic images of the
neuronal maturation process. During expansion hCBiPSC
colonies uniformly express the pluripotency marker Oct4
(Figure 2G). After six days of in vitro differentiation with
DM/SB, Oct4-positive cells were rarely detected, whereas
the vast majority of EBs were immunopositive for the
NPC marker Pax6 (Figure 2H). On day 4, PMA and FGF8
were added to suspension cultures for eight days to induce
midbrain regionalization. After 12 days in suspension, EBs
were positive for the midbrain marker FoxA2 (Figure 2I).
After plating onto PLO/Laminin-coated cell culture di-
shes, cells were cultured in the presence of BDNF, GDNE,
TGEP3, dbcAMP and ascorbic acid to promote terminal

A
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hCBiPSCs : EBs
Neural Induction

DM+SB+
DM+SB

Midbrain Patterning

| PMA+FGF8 | PMA+FGF8 |

12 40
] DA Neurons
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Figure 2 Sequential induction of hCBiPSCs towards dopaminergic neurons. (A) Schematic summary of the differentiation procedure.

THIFYj1IDapi

Phase-contrast images (B-F) and immunocytochemical stainings (G-K) during in vitro differentiation. Oct4-positive hCBIiPSC colonies (B,G) were
detached from the feeder layer and cultured in suspension as embryoid bodies (EBs) in the presence of dorsomorphin (DM) and SB 431542 (SB)
for six days. During this time Oct4 expression was completely lost, whereas cells started to express the neural stem cell marker Pax6 (H). On day
4, purmorphamine (PMA) and FGF8 were added to initiate regionalization. After 12 days the vast majority of EBs coexpressed the midbrain marker
FoxA2 (1). EBs were plated on PLO/laminin-coated cell culture dishes on day 12. Tuj1-positive neuronal cells spread out (J) and maturated into
numerous dopaminergic (DA) neurons in the presence of BDNF, GDNF, TGF(33, cAMP and ascorbic acid as indicated by tyrosine hydroxylase
(TH)-positive cells (K). Scale bars represent 100 um. FGF8, fibroblast growth factor 8; hCBiPSC, human cord blood induced pluripotent stem cells.
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differentiation. Cells growing out of the EBs displayed im-
munoreactivity for the neuronal marker beta III tubulin
(Tuj1; Figure 2J]). After almost 40 days of in vitro diffe-
rentiation 59 +3% of the cells were Tujl"™ and 17 +2%
coexpressed the DA marker tyrosine hydroxylase (TH;
Figure 2K, Figure 3C). Furthermore, 38 + 5% GABAergic
neurons were identified among the Tuj1" cells (Figure 3D).
The overall cell population contained 10+ 1% TH" neu-
rons and 22 + 3% GABA" neurons. MAP2-staining, a mar-
ker for more mature neurons, showed reactivity in 42 +
4% of the cells, whereby nearly all of these neurons were
Tujl* as well (Figure 3A). Additionally, 14 + 6% GFAP*
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Figure 3 hCBiPSCs differentiated into dopaminergic and
GABAergic neurons. (A, E) After 40 days of in vitro differentiation
(40 DIV) almost 60% of the cells were positive for the neuronal
marker beta Il tubulin (Tuj1) and 40% showed reactivity against
MAP?2 indicating more mature neurons. A minor cell population of
roughly 13% was positive for the astrocytic marker GFAP (B, E).
Approximately 17% of Tuj1-positive cells were double labeled with
antibodies against the dopaminergic marker tyrosine hydroxylase
(TH, C, E) and nearly 40% were immunopositive for GABA (D, E).
Scale bars represent 50 um. Values are calculated as means + SEM.
hCBIPSC, human cord blood induced pluripotent stem cells; SEM,
standard error of the mean.
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astrocytes were present in the cultures (Figure 3B). The
vast majority of cells negative for Tujl or GFAP expressed
the neural progenitor marker Sox1 (19 +7%), suggesting
incomplete maturation. None of the cells were positive for
the oligodendrocytic markers Olig2 and O4 (data not
shown).

