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Carotenoids: potential allies of cardiovascular health?
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Abstract

Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential

antioxidant biological properties because of their chemical structure and interaction with biological

membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive

means of both primary and secondary cardiovascular disease (CVD) prevention. In fact, the oxidation of low-

density lipoproteins (LDL) in the vessels plays a key role in the development of atherosclerotic lesions. The

resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of

food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further

properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of

blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive

protein), and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent

nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of

specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some

carotenoids to prevent CVD.
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C
arotenoids are largely widespread in the vegetable

kingdom and are found in high concentrations

in algae and microorganisms. Humans and other

animals cannot synthesize them, so they are necessary in

their diet. The great family of carotenoids encompasses

more than 500 members, about 50 are present in our food,

but only 20 are absorbed in the intestine and reach our

body tissues (1). Carotenoids are classified, according to

their chemical structure, into carotenes and xanthophylls.

Carotenes include beta-carotene and lycopene and xan-

thophylls include lutein, fucoxanthin, canthaxanthin,

zeaxanthin, beta-criptoxanthin, capsorubin, and astax-

anthin (2, 3). The antioxidant properties of carotenoids

have been considered the main mechanism of their bene-

ficial health effects (4). However, it would be difficult to

explain all the physiological effects of carotenoids merely

by their antioxidant activity. Carotenoid serum concen-

tration reflects diet, since we only get carotenoids from

food, with the exception of dietary supplements. However,

carotenoids are part of a complex metabolism and respond

to systemic forces. Circulating carotenoids will in parti-

cular be lower if they exist in a highly free radical (FR)

environment. In particular, they are lower in cigarette

smokers, and even in passive smokers, than in non-

smokers, while correct dietetic patterns, such as ‘Mediter-

ranean diet’, are more closely related with circulating

carotenoids, compared to the total carotenoid content of

the eaten food. Carotenoids have been found in various

human organs and tissues, such as human liver, lung,

breast, cervix, skin, adipose, and ocular tissues. The major

storage places are represented by adipose tissue and liver.

Tissues containing large amounts of low-density lipopro-

tein (LDL) receptors seem to accumulate high levels of

carotenoids, probably as a result of non-specific uptake by

lipoprotein carriers. Nutrition plays a significant role in

the prevention of many chronic diseases such as cardio-

vascular disease (CVD), especially coronary heart disease

(CHD) and stroke (5). In particular, thrombotic disease

is the consequence of traditional risk factors such as

smoking, hypertension, hyperlipidemia, insulin resistance,

diabetes, and obesity. Recently, novel risk factors were

investigated such as high sensitive C-reactive protein (hs-

CRP) and other markers of inflammation, such as homo-

cysteine, and lipoprotein-a (6). Along with genetic factors

and age, lifestyle and diet are also considered important

risk factors (7). Dietary interventions should be the initial
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step in the treatment of CVD. In particular, carotenoids,

a group of phytochemical substances that are responsible

for the color of some foods, may play an important role

in the prevention of human diseases and in the main-

tenance of good health (8): as part of a balanced diet, these

nutrients are responsible, in part and through a synergistic

cooperation with other useful antioxidants, for the benefit

of some food patterns such as the Mediterranean diet.

Astaxanthin

Astaxanthin is a red soluble pigment belonging to the

family of xanthophylls, abundant in the marine world,

where it can be found in microalgae, plankton, krill, fish,

and other seafood. It is responsible for the typical col-

oration of salmon and crustaceans (9). Humans are not

able to synthesize astaxanthin and need to take it from

food. Once introduced, the duodenum absorbs it, and it

passes into the blood, reaches the liver, where it binds to

lipoproteins before being distributed throughout the

whole body. Through its high lipophilicity, it can also

cross the blood�brain barrier and reach the brain and eye

structures. Astaxanthin cannot be converted to vitamin A,

which means that excess intake will not cause hypervita-

minosis A toxicity (9, 10). In 1987, the United States Food

and Drug Administration approved astaxanthin as a feed

additive for use in the aquaculture industry and in 1999 it

was approved as a nutraceutical human dietary supple-

ment. The microalgae Haematococcus pluvialis, one of the

most important species for its production, is a freshwater

species of Chlorophyta that produces the astaxanthin

isomer (3S, 3S?), which is the form found in wild salmon.

