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The overall efficacy of chimeric antigen receptor modified T cells (CARTs)

remain limited in solid tumors despite intensive studies that aim at targeting

multiple antigens, enhancing migration, reducing tonic signaling, and

improving tumor microenvironment. On the other hand, how the affinity and

engaging kinetics of antigen-binding domain (ABD) affects the CART’s efficacy

has not been carefully investigated. In this article, we first analyzed 38 published

solid tumor CART trials and correlated the response rate to their ABD affinity.

Not surprisingly, majority (25 trials) of the CARTs utilized high-affinity ABDs, but

generated merely 5.7% response rate. In contrast, 35% of the patients treated

with the CARTs built frommoderate-affinity ABDs had clinical responses. Thus,

CARTs with moderate-affinity ABDs not only have less off-target toxicity, but

also are more effective. We then reviewed the effects of ABD affinity on the

biology and function of CARTs, providing further evidence that moderate-

affinity ABDs may be better in CART development. In the end, we propose that

a fast-on/fast-off (high Kon and Koff) kinetics of CART-target engagement in

solid tumor allow CARTs to generate sufficient signaling to kill tumor cells

without being driven to exhaustion. We believe that studying the ABD affinity

and the kinetics of CART-tumor interaction may hold a key to designing

effective CARTs for solid tumors.

KEYWORDS
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Introduction

Immunotherapy is now the 4th pillar of cancer treatment (1,

2), and its efficacy relies on the tumor-infiltrating T cells (3),

which, unfortunately, many solid tumors do not have (4).

Engineering patients T cells with a T cell receptor (TCR) (5–8)

or chimeric antigen receptor (CAR) (9) provides the much-

needed tumor-specific T cells. CAR combines the antibody

specificity and TCR signaling apparatus, which can activate T

cells upon engaging with tumor surface antigen (9). The CAR-

modified T cells (CARTs) thus recognize and kill tumor cells

independent of MHC that is frequently downregulated, a

common cause of tumor escape. CARTs have generated

remarkable antitumor responses in treating hematological

cancers (9–12), which results in 7 FDA-approved CARTs (13),

but also ignites tremendous effort to develop solid tumor CARTs

(14, 15). However, despite intensive studies, by far, the clinical

efficacy of solid tumor CARTs remains limited (13, 16–18). A

meta-analysis of 22 solid tumor CART trials (268 patients)

reveals merely ~9% response rate (19). Evidently, the current

CARTs do not work well for solid tumors. However, since 90%

of cancers are solid tumors (20), investigators have been

diligently working on and looking forward to a breakthrough

in designing effective solid tumor CARTs.

To generate antitumor effects, CARTs need to migrate into a

solid tumor mass, undergo antigen-driven activation and

expansion, exert their effector function on target cells, persist

sufficiently long enough to eradicate the entire tumor mass, and

then form immune memory to monitor and prevent tumor

relapse. Several excellent reviews (18, 21–23) have discussed the

multiple strategies to improve each of these steps in the hopes of

enhancing the efficacy of solid tumor CARTs. These approaches

include 1) targeting multiple antigens to prevent tumor escape

and to avoid off-tumor toxicity, 2) enhancing CART trafficking

and infiltration into solid tumors (24–28), 3) improving the

tumor microenvironment (TME) (29, 30). In addition, scientists

have been studying strategies to improve CART fitness and

persistence by selecting proper T cell subset (31), by reducing

tonic signaling (such as utilizing 4-1BB (32) or single ITAM

CD28 (33) as co-stimulatory domain), and by co-expressing C-

Jun (34) or constitutive STAT5 (35). Furthermore, CAR

expression under an inducible promoter (36, 37) or with a

SynNotch switch (38) could diminish tonic signaling and

exhaustion. These efforts have resulted in some incremental

improvement. However, the overall efficacy of solid tumor

CARTs still remains low. Thus, it is imperative to explore and

study other components in the CAR in order to improve the

efficacy of solid tumor CARTs.

A typical CAR is composed of the antigen-binding domain

(ABD), hinge and transmembrane domain (TM), and

intracellular signaling domain that normally consists of 1-2

co-stimulatory domains (CD) and the z chain (13). Each
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component contributes to the CART’s function and antitumor

efficacy (39, 40). For example, the CD plays an important role in

CART activation and persistence, and the consensus view is that

CD28 generates stronger CART activation, but the 4-1BB CD

renders CARTs longer persistence (32, 41). On the other hand,

although the ABD is critical by rendering CAR specificity, how

ABD affinity affects the activation and expansion, survival, and

persistence of CARTs remained largely unknown until recently.

