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Abstract: Alpha-fetoprotein (AFP) is a well-known diagnostic biomarker used in medicine to detect fetal developmental 
anomalies such as neural tube defects or Down’s syndrome, or to follow up the development of tumors such as hepatocel-
lular carcinomas. However, and despite the fact that the protein was discovered almost half a century ago, little was known 
about its physiological function. The study of Afp knock-out mice uncovered a surprising function of AFP: it is essential 
for female fertility and for expression of normal female behaviors, and this action is mediated through its estrogen binding 
capacity. AFP sequestrates estrogens and by so doing protects the female developing brain from deleterious (defeminizing/ 
masculinizing) effects of these hormones.

Keywords: Alpha-fetoprotein, Estrogens, Anovulation, Female brain differentiation.

 
Alpha-fetoprotein (AFP), discovered about half a century ago (Bergstrand and Czar, 1956; Abelev 
et al. 1963), is the major serum fetal protein in mammals. AFP is actively produced and secreted during 
the fetal life by the liver hepatocytes, the visceral endoderm of the yolk sac and, to a lesser extent, by 
the intestine and the kidneys (Sell and Becker, 1978; Andrews et al. 1982; Belayew and Tilghman, 1982). 
The concentration of this protein in the fetal serum reaches the order of several mg/ml, and its synthesis 
decreases dramatically in the first weeks after birth to reach only trace amounts in adulthood (Sell and 
Becker, 1978; Belayew and Tilghman, 1982). It is then essentially produced by the liver.

AFP produced by the embryo is secreted in the amniotic fluid and is also able to cross the placental 
barrier to reach the maternal blood circulation, where its titer is used as a diagnostic marker to reveal 
developmental anomalies of the fetus (Haddow et al. 1979; Brownbill et al. 1995; Newby et al. 2005). 
Abnormally high levels of AFP in the maternal serum indicates elevated risk for neural tube defects of 
the fetus such as spina bifida or anencephaly (Leighton et al. 1975), whereas abnormally low levels 
indicates elevated risk for a Down’s syndrome (Cuckle et al. 1984). Measurements of the AFP levels 
in the maternal serum are undertaken at 14–22 weeks of each pregnancy and are part, along with uncon-
jugated estradiol, human chorionic gonadotropin and inhibin A, of the quadruple test for antenatal 
Down’s syndrome screening (Wald et al. 2003). Abnormal AFP levels can also be indicative of other 
fetal pathologies (for review see Mizejewski, 2004).

Synthesis of AFP is dramatically reduced in adulthood but can resume in case of liver pathologies 
(cirrhosis, hepatitis…) or of tumors such as hepatocellular carcinoma, germ cell tumors (embryonic carci-
noma and teratocarcinoma) and some pancreatic and renal tumors (Masopust et al. 1968; Chiu  
et al. 1983; Abelev and Eraiser, 1999; Labdenne and Heikinheimo, 2002; Yuen and Lai, 2005; Ishigami  
et al. 2006). Little is known about the exact mechanisms that control the AFP gene expression or silencing 
(for reviews see Lazarevich, 2000; Spear, 1999). The regulatory region of the AFP gene contains distal 
enhancers, a promoter element, and silencer elements (Godbout et al. 1986; Watanabe et al. 1988; Poliard 
et al. 1990; Vacher and Tilghman, 1990; Henriette et al. 1997). The promoter element is regulated by 
numerous transcriptional factors such as HNF1 and HNF3 (Feuerman et al. 1989; Zhang et al. 1990; Crowe 
et al. 1999), Nkx2.8 (Apergis et al. 1998), FTF (Galerneau et al. 1996), NF1 (Bernier et al. 1993), Zhx2 
(Perincheri et al. 2005), FOXA (Huang et al. 2002), the thyroid hormone receptor (Van Reeth  
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et al. 2002) and Ku (Lienard et al. 2006). The thyroid 
hormone T3 probably contributes to the post-natal 
shut off of the gene (Van Reeth et al. 2002).