Astaxanthin used in nutritional supplements is usually a

mixture of configurational isomers produced by Hae-

matococcus pluvialis (11). Astaxanthin showed potential

capacity for protecting the organism against a wide range

of diseases, and considerable promising applications in

the prevention and treatment of various oxidative stress-

related diseases, such as cancers, chronic inflammatory

diseases, metabolic syndrome, diabetes, diabetic nephro-

pathy, liver and gastrointestinal diseases, neurodegenera-

tive diseases, and even CVD (12�15), considering that

oxidative stress is a pathophysiological process involved in

atherosclerotic vascular damage (16). Astaxanthin has a

strong antioxidant activity, is a great FRs scavenger and in

particular a potent quencher of radical oxygen species

(ROS) and nitrogen oxygen species (NOS) (17). Several

studies showed that its unique chemical structure makes it

more stable within the cell membranes, thus allowing a

more efficient antioxidant action. Intracellular FRs are

captured by astaxanthin and transferred to the extracel-

lular side where they are inactivated by the action of water-

soluble antioxidants such as vitamin C. In this way, it is

possible to explain the close synergy between hydrosoluble

and liposoluble antioxidants (18). Many works highlight

that astaxanthin improves blood lipid profile by reducing

LDL-cholesterol (LDL-C) and triglycerides (TG), increas-

ing high-density lipoprotein cholesterol (HDL-C), and

decreasing markers of lipid peroxidation (19), inflamma-

tion (20, 21), and thrombosis (22). Yoshida et al. (23)

demonstrated in a randomized placebo-controlled human

study (61 non-obese subjects aged 20�65) that astaxanthin

consumption (0, 6, 12, and 18 mg/day for 12 weeks)

ameliorates TG and HDL-C in correlation with increased

adiponectin in humans. Iwamoto et al. (19) demonstrated

a significant inhibition of LDL-C oxidation in 24 healthy

volunteers who took doses of astaxanthin (from 1.8 to 21.6

mg/day for 2 weeks). Park et al. (24) studied the effects of

dietary supplementation of astaxanthin (0, 2, and 8 mg/

day, over 8 weeks) on oxidative stress and inflammation:

participants taking 2 mg/day had lower hs-CRP at Week 8:

the hs-CRP is considered an important indicator of heart

disease. There was also a decrease in DNA damage meas-

ured using plasma 8-hydroxy-2?-deoxyguanosine after 4

weeks’ treatment. Another potential benefit to cardiovas-

cular health is the fact that astaxanthin lowers the blood

pressure and the risk of heart attack for its modulatory

effects on nitric oxide (NO) (25, 26); in fact, Hussein et al.

(27) found that oral administration of astaxanthin for

14 days significantly lowered the arterial blood pressure

in spontaneously hypertensive rats, and the long-term

administration for 5 weeks could also delay the incidence

of stroke in spontaneously hypertensive rats (27). Also,

Pashow et al. suggested that there might be a potential

therapeutic role for astaxanthin in the management of

myocardial injury, oxidized LDL, and re-thrombosis after

thrombolysis, as well as other cardiac diseases, such as

atrial fibrillation (17). However, these short-term benefits

in vitro and in animal models are not sufficient to affirm

undoubtedly that carotenoids are clearly beneficial for

CVD and other diseases, in particular, if we consider that

their supplemental, isolated form in doses much larger

than usual in diet have not frequently showed long-term

benefits (28) against several null or adverse studies of some

carotenoids supplements (29�31).

Fucoxanthin

Fucoxanthin is an orange carotenoid present in edible

brown seaweeds, such as Undaria pinnatifida (Wakame),

Hijikia fusiformis (Hijiki), Laminaria japonica (Ma-

Kombu), and Sargassum fulvellum. It belongs to the class

of non-pro-vitamin A carotenoids, and is a xanthophylls,

whose distinct structure includes an unusual allenic bond,

epoxide group, and conjugated carbonyl group in polyene

chain with antioxidant properties (32, 33). Dietary admini-

strated fucoxanthin is converted to amarouciaxanthin A

via fucoxanthinol in mice (34, 35). This metabolic conver-

sion, requiring NAD(P)� as cofactor, was also observed in

human hepatoma cell (HepG2) (36). Dietary fucoxanthin

is hydrolyzed to fucoxanthinol in the gastrointestinal tract

by digestive enzymes such as lipase and cholesterol esterase
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and then converted to amarouciaxanthin A in the liver (37).

Thus, these metabolites are considered to be the active

forms that exert physiological functions in the body.

Amarouciaxanthin A is stored in abdominal white adipose

tissue (WAT), fucoxanthinol in other tissues (38). Cur-

rently, there are few data about pharmacokinetics of

fucoxanthin and its metabolites in human subjects. Recent

studies reported that fucoxanthinol was detectable in

human plasma after daily intake of Wakame. Data about

pharmacokinetics of fucoxanthin demonstrated that bioa-

vailability and metabolism of fucoxanthinol is higher in

humans than in mice (39�41), but fucoxanthin absorption

rate is generally affected by the composition of food

matrix: for example, its solubility in soybean oil and in

other vegetable oils is very low, while fucoxanthin can

easily dissolve in medium-chain triacylglycerols (MCT) or

in fish oil (42). Fucoxanthin acts on the reduction of major

cardiovascular risk factors, such as obesity, diabetes, high

blood pressure, chronic inflammation, plasma and hepatic

triglyceride, and cholesterol concentrations (43�45). The

identification of substances that can decrease or prevent

obesity remains the main goal of medical research. Adap-

tive thermogenesis by uncoupling protein-1 (UCP1) could

be a physiological defense against obesity (43). UCP1

expression is known to be a significant component of

whole body energy expenditure, and its dysfunction

contributes to the development of obesity (46). In fact,

during normal metabolism, the body produces heat, a

process also called thermogenesis, and fucoxanthin in-

creases the amount of energy released as heat in fat tissue.