RT-PCR reveals midbrain DA patterning during in vitro
differentiation

By qRT-PCR we investigated the genomic expression of
several genes that are typically present in undifferenti-
ated iPSCs, neural progenitors or differentiated DA neu-
rons (Figure 4). Already four days after the beginning of
differentiation the pluripotency marker Oct4 and Lin28,
expressed in undifferentiated iPSCs, were markedly down-
regulated in most analyzed hCBiPSC lines (Figure 4A).
Thereafter, we observed significant upregulation of tran-
scription factors associated with the appearance of NPCs,
for example, Sox1 and Pax6 (Figure 4B). These findings
are consistent with the results of the immunocytochemical
stainings (see above). In cultures subjected to 40 days
of differentiation, we detected a significant elevation
in mRNA expression for cell markers of mature mid-
brain DA neurons, for example, Tujl, MAP2, TH, Enl,
and DAT in most of the cell lines (Figure 4C).

Differentiated hCBiPSC-derived cells exhibit
electrophysiological characteristics of functional neurons
Fundamental neuronal properties, such as excitability
and synaptic transmission, are based on the functional
expression of ion channel proteins. Therefore, we exa-
mined the electrophysiological properties of hCBiPSCs-
derived neurons differentiated for six weeks in vitro.
Voltage-gated sodium and potassium channels as well as
action potential properties and synaptic activity were ana-
lyzed by whole-cell patch-clamp recordings. Large out-
ward currents were reliably induced by depolarizing
voltage steps of 10 mV from a holding potential of -70 mV
to 40 mV. These currents showed voltage dependence and
kinetics characteristic of potassium currents and were
inhibited by the potassium channel blocker TEA (10 mM)
applied to the extracellular solution (Figure 5A,C). In re-
sponse to depolarization, 44% of the cells generated so-
dium inward currents that were blocked by the sodium
channel blocker TTX (1 puM; Figure 5B,C). Peak currents
were normalized for cell size based on the capacitance of
the cell membrane (pA/pE Figure 5C). In current-clamp
experiments 39% (n=7/18) of the neurons fired TTX-
sensitive APs with average amplitudes of 51.2+8.0 mV
and durations of 3.2 +£0.7 ms (Figure 5D). A summary
of the functional properties of differentiated hCBiPSCs-
derived neurons can be found in Table 1.

Another critical issue of neuronal functionality is the
capability of hCBiPSC-derived neurons to form synaptic
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Figure 4 Quantitative real-time PCR of four hCBiPSC lines. Relative expression levels of pluripotency (A), neural progenitor (B) and neuronal
and dopaminergic markers (C) in four hCBIPSC clones (K1, K2, K106, K120). (A) The expression of the pluripotency markers Oct4 and Lin28 is
significantly decreased in most cell lines during expansion whereas the neural stem cell markers Sox1 and Pax6 (B) are markedly upregulated in
all hCBIPSC clones after differentiation with DM/SB for four days. (C) After 40 days of differentiation in vitro the relative expression of the neuronal
markers Tuj1 and MAP2 is significantly enhanced in almost all clones. Furthermore, the expression levels of tyrosine hydroxylase (TH) and the
dopamine transporter (DAT) which are markers for dopaminergic neurons, as well as the mesencephalic marker engrailed 1 (En1) are significantly
elevated in most cell lines. Results are reported as means + SEM. P-values (*P <0.05, **P <0.01, ***P <0.001) were calculated using an unpaired
t-test. Abbreviations: EXP, expanded cells; DIFF, differentiated cells. DM, dorsomorphin; hCBiPSC, human cord blood induced pluripotent stem
cells; SEM, standard error of the mean.

connections. This was explored by measuring spon-
taneous post-synaptic currents (PSCs) due to action
potential-independent transmitter release, using the whole-
cell voltage-clamp configuration at a holding potential
of -70 mV. Spontaneous PSCs were measured in 40%
of the cells showing an average frequency of 0.6+
0.2 Hz, which was reduced to 17.0 + 12.6% by applica-
tion of the GABA, receptor blocker bicuculline (BIC)
(n=5, Figure 6A and B). Inhibiting glutamatergic in-
put by NBQX decreased the PSC frequency to only
74.5 + 3.4%, indicating a predominantly GABAergic

synaptic input. The mean amplitudes of spontaneous
PSCs were 21.4 + 3.7 pA.

