
Bioimage informatics

BigDataProcessor2: a free and open-source Fiji plugin for

inspection and processing of TB sized image data

Christian Tischer1,2,3,*, Ashis Ravindran4, Sabine Reither2,3, Nicolas Chiaruttini5,

Rainer Pepperkok2,3 and Nils Norlin 3,6,7,*

1Centre for Bioimage Analysis, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany, 2Advanced Light

Microscopy Facility, EMBL, 69117, Heidelberg, Germany, 3Cell Biology and Biophysics Unit, EMBL, 69117, Heidelberg, Germany,
4University of Heidelberg, Department of Scientific Computing, 69120, Heidelberg, Germany, 5BioImaging & Optics Platform (BIOP),

Faculty of Life Sciences (SV), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, 6Department of

Experimental Medical Science, 221 84, Lund University, Lund, Sweden and 7Lund University Bioimaging Centre, 222 41, Lund

University, Lund, Sweden

*To whom correspondence should be addressed.

Associate Editor: Jinbo Xu

Received on August 12, 2020; revised on February 2, 2021; editorial decision on February 6, 2021; accepted on February 13, 2021

Abstract

Summary: Modern bioimaging and related areas such as sensor technology have undergone tremendous develop-
ment over the last few years. As a result, contemporary imaging techniques, particularly electron microscopy (EM)
and light sheet microscopy, can frequently generate datasets attaining sizes of several terabytes (TB). As a conse-
quence, even seemingly simple data operations such as cropping, chromatic- and drift-corrections and even visual-
isation, poses challenges when applied to thousands of time points or tiles. To address this we developed
BigDataProcessor2—a Fiji plugin facilitating processing workflows for TB sized image datasets.

Availability and implementation: BigDataProcessor2 is available as a Fiji plugin via the BigDataProcessor update
site. The application is implemented in Java and the code is publicly available on GitHub (https://github.com/bigda
taprocessor/bigdataprocessor2).

Contact: christian.tischer@embl.de or nils.norlin@med.lu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Inspection and processing of TB sized image data as produced by
state-of-the-art light-sheet and volume electron microscopy poses
several practical challenges (Power and Huisken, 2017). Even image
inspection can be burdensome, because loading the entire dataset
from disk into Random Access Memory (RAM), as it is usually done
for conventional MB to GB sized data, is not feasible due to the limi-
tations of a standard computer’s RAM. In addition, pixel-wise
image processing operations on the whole dataset can take hours
and may require data duplication on disk as the processed images
cannot be held in RAM.

The challenges of big image data inspection can be addressed by
lazy-loading schemes where only the portion of the data is loaded into
RAM that is needed to render the current view on the computer moni-
tor. There are several commercial and open source solutions that adopt
lazy-loading to interactively render big image data. The rendering modes
include fixed angle 2D slicing: ImageJ (Schneider et al., 2012); arbitrary
angle 2D slicing: BigDataViewer (Pietzsch et al., 2015); and 3D volume

rendering: Imaris (Oxford Instruments), Arivis Vision4D (Arivis AG),
Amira (Thermo Fisher Scientific), Vaa3D (Bria et al., 2016) and TDat
(Li et al., 2017). However, except for the fixed angle 2D slicing mode,
these solutions require the data to be saved in specifically chunked multi-
resolution file formats that enable efficient loading of arbitrary data por-

tions from disk into RAM. Due to write performance considerations,
raw microscopy data is typically not saved in a format that is compatible
with those requirements. In addition, raw microscopy data can have fur-
ther shortcomings. For example, only parts of the acquired data may be

of actual interest, either because larger fields of view have been acquired
to compensate for unpredictable sample motion, or scientifically interest-
ing phenomena have only occurred in specific parts of the imaged sam-
ple. Also, pixel density and bit-depth can be unnecessarily high, because
camera-based microscope systems with fixed pixel size and bit-depth

have been used. Moreover, there may be chromatic aberrations or other
shifts between acquired data channels or time points.

Taken together, to render raw microscopy data amenable for

analysis it typically needs to be re-saved in a suitable file format and a

VC The Author(s) 2021. Published by Oxford University Press. 3079

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(18), 2021, 3079–3081

doi: 10.1093/bioinformatics/btab106

Advance Access Publication Date: 17 February 2021

Applications Note

https://orcid.org/0000-0003-1970-3198
https://github.com/bigdataprocessor/bigdataprocessor2
https://github.com/bigdataprocessor/bigdataprocessor2
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://academic.oup.com/


number of processing operations such as cropping, binning, bit-depth
conversion, channel shift and drift correction might need to be applied.
It is important to realize that, if performed sequentially, each of these
processing steps requires loading, processing and re-saving of the entire
initially TB sized dataset, which, taken together, could take several
hours or even days. It would be much more efficient to load the raw
data, apply all processing steps and then re-save the data only once.