In addition, the effect of ABD affinity on clinical efficacy of

CARTs has not been studied. In this article, we will first review

the response rate of solid tumor CART trials and correlate their

efficacy to ABD affinity. Then, we analyze the effect of ABD

affinity on CART biology and function, including activation,

expansion, function, and exhaustion. In the end, we propose that

CARTs with moderate-affinity ABD and fast-on/fast-off “fly-

kiss” engaging kinetics will likely generate better effects in

treating solid tumors.
Correlation of ABD affinity and
clinical efficacy of CARTs: Moderate
is better

The ABD, most of which are the single chain variable

fragment (scFv) of monoclonal antibodies (mAbs), allows

CARTs to specifically bind and kill tumor cells. However, thus

far, the ABD affinity was not rationally considered in most CAR

designs. This is reflected by the incomplete data of ABDs, the

lack of Kon and KOff, or inconsistent use of KD (dissociation

constant) and EC50 (half-maximal effective concentration),

which will be discussed later in detail. For clarity, we refer to

mAb binding strength as “affinity” (single pair of molecules) and

the CAR or CART binding strength as “avidity” (multiple pairs

of molecules). Over last few decades, affinity enhancement has

been the main goal in antibody drug development.

Approximately 100 therapeutic mAbs have been approved by

the FDA (42), and many are high-affinity. Naturally, these

clinically safe high-affinity mAbs, such as Cetuximab

(KD=1.8nM) (43) and Herceptin (KD=5nM) (44), were used to

create CARTs. High-affinity mAbs are preferred for CAR

construction also because they may induce strong T cell

activation and detect low levels of antigen (45–47). However,

it is unclear how the ABD affinity affects the antitumor efficacy of

solid tumor CARTs. Recently, we analyzed 14 solid tumor CART

trials and found a trend that moderate affinity ABDs correlate to

better efficacy (13). Thus, our first goal in this article is to verify

the correlation of ABD affinity and clinical efficacy by expanding

analysis to more solid tumor CART trials.

Based on the latest counting, there are 292 solid tumor

CART trials in the world (48, 49), most of them are Phase I

studies and have not completed. We were able to find 38

published solid tumor CART trials (total 453 patients). We
frontiersin.org
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analyzed and summarized the clinical response (partial and

complete response, PR and CR) of each trial in Table 1 and

Supplemental Table 1. We found that, among the 453 patients in

the 38 trials, 57 (12.58%) patients had PR or CR. This is

seemingly higher than the response rate of ~9% reported in

another meta-analysis (19), which is likely due to the latest

addition of Claudin 18.2 CART trials that demonstrated 44.64%

in 56 gastrointestinal (GI) cancer patients (143–145).

Importantly, from the 38 CART trials, we traced back to the

original CART development and found the ABD affinity (KD)

(Table 1 and Supplemental Table 1). The correlation of ABD

affinity and response rate was also presented in Figure 1. We

arbitrarily divided the ABDs as high- (KD<20nM), moderate-

(KD=20-100nM), and low- (KD>100nM) affinity. Not

surprisingly, 2/3 of the trials (25/38, 65.79%) utilized high-

affinity ABDs in their CARTs. The response rate in the high-

affinity group is merely 5.70% (17 out of 298 patients) (Figure 1

and Supplemental Table 1). Only 9 of the 25 trials generated low

response. The other 16 CARTs built from high-affinity ABDs

showed no responses (the best result is stable diseases). In

contrast, 8 out of 10 trials of CARTs with moderate-affinity

ABDs showed an impressive response rate (18.18%-75%). The

overall response rate of moderate-affinity ABD CARTs reaches

34.78% (40 out of 115 patients). Thirdly, when the ABD affinity

is too low (KD>100nM), the CARTs demonstrated no clinical

responses (Figure 1, Table 1, and Supplemental Table 1),

suggesting that when the ABD affinity is below a certain

threshold, the CARTs will not have adequate avidity to engage

and kill tumor cells. These 38 trial data demonstrated that the

affinity of ABDs is critical in determining the efficacy of solid

tumor CARTs. ABDs with proper moderate-affinity may have

the optimal engagement for CARTs to kill tumor cells inside

tumor mass. Currently, there is no available data on the optimal

ABD affinities in different CARs. However, it is likely that the

optimal affinity of ABDs may vary among different CARTs and

may depend on the engagement modes of CART-tumor cells in

hematological cancers vs. solid tumors (see sections below).

The 38 solid tumor CART trials in Table 1 target different

antigens and epitopes. It is known that the epitope location

(relative to the cell membrane) plays an important role in

deciding CART’s functions and antitumor efficacy in

preclinical tumor models (27). To minimize the effects of

epitope location and to analyze the correlation of ABD affinity

more precisely to the antitumor efficacy of CARTs, we compared

the clinical response of three GD2 CARTs. Disialoganglioside

GD2, a major ganglioside, is a carbohydrate antigen expressed

on the tumors of neuroectodermal origin, including melanoma,

neuroblastoma, sarcoma, and small cell lung cancer (146). GD2

has a hydrophobic ceramide tail inserted into the cell membrane

and a pentasaccharide moiety head on the outside of membrane

(Figure 2A) (147). Multiple anti-GD2 mAbs are developed for

cancer therapies (148), and some are approved by FDA (149).