These data show that hCBiPSCs can give rise to func-
tional neurons acquiring mature electrical properties and
spontaneously active synaptic contacts during their diffe-
rentiation in vitro.

Neurotransmitters induce increases in [Ca®'];

The expression of functional ligand-gated channels in
hCBiPSC-derived neurons was examined by measur-
ing intracellular Ca®* changes upon application of the
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Figure 5 hCBiPSCs maturated into functional neurons in vitro. All functional analyses were conducted with the hCBiPSC line K2. (A-C)
Voltage-activated sodium and potassium currents were recorded in the whole-cell voltage-clamp mode by increasing depolarizing steps

of 10 mV from a holding potential of -70 to 40 mV. (A) Cells showed potassium outward currents (/) that were inhibited by application of
tetraethylammonium (TEA, 10 mM, n = 18). (B) Sodium inward currents (/\,) could be completely blocked by tetrodotoxin (TTX, T uM, n=8).
(C) The current-voltage plot indicates the activation of /x between -30 and -20 mV. Iy, were activated between -40 and -20 mV with a current
peak at -10 to 0 mV. Current amplitudes were normalized for cell capacitances and are calculated as means + SEM. (D) Action potentials were
elicited by a depolarizing current step of 100 pA in current-clamp mode and inhibited by application of 1T uM TTX (n = 7). Voltage-gated ion
channel, passive membrane and action potential properties are summarized in Table 1. hCBiPSC, human cord blood induced pluripotent stem
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neurotransmitters acetylcholine (ACh), GABA and glu-
tamate in fura-2 loaded cells. Figure 7A shows typical neu-
rons used during these experiments. For quantification
of the intracellular Ca®>* concentration ([Ca®*];) we per-
formed calibration measurements. The basal Ca®" level
was Rpsso/r3s0 = 0.58, which corresponds to a basal [Ca®*];
of 100+8 nM (n=57 cells). Figure 7B illustrates Ca**
traces of three representative cells upon stimulation by
ACh, GABA and glutamate as well as the depolarizing
agent KCl. The excitatory neurotransmitter ACh and glu-
tamate induced an increase in intracellular Ca®* in 25+
8% and 22+ 18% of the cells, respectively (Figure 7C).
GABA, as the most prominent inhibitory neurotransmit-
ter in the adult central nervous system (CNS), induced a
Ca®* response in 62 + 2% of the cells suggesting depolari-
zing excitatory GABA-effects in most neurons. Ca** re-
sponses to KCl application were shown by 68 + 4% of the
cells indicating the neuronal population. On average, the

application of ACh led to an increase of the fluorescent
signal of Rez40/r380 = 0.10 £ 0.01, which correlates to an in-
crease in cytosolic Ca®* of 117 +17 nM (Figure 7D).
GABA induced a [Ca®*]; rise of 142 + 12 nM and glutam-
ate application resulted in a [Ca*]; boost of 76 + 20 nM.
KCl as a depolarizing agent leading to the activation of
voltage-dependent calcium channels induced the highest
Ca®* response of 170 + 20 nM and indicated the viability
of cells at the end of each measurement. Our data show
that hCBiPSC-derived neurons develop functional ACh,
GABA and glutamate receptors during differentiation
in vitro.