UCP1 induction by fucoxanthin metabolites accumulated

in WAT is of great interest because UCP1 is normally

expressed only in brown adipose tissue (BAT) and not in

WAT. This protein, situated in the mitochondrial inner

membrane, dissipates the pH-gradient generated by oxida-

tive phosphorylation, releasing chemical energy as heat.

UCP1 expression in WAT by fucoxanthin intake leads to

oxidation of fatty acids and heat production in WAT (47).

Fucoxanthin was found to induce both protein and mRNA

expression of UCP1 in WAT (44). This finding will give a

clue for new dietary anti-obesity therapies. All these

promising scientific findings have been obtained through

animal studies, and therefore the fucoxanthin, to keep

its promises of anti-obesity nutraceutical, needs to be

extensively tested on humans. Only one study has been

conducted in humans, which has evaluated the effective-

ness of fucoxanthin supplementation for weight loss. In

this study, Abidov et al. (48) tested the fucoxanthin in 151

non-diabetic, obese premenopausal women. Three quar-

ters of participants were affected by non-alcoholic fatty

liver disease (NAFLD), while the remaining had a normal

liver function. The women were divided into two groups

and invited to take respectively 600 mg of Xanthigen,

which contains 300 mg pomegranate seed oil (PSO) and

300 mg brown seaweed extract containing 2.4 mg fucox-

anthin or a placebo for 16 weeks. The diet was reduced to

1,800 kcal per day and was composed of 50% carbohy-

drates, 30% protein, and 20% fat. The results provided a

significant reduction of body weight, fat, and systolic/dia-

stolic blood pressure; decreased levels of TG and of some

enzymes (CRP, glutamic pyruvic transaminase (GPT), glu-

tamic oxaloacetic transaminase (GOT), gamma-glutamyl

transpeptidase (gamma-GT)), and significant increase in

resting energy expenditure (REE) measured by indirect

calorimetry. The 16-week supplementation with 4.0 mg/

day fucoxanthin showed an important increase in REE and

an even greater increase in the group taking fucoxanthin at

a dose of 8 mg. Obese patients with NAFLD commonly

present elevated markers of liver inflammation and injury,

including CRP, GOT, GPT, and gamma-GT (49). A

significant reduction in body weight and fat in obese

individuals results in the downregulation of inflammatory

markers and prevent metabolic syndrome. It has been

demonstrated that increased GPT and CRP plasma levels

are associated with decreased hepatic insulin sensitivity,

insulin resistance, and an increased risk for the onset of

metabolic syndrome and type 2 diabetes. The potential

antidiabetic effects of fucoxanthin are attributable to the

ability of this molecule to induce weight loss and WAT

reduction. The adipocyte has recently been recognized as

an endocrine cell for its role in the secretion of biologically

active mediators, termed adipokines/chemokines, including

leptin, adiponectin, resistin, tumor necrosis factor-alpha

(TNF-alpha), and monocyte chemoattractant protein-1

(MCP-1). Some adipokines are reported to alter insulin

sensitivity and glucose and lipid metabolism in muscle,

liver, and adipose tissues (50). The participation of macro-

phages in inflammatory responses by the release of pro-

inflammatory mediators (TNF-alpha and MCP-1) under

obesity conditions has also been reported. The chronic

low-grade inflammation elicited by pro-inflammatory

mediators in the WAT leads to insulin resistance (51). A

recent study, using cultivated cells, showed that fucox-

anthinol prevents inflammation and insulin resistance also

by inhibiting NO and PGE2 production through the

downregulation of inducible nitric oxide synthase (iNOS)

and COX-2 mRNA expression as well as adipocytokine

production in WAT. iNOS is an enzyme that produces NO,

which is a FR molecule related to the pathogenesis of

inflammation. The overexpression of iNOS mRNA has

been observed in WAT of obese mice and adipocytes (52).