To this end, making use of ImageJ’s virtual stacks (Schneider
et al., 2012) for lazy-loading of big image data we previously devel-
oped BigDataProcessor1 (https://github.com/bigdataprocessor/bigda
taprocessor1), a Fiji plugin (Schindelin et al., 2012) facilitating inter-
active browsing, processing and re-saving of TB sized microscopy raw
data. BigDataProcessor1 has proven useful to conduct big image data
processing workflows similar to the one shown in Figure 1 (e.g.

Fig. 1. Overview of the user interface and an example workflow in BDP2. (a) Image browsing. Left: The main BDP2 window with the Open and Process dropdown menus

expanded (see also Supplementary Note S1). Right: BigDataViewer’s user interface. (b) Binning and channel alignment. Left: Original data (zoomed in). Middle: 3�3 binning

in X&Y, reducing noise and the size of the dataset by a factor of 3�3¼9. Binning (and all other processing operations) is performed by means of lazy computation and can

thus be configured interactively even for TB sized datasets. Right: Channel alignment, correcting a shift (green arrow) of the green relative to the magenta channel.

(c) Cropping. Left: First time point of the dataset with interactive cropping user interface. Middle: Last time point of the dataset with enlarged cropping area to include all rele-

vant data. Right: Cropped data, showing again the first time point. Thanks to BDP2’s lazy-loading and lazy-processing the above steps (a–c) can be executed in a few minutes.

Finally, the data could be re-saved using the Save menu (not shown). In this example, binning and cropping helped to reduce the size of the data from 244 to 4.8 GB without

loss of biologically relevant information

3080 C.Tischer et al.

https://github.com/bigdataprocessor/bigdataprocessor1
https://github.com/bigdataprocessor/bigdataprocessor1
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data


Alladin et al., 2020, Villani et al., 2019, Wolny et al., 2020). We thus
decided to reimplement and enhance BigDataProcessor1 using software
libraries dedicated to lazy-loading and lazy-processing of big image
data (Supplementary Note S9). The resulting BigDataProcessor2 is
described in this application note.

2 Implementation and application

BigDataProcessor2 (BDP2, https://github.com/bigdataprocessor/big
dataprocessor2) is built on ImgLib2 (Pietzsch et al., 2012), a Java li-
brary for processing of n-dimensional big image data. BDP2 can be
installed by activating the ‘BigDataProcessor’ Fiji update site. All func-
tionality is accessible both via a graphical user interface (Fig. 1a) and
via recordable scripts (Supplementary Note S2). BDP2 supports loading
of 5D (x, y, z, channel and time) image data via Bio-Formats (Linkert
et al., 2010) as well as loading TIFF (https://www.adobe.io/open/stand
ards/TIFF.html) and some HDF5 (The HDF Group, 1997) based
image files series (Supplementary Note S3), thereby accommodating
a majority of image data formats currently occurring in light sheet
and volume electron microscopy. For visualisation, BDP2 employs
BigDataViewer (Pietzsch et al., 2015), which provides arbitrary plane
slicing of 5D image data. As one microscopy camera image typically
contains only a few MB of data, it fits readily into RAM and can be
loaded within sub-seconds, given a data access bandwidth larger than or
equal to a few MB/s. These bandwidths are nowadays typically available
(Supplementary Note S7) and as such BDP2’s lazy-loading scheme
allows for interactive browsing of TB sized image data on a standard
computer (Supplementary Note S8).

Importantly, BDP2 also provides lazy image processing operations
reducing computations to only the pixels needed to render the currently
viewed image plane (Supplementary Fig. S1 and Supplementary Note
S9). At present, we support the following lazy processing operations
(Supplementary Note S4): affine transformed viewing, cropping, bin-
ning, bit-depth conversion, drift correction and channel alignment
(chromatic shift correction, split chip acquisition). Additional process-
ing operations can be contributed via the SciJava plugin framework
(see https://github.com/bigdataprocessor/bigdataprocessor2/blob/mas
ter/CONTRIBUTE.md). The compute times of currently available
operations are typically in the sub-second range for one image plane
(Supplementary Note S7) such that the user can interactively configure
all image processing steps while inspecting arbitrary locations in the
sample (Fig. 1 and Supplementary Movies S1 and S2). Once all proc-
essing steps have been configured, the dataset can be re-saved for fur-
ther analysis. We currently provide saving in TIFF and HDF5 based
formats, including lossless compression, with one file per 3D volume
(Supplementary Note S5). For TIFF, we also support saving each plane
to a separate file. For HDF5, we save the data in a chunked pyramidal
format allowing for efficient viewing with both BigDataViewer and
Imaris (Imaris v9.0, Bitplane AG).

3 Discussion and conclusions

Visualisation and processing of an image dataset conventionally
comprises loading this dataset from a storage device such as a hard
disk into a computer’s RAM from where it is accessed and processed
by the computer’s CPU. With the increasing size of image data in
biological research this mode of operation is becoming challenged.