Discussion

We demonstrated the ability of iPSCs generated from
human cord blood endothelial cells [53] to be directed
to a neuronal cell fate similar to hiPSC lines obtained
from adult somatic cell sources. The small molecules
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Table 1 Functional properties of hCBiPSC-K2 after
differentiation for six weeks in vitro

Values of differentiated
hCBiPSCs (n=18)

~859.1 +359.7 pA
—86.4+31.7 pA/pF
10342+ 192.7 pA
1159+ 20.8 pA/pF

Functional properties

Peak Na + -current
Peak Na+ -current/pF
Peak K+ -current

Peak K+ -current/pF

Resting membrane potential 344421 mV
Membrane capacitance 94+1.1 pF

Input resistance 1,169.2 £ 389.7 MOhm
Cells with APs 7 (38.9%)

AP amplitude 512480 mV

AP duration 32+0.7 ms

AHP amplitude 133+£30mV

Time to peak AHP 106+12ms

Voltage-gated ion channel, passive membrane and action potential properties
were determined by whole-cell patch clamp recordings. Data are given as
means + SEM. AP amplitude was measured from spike onset to peak,
afterhyperpolarization (AHP) amplitude from peak to beginning of plateau
reached during the current injection, AP duration was measured at half
amplitude, and time to peak AHP from spike onset.

DM and SB, that have been shown to rapidly induce
neuralization in hESCs and hiPSCs by dual inhibition of
TGE-B/BMP signaling [48,51,56,59,60], were able to en-
hance neural conversion efficiency in our hCBiPSC cul-
tures as well. DM, an antagonist of the BMP pathway,
selectively blocks the BMP type I receptors ALK2, ALK3
and ALK6, and thereby inhibits downstream SMAD1/5/
8 signaling [48,50,61]. SB is a selective blocker of the
TGEF-pB/activin pathway. It targets activin receptor-like
kinase receptors ALK4, ALK5 and ALK7, leading to
inhibition of SMAD2/3 signaling [49,56,59,60,62,63].
The synergistic block of both signaling cascades retards
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differentiation towards endoderm, mesoderm and tropho-
ectoderm and facilitates neuroectodermal differentiation
as suggested by gene expression analysis and immunos-
tainings for neural precursor markers [48,51].

The percentage of Tujl-positive neurons achieved in
this study by dual SMAD inhibition was approximately
60%. To our knowledge, there are only two studies using
the same combination of small molecules (DM/SB) for
neural conversion of hiPSCs from adult skin fibroblasts
[48,56]. Mak and colleagues [48] reported 86% Tujl*
neurons and 9% TH'/Tujl" cells after enrichment of
NPCs via microbeads. We achieved a nearly twofold
amount of TH"/Tuj" cells (17%). Further publications
performing SMAD inhibition with noggin, another BMP
antagonist, instead of DM or with additional stimulation
of WNT signaling [13,51,64,65] obtained neuronal differ-
entiation efficiencies of fibroblast-derived hiPSCs ranging
from 17% to 70% Tujl" cells. The newest approach skip-
ping the iPSC intermediate stage and directly reprogram-
ming human fibroblasts to neurons yielded only 10% to
16% Tujl" cells [66,67]. In relation to those results, our
culturing strategy resulted in more efficient neurogenesis.
The reasons for the heterogeneity in the differentiation
capacity of different iPSC lines are not fully understood
yet. There are slight variations of gene expression possibly
due to differential promoter binding by the reprog-
ramming factors [12,68,69] or epigenetical reasons [70].
Hirose et al. [71] discussed that the initial culture condi-
tions for maintaining the undifferentiated state strongly
influence the differentiation propensity. The percent-
age of TH" DA neurons was consistent with most of
the previous results from other research groups, re-
porting between 3% to 30% TH" cells per total cells from
fibroblast-derived hiPSCs or directly reprogrammed hu-
man fibroblasts [6,10,12,43,65-67]. Higher percentages of

cord blood induced pluripotent stem cells.