An interesting, extra metabolic benefit of fucoxanthin

administration in rodents is the promotion of the synthesis

of docosahexaenoic acid (DHA) in the liver, resulting in

improvements in lipid profile (53). Experiments on stroke-

prone spontaneously hypertensive rats (SHRSP) show the

possible protective role of fucoxanthin in CVD. Thirty-

three male SHRSP rats, 5 weeks of age, were divided into

three groups: 1) kaolin group, which was given a normal

diet (kaolin is a non-nutrient material); 2) Wakame
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(Undaria Pinnatifida) group (normal diet containing

Wakame powder); and 3) cellulose group (normal diet

containing cellulose). In this study, Wakame delayed the

incidence of stroke signs and increased the life span of

SHRSP (54). Clinical research also indicated that the

metabolic boost from taking fucoxanthin did not stimulate

the central nervous system, meaning it did not cause jitters

or loss of sleep such as caffeine, nicotine, or thyroid hor-

mones. So the fucoxanthin may have a potential role in

modulation and prevention of human diseases, particu-

larly in reducing the incidence of CVD (55). As a caro-

tenoid, fucoxanthin is a powerful antioxidant that protects

cells from FRs damage. A diet rich in fucoxanthin could

help to reduce body fat accumulation and to modulate

blood glucose and insulin levels, through the regulation

of cytokine secretions from WAT. Fucoxanthin proved

safe with no side effects, and even provided other health

benefits, including improved cardiovascular health, reduc-

tion of inflammation (a major cause of heart disease),

healthy cholesterol and TG levels, improvements in blood

pressure levels, and healthy liver function (56).

Lycopene

Lycopene is the pigment responsible for the red color in

some fruits and vegetables, which can be found in high

concentration in tomato products, red grapefruits, and

watermelons (57�60). It is an unsaturated carotenoid,

resulting in an efficient antioxidant, and consumption

can prevent both aging and CVD (61�65) because of its

important bioactivities. It seems to eliminate ROS, to

inhibit lipid peroxidation, and even to reinforce the

immune system (57�60). In fact, it is a lipophilic molecule

transported in blood by lipoproteins which accumulates in

human tissues, also in the vasculature (66). Low plasmatic

levels of antioxidant vitamins A, E, beta-carotene, and

lycopene were shown to be associated with early carotid

atherosclerotic lesions (67). In particular, the Rotterdam

Study reported that lycopene was inversely associated

with the calcified plaques of the abdominal aorta (62),

and several works have clearly associated lycopene with

reduced carotid intima-media thickness and lower inci-

dences of cardiovascular accidents, such as CHD and

stroke (63). The antiatherogenic effect of lycopene is asso-

ciated with anti-inflammatory activities, better lipid home-

ostasis (65) (determining higher serum HDL-C, lower

ratio of total cholesterol to HDL, and lower triacylglycerols),

antioxidation and consequent inhibition of LDL perox-

idation, and protection of vascular endothelium. In fact,

lycopene was shown to decrease vascular oxidative stress

and inflammation, blood lipid biomarkers of oxidative

stress in vivo (68), and attenuate adhesion molecule

expression and interactions between monocytes and

endothelial cells (69). This anti-inflammatory effect was

realized by inhibiting IL-1 secretion, which is a key factor

in inflammatory processes inducing the synthesis of other

pro-inflammatory cytokines, adhesion molecules, chemo-

tactic factors, and acute-phase proteins (70, 71). The

production of flogistic mediators (such as IL-1, IL-6, and

TNF) and the following recruitment of leukocytes to the

intima is involved in the early formation of atherosclerotic

lesions, conducing to the chronic inflammatory process

of atherosclerosis (72). In addition, lycopene displayed

positive effects on the maintenance of NO levels, con-

tributing to vasodilatation, even resulting in a more

effective slowing of the progression of atherosclerosis

than by fluvastatin, thereby reducing the cardiovascular

risk (73). These results suggest the beneficial effect of

higher serum and tissue levels of lycopene: for this reason

dietary intake of lycopene (especially if diet is also rich in

extra-virgin olive oil) (74) or lycopene supplementation

(75) seems to decrease the risk of CVD (62, 76). However,

several factors can affect lycopene bioavailability and

absorption: season, dietary sources, food composition,

and processing such as cooking or heating (77), which

were reported to transform all-trans-lycopene to cis-

lycopene (78), which is better absorbed. So higher serum

levels of lycopene were found when tomatoes have been

consumed cooked rather than raw (79). On the contrary,

too much prolonged heat treatment (more than 2 h at

1008C) of tomatoes decreases the total carotenoid content,

also affecting the beneficial effects against dyslipidemia

and cardiovascular risk (80).

Lutein

Lutein is a pigment (xanthophyll) and a dietary oxyge-

nated carotenoid consisting of 40-carbon hydroxylated

compounds found in the human retina in high concen-

tration (81). It is an isomer of the carotenoid zeaxanthin,

with identical chemical formulas. Similarly to zeaxanthin,

it can just be obtained from supplements or diet, found in

several foods, such as yellow corn, egg yolk, orange juice,

honeydew melon, and other fruits (82), but especially

occurring in dark green vegetables such as turnip greens,

kale, parsley, spinach, and broccoli (83). Lutein, which

has been shown to prevent lipid peroxidation (84), is

well-known to be protective against age-related macular

degeneration (AMD) and senile cataract (85, 86), whose

major risk factor is oxidative stress (87). In fact, lutein

has a strong ROS scavenger capacity (88, 89), blocks the

activation of the ubiquitous nuclear transcription factor

NF-kB playing a key role in many pathological reactions

(90) and the degradation of the inhibitor kB (I-kB) (91).