Due to the size and to ensure data integrity, datasets are typically
not stored on the processing computer itself but inside the research
institute’s data centre, where it is accessed via a local area network
(LAN) connection. Loading a medium sized light sheet dataset (16 bit,
2048�2048�100�2�100; x, y, z, channels, time points) via a 1 Gbit/s
LAN connection would take 22 min and require 168 GB of RAM.
Applying a typical processing operation such as a 3�3�1 (x, y, z) aver-
age binning using ImageJ’s Transform>Bin command on a 2.5 GHz
Intel Core i7 (i7-7660U) on the whole dataset would take about 158 s
(about 0.5 Giga voxels/s). This example shows that processing opera-
tions on whole big image datasets require high-end computer hardware
with a large RAM and parameters of processing operations cannot be
interactively configured as they take more than a couple of seconds to

complete. Even if there were hardware solutions to achieve user-
friendly real-time performance we argue it is more compute resource
efficient to only process and inspect a representative subset of the data
to judge whether a processing step is adequately configured.

Once an appropriate processing pipeline is configured, the whole
dataset can be efficiently processed and re-saved in one go. Notably,
the processed data can be significantly smaller than the raw data
(Fig. 1) and thus much more efficient to work with. Unfortunately,
no standardized big image data file format has yet emerged and thus
one may have to re-save the data multiple times in formats optimized
for specific image analysis and visualization software. Thus, we con-
sider the establishment of a standard big image data file format as a
very important endeavour for the bioimaging community within the
next few years (Swedlow et al., 2020).

In conclusion, we consider our BigDataProcessor2 Fiji plugin to
substantially simplify the inspection and processing of big image
data. As big image data is becoming increasingly prevalent we are
positive that the already existing user base will grow even further in
the future.

Acknowledgements

The authors thank the EMBL IT-department for support, Tobias Pietzsch

(MPI CBG, Dresden) for help related to BigDataViewer, AshnaAlladin, Matthew

Boucher, Isabell Schneider (EMBL Heidelberg), Gustavo QuintasGlasner de

Medeiros (FMI Basel), Alexis Maizel (University Heidelberg), Marion Louveaux

(Institut Pasteur), Jan Rhoden (Bruker), BjoernEismann (Bruker), the Francesca

Peri lab (University of Zürich), Robert Haase (PoL TU Dresden) and our second

reviewer for testing, reading the manuscript and/or providing suggestions.

Funding

This work was supported by the Åke Wiberg foundation, Per-Eric and Ulla

Schyberg’s foundation, IngaBritt and Arne Lundberg foundation, Royal

Physiographic Society of Lund, Sigurd and Elsa Goljes Memorial Foundation

and a Corbel II grant (N.N.).

Conflict of Interest: none declared.

References

Alladin, A. et al. (2020) Tracking cells in epithelial acini by light sheet micros-

copy reveals proximity effects in breast cancer initiation. eLife, 2020, 9:

e54066.

Bria, A. et al. (2016) TeraFly: real-time three-dimensional visualization and

annotation of terabytes of multidimensional volumetric images. Nat.

Methods, 13, 192–194.

Imaris v9.0 Bitplane AG.

Li, Y. et al. (2017) TDat: an efficient platform for processing petabyte-scale

whole-brain volumetric images. Front. Neural Circuits, 11, 51.

Linkert, M. et al. (2010) Metadata matters: access to image data in the real

world. J. Cell Biol. 189, 777–782.

Pietzsch, T. et al. (2015) BigDataViewer: visualization and processing for large

image data sets. Nat. Methods, 12, 481–483.

Pietzsch, T. et al. (2012) ImgLib2 – generic image processing in Java.

Bioinformatics, 28, 3009–3011.

Power, R.M. and Huisken,J. (2017) A guide to light-sheet fluorescence micros-

copy for multiscale imaging. Nat. Methods, 14, 360–373.

Schindelin, J. et al. (2012) Fiji: an open-source platform for biological-image

analysis. Nat. Methods, 9, 676–682.

Schneider, C. et al. (2012) NIH Image to ImageJ: 25 years of image analysis.

Nat. Methods, 9, 671–675.

Swedlow, J. et al. (2020) A Global View of Standards for Open Image Data

Formats and Repositories. Arxiv:2010.10107v1.

The HDF Group.(1997) The HDF Group. Hierarchical Data Format, version

5, 1997-NNNN.

Villani, A. et al. (2019) Neuronal clearance by microglia depends on packag-

ing of phagosomes into a unique cellular compartment. Dev. Cell, 49,

77–88.

Wolny, A. et al. (2020) Accurate and versatile 3D segmentation of plant tissues

at cellular resolution. eLife, 2020, 9:e57613.

BigDataProcessor2 3081

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://github.com/bigdataprocessor/bigdataprocessor2
https://github.com/bigdataprocessor/bigdataprocessor2
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://www.adobe.io/open/standards/TIFF.html
https://www.adobe.io/open/standards/TIFF.html
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://github.com/bigdataprocessor/bigdataprocessor2/blob/master/CONTRIBUTE.md
https://github.com/bigdataprocessor/bigdataprocessor2/blob/master/CONTRIBUTE.md
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab106#supplementary-data