Until recently, the precise function of AFP was 
unknown. In order to identify this function, Afp 
knock-out mice were generated (Gabant et al. 2002) 
by replacing an Afp genomic fragment extending 
from exon 1, to intron 3 (Afptm1Ibmm allele), or 
extending from exon 2 to intron 3 (Afptm2Ibmm allele), 
by a IRES-LacZ-neo selection cassette. Both inval-
idations gave rise to viable homozygous animals. 
These AFP KO mice are apparently normal, but 
females are sterile, while males are fertile.

AFP KO female mice suffer from anovulation. 
Reciprocal ovary transplantation experiments 
demonstrated that AFP KO ovaries are functional: 
AFP KO ovaries transplanted in normal mice were 
able to ovulate and the transplanted females gener-
ated pups from the mutated parental oocytes. AFP 
KO ovaries contain follicles at different stages of 
maturation, including the last Grafiaan follicle 
stage. However no corpora lutea, indicative of 
ovulation, could be detected, which is in accordance 
with the smooth exterior aspect of the ovaries and 
the abnormally low levels of progesterone in the 
serum. Ovulation in AFP KO mice can be induced 
by injection of gonadotropins. In that case, ova are 
released, fertilized, but the blastocysts are unable 
to implant in the uterine horns which are non-recep-
tive because of overstimulation by estrogens, as a 
result of the absence of corpora lutea.

Since the AFP KO female mice defect does not 
lie within the ovaries, it must implicate the HPG 
axis (hypothalamic-pituitary-gonadal axis), which 
provides the adequate hormonal environment 
necessary for ovulation. In the proestrus phase of 
the sexual cycle, the HPG axis responds to a 
stimulatory signal of the estrogens by the secretion 
of the GnRH decapeptide which binds to its 
receptor in the pituitary and triggers the release of 
the LH and FSH hormones responsible, in fine, for 
ovulation. In order to define the defect of the HPG 
axis in the AFP KO females, we used the micro-
array technique to compare the gene expression 
profile of these mice with that of their wild type 
littermates. We found that in the pituitary, several 
genes previously implicated in female fertility are 
down-regulated in the AFP KO female mice  
(De Mees et al. 2006). These genes are Egr1, 
Cish2, Ptprf, Psa, and Tkt. Furthermore, we also 
found that genes participating in the GnRH 
pathway are downregulated in the AFP KO female 

mice. These genes are the GnRH receptor gene, 
and several genes activated by the GnRH receptor 
(cFos, Egr2, Tgfb1i4, Ptp4a1). In the hypothal-
amus, the gene encoding the hypothalamic GnRH 
decapeptide is itself down-regulated. In the context 
of an anovulation phenotype, dysfunction of the 
GnRH pathway seems extremely relevant.

In addition to being sterile, female AFP KO 
mice are defeminized (they show a diminution of 
female behavior) and masculinized (they exhibit 
some male characteristics): in the presence of a 
sexually active male, they do not exhibit the female 
typical behavior of lordosis (posture with raised 
head and rump, and deflected tail, to facilitate 
copulation) and they show a male pattern of distri-
bution of tyrosine hydroxylase expressing neurons 
in sexually dimorphic areas of the hypothalamus 
(Bakker et al. 2006).