When I-kB is dissociated from the NF-kB complex by

lutein, NF-kB can translocate into the nucleus, decreas-

ing inducible gene transcription and synthesis of inflam-

matory markers such as cytokines, chemokines, and

iNOS (92). The final effect of lutein involves not only

decreasing the concentrations of TNF-alpha, interleukin

6 (IL-6), prostaglandin 2 (PGE-2), monocyte chemotac-

tic protein 1 (MCP-1), and macrophage inflammatory
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protein 2 (MIP-2) (91) but also reducing oxidative stress.

However, its antioxidant and anti-inflammatory capacity

have been shown to have a positive influence not only on

eyes but also in promoting cardiovascular health and

decreasing the risk of CAD (93). Recent studies showed

that plasmatic lutein and oxidized LDL were inversely

correlated, suggesting its potent antioxidant and anti-

inflammatory effects also on aortic tissue, which may

protect against development of atherosclerosis (94). In

fact, several works suggest that in atherosclerosis, serum

levels of lutein were significantly lower than that in con-

trols, and that it was inversely associated with carotid stiff-

ness (95). In addition, the ARIC (96) and the CUDAS

studies (97) displayed a possible beneficial effect of a

lutein-rich diet, and also the Los Angeles Atherosclerosis

Study showed the inverse association between plasmatic

lutein and atherosclerosis, so that higher levels of lutein

(such as zeaxanthin and beta-carotene) may be protective

against early atherosclerosis (98, 99). A beneficial effect

of lutein on heart and blood vessels was also related to

prevention of hypertension. A higher concentration of

this carotenoid was generally inversely associated with an

increase in systolic blood pressure and incidental hyper-

tension. Subjects with higher lutein levels seem to show

lower baseline blood pressure, generally with lower risk

for future hypertension, independent of smoking status

(100). In addition, lutein seems to exert a cardioprotective

effect, bringing therapeutic benefit in the treatment of

cardiovascular complications. In fact, FRS and oxidative

stress are known to be mediators of myocardial ischemia/

reperfusion damage (the restoration of blood flow to

ischemic regions, with increased generation of highly

reactive oxygen species) (101�103). Lutein protects myo-

cardium from ischemia/reperfusion injury by decreasing

oxidative stress and myocytes apoptosis (104). Limiting

myocardial injury may prevent contractile dysfunction,

reducing morbidity and mortality associated with CAD

(105).

Zeaxanthin

Like lutein, zeaxanthin is an oxygenated non-pro-vitamin

A carotenoid that consists of a 40-carbon hydroxylated

compound (106). Major dietary sources of this xantho-

phyll in the diet include corn, eggs, orange juice, honeydew

melon, and dark green leafy vegetables such as kale, turnip

greens, spinach, and broccoli (83). The area of the retina

serving central vision is known as the macula lutea because

of its yellow coloration from lutein; however, it also

contains zeaxanthin. The relative concentration of lutein

to zeaxanthin in the macula is distinctive: zeaxanthin is

more centralized and lutein predominates toward the

outer area of the macula. A xanthophyll-binding protein

may explain the differences among people to accumulate

these carotenoids into eye tissues. Increased lutein and

zeaxanthin intake from both food sources and supple-

ments is positively correlated with increased macular

pigment density, which is theorized to lower risk for

macular degeneration; in fact, several population studies

suggest lower rates of AMD among people with higher

levels of zeaxanthin in diet and blood. Possible mechan-

isms of action for these carotenoids include antioxidant

protection of the retinal tissue and the macular pigment

filtering of damaging blue light (107). In addition to

quenching reactive oxygen species directly, zeaxanthin

may prevent protein, lipid, or DNA from oxidative dam-

age by regulating other cellular antioxidant systems. Glu-

tathione is one of the major intracellular antioxidants not

only in the lens and plays an important role in protecting

cells from oxidative damage (108). In this sense, the protec-

tive effects of zeaxanthin, against protein oxidation, lipid

peroxidation, and DNA damage resulted to be compar-

able to a-tocopherol: supplementation with zeaxanthin

or a-tocopherol decreases oxidized glutathione (GSSG)

and increases the intracellular reduced glutathione (GSH)

levels and GSH/GSSG ratio, especially in response to

oxidative stress. Thus, zeaxanthin acts as an antioxidant in

a directly or indirectly, by regulating glutathione synthesis

and therefore glutathione levels. As a consequence, in-

tracellular redox status upon oxidative stress improves and

the susceptibility to H2O2-induced cell death reduces (82).