mn r
A lff 110 pA
2ms
10 pA |
+10 uM NBQX 5s
+10 pM BIC

Figure 6 Differentiated hCBiPSC exhibited spontaneous synaptic activity. (A) Current traces recorded in whole-cell voltage-clamp mode
from a single cell of the hCBIPSC line K2 under control conditions (top) and following application of the AMPA receptor blocker NBQX (10 puM,
middle) or the GABA4 receptor blocker bicuculline (BIC, 10 uM, bottom). (B) Average frequency of spontaneous post-synaptic currents (PSCs).
Application of BIC significantly reduced the PSC frequency to 17.0% (n = 5), NBQX just slightly depressed PSCs to 74.5% (n = 5). hCBiPSC, human
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Figure 7 Differentiated hCBiPSCs showed KCI- and neurotransmitter-mediated Ca%t signaling. (A) hCBiPSC-K2 were loaded with Fura-2
after four weeks of differentiation in vitro. (B) Transient cytosolic Ca** changes of three representative cells induced by bath application of
acetylcholine (ACh, 100 uM), GABA (100 uM), glutamate (50 uM) and KCI (50 mM). Intracellular calcium concentrations are presented as ratios of
the fluorescence signals obtained at 340 and 380 nm (F340/F380). (C) Fractions of cells responding to ACh (25%), GABA (62%), glutamate (22%)
and KCl (68%) obtained from experiments as shown in (B). (D) Summary of cytosolic Ca** response amplitudes given as ratio F340/F380 (left) and
intracellular calcium concentration ([Ca®'];, right) both normalized to the basal calcium level of the cells. Basal intracellular Ca’" level was 100+ 8 nM
(n=57 cells). Note, GABA induced depolarizing effects in most investigated cells. All data are given as mean + SEM. hCBiPSC, human cord
blood induced pluripotent stem cells; SEM, standard error of the mean.

TH*/Tujl"* neurons (35% to 65%) could only be achieved  to those seen in neurons directly reprogrammed from hu-
by overexpression of developmental transcription factor, man fibroblasts [66]. Also, trains of APs or spontaneous
for example, LMX1A either alone or in combination with  firing as reported from some research groups [13,74] were
ASCL1 and NURR], or by co-culturing on stromal feeder  absent in our hCBiPSCs-derived neurons suggesting a yet
cells [9,64,72,73]. incomplete neuronal maturation after 40 days of differen-

It is even more important that neurons generated from  tiation. This is in line with the recorded resting membrane
hiPSCs are functional rather than just exhibiting a neu-  potential of -34 mV, which is slightly below the values
ronal morphology and gene expression pattern. The (-39 to -58 mV) that had been reported for hESC-derived
number of studies dealing with functional properties of = neurons or neurons generated directly from human fibro-
neurons generated from hiPSCs is currently quite limited  blasts [44,66,67,74]. The percentage of cells with inducible
[12-14,51,70]. While most studies show a few neuronal  APs strongly varies among several publications. We re-
features, we conducted a detailed analysis on voltage- and  corded nearly 40% neurons with APs, Stover et al. [14]
ligand-gated ion channels. Our data demonstrate the observed just 14%, whereas Zeng and colleagues [12] ob-
maturation of neuronal function in hCBiPSCs-derived  tained 75% firing cells. However, we were not able to yield
cells after in vitro differentiation. Previous approaches as high percentages of cells (50% to 100%) with inducible
to characterize fibroblast-derived hiPSCs elucidated APs as studies using hESCs [74] or methods to directly
that differentiated cells possessed voltage-gated current convert fibroblast to DA neurons (71% to 83%; [66,67]).
amplitudes of Ly, -195 pA/pF and Ix 208 pA/pF and were = The AP amplitudes of 51 mV on the other hand were
able to generate multiple APs [12]. The currents we mea-  similar to previous observations for hiPSC-derived neu-
sured displayed somewhat smaller mean amplitudes of rons (50 mV [12]) and within the range of studies with
Na -86 pA/pF and Iy 116pA/pF which were comparable hESC-derived nerve cells (35 to 50 mV [74]; 32 mV [44];
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74 to 84 mV [60]) and direct reprogrammed fibroblasts
(approximately 45 mV [67]; 78 mV [66]). AP durations
(3 ms) were also in the reported range of 1 to 7 ms
[44,60,66,67,74]. Whether prolonged in vitro differenti-
ation can give rise to fully mature hCBiPSC-derived neu-
rons or if in vivo maturation will be required, as shown by
Wernig et al. [75], remains to be investigated.