What Can be the Link Between AFP 
and Female Fertility?
The answer lies in the capacity of AFP to inhibit 
estrogen responsiveness. AFP is able, at least in 
rodents, to bind estrogens, but not androgens, at its 
C-terminal extremity, with a K d of 10–9 M–1, indi-
cating that it can act as an estrogen carrier in the 
blood (Uriel et al. 1976; Savu et al. 1981; Nishi et 
al. 1991). Estrogens are known to exert deleterious, 
masculinizating effects on the female developing 
brain in the perinatal period. Perinatal exposure to 
estrogens in rodent females results in anovulatory 
sterility in adulthood, associated with altered 
gonadotropin production and absence of female 
typical behaviors (Gorski, 1963; Whaler and Nadler, 
1963). Based on the observation, it is classically 
assumed that the function of AFP is to shield the 
female brain from estrogens, by sequestrating them 
in the fetal serum (Mc Ewen et al. 1975). As AFP is 
unable to bind androgens, testosterone produced by 
the male embryo’s testes is free to reach the devel-
oping brain where it can locally be converted to 
estrogens by an enzyme called aromatase, and 
according to this classic hypothesis, estrogens could 
thus exert their masculinizating effects. An alterna-
tive hypothesis, based on the fact that AFP is found 
inside neurons without being produced locally, is 
that AFP has more than a neuroprotective role and 
specifically delivers estrogens to targeted brain cells 
in order to ensure correct female differentiation 
(Dohler et al. 1984; Toran-Allerand, 1984). The AFP 
KO mice allowed us to test these hypotheses.
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We reasoned that if AFP was essentially a 
passive estrogen carrier, the fertility of the AFP 
KO female mice should be restored provided their 
embryonic development took place in an environ-
ment strongly reduced in oestrogens; alternatively, 
if AFP was an active estrogen carrier, then the lack 
of both estrogens and AFP should be as deleterious 
as the lack of AFP alone. Gestation is compatible 
with very low level of estrogens, which can be 
reached by treating gestating females with an 
aromatase inhibitor. We found that the fertility of 
the so-treated AFP KO female mice was restored. 
No treatment was needed in adulthood to sustain 
this fertility, thereby proving that the cause of 
anovulation in AFP KO mice is indeed estrogen 
overexposure. Furthermore, normal gene expres-
sion in the HPG, normal lordosis behavior, and 
normal distribution of the tyrosine hydroxylase 
expressing neurons were also regained in the 
treated females (Bakker et al. 2006; De Mees et al. 
2006). These results demonstrate that AFP has 
merely a passive, neuroprotective role, and protects 
the female developing brain from estrogen delete-
rious effects.

However, these findings do not explain why 
AFP is found inside neurons without being locally 
produced. AFP could have other neurological func-
tions, independent from fertility control. Our 
results do not exclude the possibility of an active 
post natal role of estrogen in female differentiation. 
Indeed, females mice ovariectomized at birth 
display less feminine behaviors than intact females 
in adulthood (Gerall et al. 1973). This hypothesis 
is supported by the finding that aromatase knock-
out females are sterile and remain so even after 
adult estradiol treatment (Toda et al. 2001). Lastly, 
very low quantities of estrogens could indeed be 
needed for correct female brain sexual differentia-
tion, but in that case, they would be transported by 
another carrier than AFP.

Finally, it should be pointed out that the anti-
estrogenic effects of AFP could go beyond its 
estrogen binding and sequestrating properties, as 
deduced from experiments which have shown an 
AFP induced hypo responsiveness to estrogens in 
the presence of molar excess of estrogens over AFP 
(Mizejewski et al. 1983).

Translation of the observed results to human 
still needs to be tested. There are diverging views 
in the literature as to whether human AFP can or 
cannot bind estrogens. In either case, it appears 
that human AFP-derived peptides are able to 

display some anti-estrogenic activity (Vakharia and 
Mizejewski, 2000; Bennett et al. 2002; Mizejewski 
et al. 2004). AFP-derived peptides are under inves-
tigation as chemopreventive agents for estrogen-
dependent breast cancers and other tumors (Bennett 
et al. 2006, Mizejewski et al. 2006). Androgens 
could also, in the human, play a more important 
role than estrogens in sexual brain differentiation. 
In that case the sex hormone binding globulin, able 
to bind both estrogens and androgens, could then 
play a significant role.

In conclusion, our work demonstrates that the 
function of AFP extends well beyond its traditional 
marker role for developmental anomalies of the 
fetus or liver tumors. AFP plays a crucial role (at 
least in rodents) in the control of female fertility 
through its anti-estrogenic action. 
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