Zeaxanthin is not only implied in the health of the eye

but also in cardiovascular aspects, such as beta-carotene;

zeaxanthin, which resulted inversely correlated with right

common carotid artery stiffness; pulse wave velocity; and

elastic modulus. The Beijing atherosclerosis study and the

Los Angeles Atherosclerosis study also found the inverse

association between plasma lutein and early atherosclero-

sis, and their further studies showed that higher levels of

plasma zeaxanthin may be protective against early athero-

sclerosis (99). These results indicated that zeaxanthin

might be beneficial to arterial health.

Beta-cryptoxanthin

Beta-cryptoxanthin is a xanthophylls and one of the lesser-

known carotenoids, whose best food sources are oranges,

peach, tangerines, and tropical fruits such as papaya. It

also has pro-vitamin A activity and seems to have protec-

tive health action. Many epidemiological studies showed

that dietary beta-cryptoxanthin is associated with improved

respiratory function and lower rates of lung cancer: in

fact, some prospective studies on dietary intake, lifestyle,

and neoplasia identified beta-cryptoxanthin as a protec-

tive nutrient (109). In addition, in tissue culture, beta-

cryptoxanthin has a direct stimulatory effect on bone

formation and an inhibitory effect on bone resorption

(110). Epidemiologic studies suggest that the antioxi-

dant potential of dietary carotenoids, such as beta-

cryptoxanthin, may protect against the oxidative damage

that can result in inflammation. The European Prospec-

tive Investigation of Cancer Incidence (EPIC)-Norfolk
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study, a population-based prospective study of 25,000

subjects, showed that an increase in beta-cryptoxanthin

intake, equivalent to one glass of freshly squeezed orange

juice every day, was associated with a reduced risk of

developing inflammatory disorders such as inflammatory

polyarthritis, which is a synovitis affecting two joint

groups, and rheumatoid arthritis (111). The Iowa Wo-

men’s Health Study, a large prospective population-based

study of 29,000 women aged 55�69 recently reported a

protective effect against the development of RA of a high

dietary intake of beta-cryptoxanthin but not of beta-

carotene, lutein, and zeaxanthin (112): probably the

influence of beta-cryptoxanthin on some markers of

inflammatory activity may be stronger than those of other

carotenoids. It was recently postulated that this role of

circulating antioxidants, as scavengers of FRs and inhibi-

tors of oxidative damage leading to the suppression of

inflammation, might also have a role in the prevention of

CVD. Further epidemiologic studies displayed that CRP

and oxidized LDL-cholesterol concentrations, which have

also been linked to the development of CVD, are inversely

related to serum concentrations of circulating antioxi-

dants, including beta-cryptoxanthin (113). A recent report

found that in the general population obesity is negatively

related to serum concentrations of beta-cryptoxanthin

and positively related to CRP (114). Thus, we could

suppose that beta-cryptoxanthin may also be associated

with a reduced cardiovascular risk.

Beta-carotene

Beta-carotene is one of the most widely studied carote-

noids for both its pro-vitamin A activity and its abundance

in fruits and vegetables, such as carrot, orange, kale, spin-

ach, turnip greens, apricot, and tomato. It serves as a

prehormone that is converted into retinoic acid (RA),

which functions as a ligand, regulating the expression of

genes involved in metabolic processes (115). Natural beta-

carotene comprises several isomers, including all-trans

and 9-cis b-carotene. Several epidemiological studies

displayed that an abundance of carotenoids in the diet

may be protective against many diseases, reducing the

risk of CVD and some forms of cancer. In particular, this

carotenoid may increase immunological functions by

enhancing lymphocyte proliferation and possess antiox-

idant capacity: the enrichment of LDL with b-carotene

in vitro has been shown to reduce the susceptibility of LDL

to oxidative modification (116). Another interesting mechan-

ism to elucidate why carotenoids can prevent CVD is the

modulation of vascular NO bioavailability thanks to their

reducing activity. In fact, it is well known that one of the

earliest pathogenic events in atherosclerosis is represented

by the overexpression of cell surface adhesion molecules,

which causes the binding of normally non-thrombogenic

circulating cells, such as monocytes, to the endothelium:

the activation of NF-kB pathway triggers the upregulation

of the expression of the vascular cell adhesion molecules

(VCAM-1), intercellular cell adhesion molecules (ICAM-1),

and E-selectin in response to various inflammatory

cytokines (117). NO, constitutively generated by endothe-

lial cells, plays an important role in the maintenance of

vascular homeostasis and in the pro-inflammatory re-

sponse that characterizes the early stages of atherosclerosis:

it inhibits the vascular inflammatory response by blocking

NF-kB nuclear transfer. A recent study (118) reported that

beta-carotene, similar to lycopene, affects NF-kB-dependent

expression of adhesion molecule and monocyte� human

umbilical vein endothelial cell (HUVEC) interaction in-

duced by TNF-alpha and protect NO bioavailability,

thereby reducing TNF-alpha-induced nitro-oxidative stress.