Measuring spontaneous PSCs as a sign of synaptic
connectivity in neuronal systems revealed that 40% of
differentiated cells exhibited spontaneous activity. This
is consistent with the work of Johnson et al. [74], ob-
serving maximal 50% of neurons with PSCs among dif-
ferentiating hESCs regardless of the maturation period.
Schaarschmidt et al. [76] reported 94% of neurons dif-
ferentiated from human fetal NPCs to receive synaptic
input. Interestingly, Johnson et al. [74] found that the
onset of synaptic activity is associated with the out-
growth of astrocytes in their cultures. Likewise, multiple
other studies have shown that co-cultivating neurons
with astrocytes enhances synaptogenesis [77-79]. Thus,
the disparity between the results could possibly be attrib-
uted to the number of astrocytes in the cultures. While we
had 14% GFAP" cells after differentiation, Schaarschmidt
and colleagues [76] reported more than 30%.

To our knowledge, we are the first group investigating
ligand-gated ion channels in differentiated neurons from
hiPSCs at all. We found that Ca** transients in differen-
tiated hCBiPSCs rose in a less pronounced fashion and
in a fewer percentage of cells (22%) when glutamate re-
ceptors were stimulated, compared to studies with diffe-
rentiated human fetal NPCs (>95%) [80]. On the other
hand, during application of GABA more cells (62%)
responded with higher Ca®>* amplitudes in comparison
with differentiated fetal NPCs (48%) [81]. The calcium
imaging results confirm our electrophysiological data in-
dicating a not yet fully mature neuronal phenotype. This
assumption is supported by the excitatory action of
GABA in differentiated hCBiPSCs. The ability of GABA
to depolarize cells depends on the intracellular Cl™ con-
centration. If the Cl™ importer NKCC1 is expressed
more pronounced than the Cl™ exporter KCC2, as it is
in the prenatal state of development, the intracellular
Cl™ concentration is high and GABA has a depolariz-
ing effect, because of a Cl efflux [82,83]. Neverthe-
less, we were able to show that hCBiPSC-derived neurons
exhibit functional ligand-gated ion channels during their
maturation in vitro.

Given their easy accessibility and low immunogenicity,
the interest in using iPSCs for regenerative cell therapy
is high. Animal studies have shown that iPSC-derived
neurons survive and integrate into the host brain and
are able to reduce motor symptoms in parkinsonian ani-
mal models [6,9,10,64,75]. However, several critical is-
sues such as graft survival and overgrowth or tumor
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formation remain obstacles to further preclinical studies.
It will have to be determined if the usage of juvenescent
rather than adult human cells for the derivation of iPSCs
may help to overcome these problems.

Conclusions

Our data indicate the successful and highly efficient
in vitro generation of hCBiPSC-derived neurons includ-
ing dopaminergic cells. We provide a detailed functional
analysis of voltage- and ligand-gated ion channels which
is a prerequisite for clinical applications. Our hCBiPSC-
derived neurons exhibit essential functional properties
and may serve as a juvenescent cell source for the deve-
lopment of novel regenerative treatment strategies.

Additional files

Additional file 1: Figure S1. Validation of amplicon sizes. The correct
sizes of the amplification products were determined by agarose gel
electrophoresis. Product sizes are indicated below the image. DNA ladder
reached from 25 to 766 base pairs (bp).

Additional file 2: Table S1. Oligonucleotides for quantitative real-time
PCR analysis of pluripotency and differentiation marker expression in
hCBiPSCs. Melting temperatures and sequences of oligonucleotides as
well as sizes of amplification products in base pairs are given for each
investigated marker gene.
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