In a model of vascular inflammation, the presence of

high concentrations of beta-carotene is associated with

a significant increase in NO level and bioavailability, as

indicated by the increase in cGMP levels: an increased

release of NO lead to a downregulation of the expression

of NF-kB-dependent adhesion molecules in endothelial

cells (119). The maintenance of endothelial NO bioavail-

ability is therefore considered beneficial to endothelial

functions and more in general to vascular health. The

9-cis-beta-carotene isomer, present in the highest levels in

the alga Dunaliella bardawil, showed positive results too:

a recent study demonstrated that combined treatment with

the drug bezafibrate and Dunaliella powder enhanced

the effect of the fibrate on HDL-cholesterol elevation in

human apolipoprotein (120). In fact, the effect of fibrates

on HDL levels is suggested to be mediated by its bind-

ing to peroxisome-proliferator-activated receptor (PPAR)

alpha. Upon ligand binding, PPAR-alpha heterodimerizes

with the 9-cis RA receptor (RXR) and this heterodimer

regulates gene expression. The hypothesis is that a com-

bined treatment with fibrate and 9-cis-beta-carotene rich

powder of the alga Dunaliella bardawil, as a source of 9-cis

RA, would improve the drug’s effect on HDL levels (120).

Other studies demonstrate that a 9-cis-beta-carotene-rich

diet may inhibit atherosclerosis by reducing non-HDL

plasma cholesterol concentrations and by inhibiting fatty

liver development and inflammation in a mouse model

of atherosclerosis (121). Both pathological examination

and gene expression showed that a beta-carotene-rich

diet reduced inflammation in the livers of mice, by

reducing the expression of IL-1a, VCAM-1, and E-

selectin. The high-cholesterol diet was shown to induce

the expression of several pro-inflammatory genes in the

liver and liver inflammation has been suggested to con-

tribute to atherosclerosis; therefore, the reduced levels

of these genes in Dunaliella-treated mice can contribute

to the protection against diet-induced liver damage and,

consequently, atherogenesis. Similar to rexinoids, the 9-

cis-rich diet significantly reduced mRNA levels of CYP7a,

the rate-limiting enzyme of bile acid synthesis (122)

and consequently it may reduce cholesterol absorption in
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the intestine. The 9-cis-beta-carotene-rich diet also re-

duced the expression of other genes involved in cholesterol

metabolism, ABCG1, ABCG5, and ABCG8. These trans-

porters are expressed in the liver and play a role in

excreting cholesterol and therefore, can be expected to

reduce atherogenesis. The beneficial effects on plasma

lipids in humans suggest that 9-cis-beta-carotene have the

potential to inhibit atherosclerosis progression in humans

and probably has the potential to reduce the inflammatory

process in general. Also, the Manfredonia Study (whose

aim was to assess the relationship between asymptomatic

carotid atherosclerosis, as defined by carotid intima-media

thickness, and inflammatory markers, plasma lipids, and

serum antioxidant vitamins) examined 640 subjects with

carotid ultrasound investigation, and the collection of

medical history and laboratory data, in order to evaluate

beta-carotene effects on the cardiovascular system. Among

participants with carotid intima-media thickness ]0.8 mm,

body mass index, blood pressure, total cholesterol, LDL-

C, triglycerides, uric acid, CRP, and fibrinogen were

significantly higher; concentrations of vitamin A, vitamin

E, lycopene, and beta-carotene were lower when compared

with participants who did not show evidence of carotid

atherosclerosis. This study concluded that the optimal

control of hypertension, diabetes, and dyslipidemia, in

addition to smoking cessation and an adequate intake of

antioxidant micronutrients from foods represent a key

for the prevention of atherosclerotic disease (123). Finally,

beta-carotene resulted implied even in the control of body

fat reserves (124): in mature adipocytes, beta-carotene

is metabolized to RA, which decreases the expression

of PPAR-alpha and CCAAT/enhancer-binding protein,

which are key lipogenic transcription factors. Thus, beta-

carotene reduces the lipid content of mature adipocytes.

Animal studies indicate that diets low in vitamin A favor

adipose tissue formation and enhance formation of

intramuscular fat. Regulation of fat reserves by dietary

vitamin A can be explained by the metabolism of vitamin

A to biologically active retinoid derivatives, which then

impact the differentiation and function of adipose tissue.

The vitamin A derivative all-trans-RA has been shown to

inhibit adipocyte differentiation in cell culture (125). In

mature adipocytes, treatment with pharmacological doses

of RA can induce lipolysis, mitochondrial uncoupling,

and influence the production of adipokines (126) both in

cell culture and mouse models. So, a diet rich in beta-

carotene and fat directs toward energy expenditure, but in

the absence of beta-carotene, adipocytes store energy as

fat. In fact, in humans, circulating beta-carotene levels are

inversely correlated with risk of type 2 diabetes and obesity

(127), which are important cardiovascular risk factors.

However, these benefits are associated with dietary con-

sumption and seem to disappear when beta-carotene is

administered as a pharmacological supplement, resulting

in harmful effects in some subpopulations: administration

of synthetic all-trans b-carotene to smokers seems to

increase the incidence of lung cancer and CVD (29). In this

respect, the Alpha-Tocopherol, Beta-Carotene Cancer

Prevention (ATBC) Study, conducted in Finland as a

joint project between the National Institute for Health and

Welfare of Finland and the US National Cancer Institute

(NCI), deserve a particular mention: this was a rando-

mized, double-blind, placebo-controlled primary preven-

tion trial to determine whether daily supplementation with

alpha-tocopherol, beta-carotene, or both would reduce the

incidence of lung or other cancers among male smokers. A

total of 29,133 men aged between 50 and 69, who smoked

at least five cigarettes per day, were recruited and recei-

ved either alpha-tocopherol (50 mg/day), beta-carotene

(20 mg/day) as all-trans-beta-carotene, both supplements,

or placebo capsules for 5�8 years until trial closure;

researchers reported that men who took beta-carotene

had an 18% increased incidence of lung cancers and an 8%

increased overall mortality. Vitamin E had no effect on

lung cancer incidence or overall mortality. The men taking

both supplements had outcomes similar to those taking

beta-carotene alone. The adverse effects of beta-carotene

appeared stronger in men with a relatively modest alcohol

intake (more than 11 g per day; 15 ml of alcohol is

equivalent to one drink) and in those smoking at least 20

cigarettes daily (30). The results of both the trial and post-

trial follow-up of the ATBC Study, in conjunction with

results from the CARET Study (Beta-Carotene and

Retinol Efficacy Trial) which compared the effects of

beta-carotene plus vitamin A to placebo in 18,314 men

and women aged 45�74 who were either smokers or former

smokers, evidenced a 28% higher lung cancer incidence

and 17% higher overall mortality in the group taking the

vitamin supplementation (31); this continues to support

the recommendation that beta-carotene supplementation

should be avoided by smokers. In this regard, one of the

few studies that showed a long-term benefit of supple-

mental carotenoids deserve a particular mention: the Age-

Related Eye Disease Study (AREDS) is a major clinical

trial sponsored by the National Eye Institute, which was

designed to learn more about the natural history and risk

factors of AMD and cataract and to evaluate the effect of

high doses of vitamin C, vitamin E, beta-carotene, and

zinc in the progression of AMD and cataract. Results from

the AREDS showed that high levels of these antioxidants

significantly reduce the risk of advanced AMD and its

associated vision loss (28). In May 2013, the NEI com-

pleted the Age-Related Eye Disease Study 2 (ARDS2),

which tested several changes to the formulation by adding

omega-3 fatty acids and by substituting lutein and

zeaxanthin for beta-carotene, which prior studies had

associated with an increased risk of lung cancer in smo-

kers. The study found that while omega-3 fatty acids had

no effect on the formulation, lutein and zeaxanthin to-

gether appeared to be a safe and effective alternative to
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beta-carotene. The totality of evidence on beneficial and

adverse effects from AREDS2 and other studies suggests

that lutein/zeaxanthin could be more appropriate than

beta-carotene in the AREDS-type supplements (128).

More prolonged follow-up will certainly provide unique

and valuable information on the duration of trial effects

and potential late effects of intervention with these

antioxidant vitamins. Further follow-up will also contri-

bute to our understanding of the biological mechanisms

through which such agents affect carcinogenesis and

human cancer risk.

Conclusions

Pathophysiology of many chronic and acute conditions,

especially of CVD, is explained by inflammation and

oxidative stress. Apart from sex, age, and genetic factors

which cannot be modified, lifestyle and dietary interven-

tion can be considered as new important means of pre-

vention and treatment of cardiovascular risk factors.

Whilst it would be beneficial not only to practice regular

physical exercise, quit smoking, and reduce sodium

and cholesterol (106), a higher dietary introduction or

supplementation of antioxidant compounds (55), such as

polyphenols, vitamins, and carotenoids would also be

beneficial. Numerous evidences confirmed that carote-

noids possess antioxidant biological properties due to

their chemical structure and interaction with biological

membranes. In particular, fucoxanthin, astaxanthin, lyco-

pene, and lutein are strong FRs, quenchers of ROS, and

NOS, so that their antioxidant and antinflammatory

activity may help against cardiovascular risk factors

such as markers of inflammation, hyperlipidemia, hyper-

tension, insulin resistance, and obesity. Consequent im-

provements in blood pressure baseline levels, reduction of

inflammation, and correction of dyslipidemias can lead to

an improvement of cardiovascular health. Further in-

depth efforts in this sense could be studied to define a

preventive and therapeutic strategy in order to reduce the

risk of developing CVD, with promising applications and

no side effects.
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