The three anti-GD2 mAbs used to develop CARTs have different
Frontiers in Immunology 03
affinities (Table 1) but target the same membrane-proximal

sugar moiety (147, 150). Thus, the effect of epitope location

can be neglected when the CART’s efficacy is compared. In four

clinical trials using the GD2 CARTs made with moderate-affinity

mAb 14.G2a (KD=77nM), 13 out of 37 patients had PR or CR

(35.16% response rate) (Table 1, Supplemental Table 1, and

Figure 2B). Although the 14.G2a-based GD2 CARTs in different

trials utilized different CDs, they all generated good clinical

responses, further suggesting that ABDs may play a deciding role

in the antitumor outcome of CARTs. In contrast, the GD2

CARTs built with high-affinity Hu3F8 mAb (KD=11nM) or

with low-affinity KM8138 (humanized KM666) mAb

(KD=149nM) did not generate clinical response (Figure 2B,

Table 1, and Supplemental Table 1).

The benefit of moderate-affinity ABDs in solid tumor

CARTs was further demonstrated in 3 latest trials (two were

in China and one was in USA) of the same Claudin 18.2 CARTs

(143–145). Claudin 18.2, a member of the tight junction protein

family, is considered a gastric-specific isoform with higher

expression on cancers than normal tissue. Claudin 18.2

specific mAbs and CARTs are being developed to treat GI

cancers. In the latest trial of Claudin 18.2 CARTs, 18 out of 37

GI cancer patients demonstrated an overall response rate of

48.64% (144). A similar response rate was also reported in other

two recent trials (143, 145). The overall response rate of this

Claudin 18.2 CARTs reached an impressive 44.64% in 3 trials

(25 out of 56 patients). Unfortunately, the KD of Claudin 18.2

mAb, 8E5, was not reported. However, investigators did measure

the EC50 of 8E5 mAb binding to Claudin 18.2 + 293 cells, which

is 49.19nM (142). After humanization and optimization, the

final mAb Hu8E5-2I used in the Claudin 18.2 CARTs has EC50

6.4nM for binding Claudin 18.2 + 293 cells (142), which is 20x

lower than GC33 (EC50 = 0.24nM) and YP7 (EC50 = 0.3nM).

According to a comparative study (71), the value of EC50

determined by ELISA is 5.76-13 folds lower than the KD value

measured by surface plasmon resonance (SPR). Based on this

factor, we calculated the KD value of Hu8E5-2I is likely between

36 to 83nM, which falls in the moderate-affinity range. We thus

used the average 60nM to do the plot in Figure 1.

Moderate-affinity ABD is also good for blood cancer CARTs.

While the original CD19 CARTs built with FMC63 mAb

(KD=0.328nM) generated remarkable antitumor efficacy and

have been approved by FDA, recent studies showed that CD19

CARTs made with a new mAb CAT with lower affinity

(KD=14nM) generated enhanced expansion and prolonged

persistence in treating refractory AML compared to the

FMC63-based CD19 CART (151).

In summary, although multiple factors may contribute to

CART’s function, the data analysis of 38 solid tumor CART

clinical trials demonstrate that the ABD affinity is possibly the

most important one in deciding the CART’s antitumor efficacy.

Moderate affinity ABD not only allows CARTs to distinguish the

antigenhigh tumor cells from antigenlow normal cells (see section
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TABLE 1 Summary of solid tumor CAR-T clinical trials: Affinity of antigen binding domains vs. clinical efficacy.

Target ABD (KD) ICD In vitro/Preclinical Clinical Responses

VEGF-R2 Bevacizumab (KD: 58pM), or
Ranibizumab (46pM) (50,
51)

z Anti-mouse VEGF-R2 mAb (DC101) and
mouse CARTs generated no effect (52), but
co-expression of IL12 regressed several mouse
tumors.

NCT01218867 (Results were tabulated on the website): 1/23 PR
(metastatic melanoma and renal Ca). As DC101 mAb did not
recognize human VEGF-R2 (53), the Bevacizumab or
Ranibizumab, or mAb from (53) (KD from 0.49-1.1nM) are
likely used.

CD171
(L1-CAM)

CE7: 0.1nM (54, 55) z The IgG1-Fc (hinge)CD4TM- CD3z CART
(56) killed tumor cells and produced cytokines
in vitro.

NCT00006480 (57): 1/6 PR (only 56days), pediatric recurrent or
refractory NB, CAR-Ts disappears in a week in high tumor
burden and 42 days in limited tumor burden patients.

FRa MOv18: 0.2nM (58, 59) FcϵRIg Dual allo-TCR and FRa CART inhibited
tumor growth in mice (60)

NCT00019136 (61) (12 OVCA): 0 response, No tumor
reduction in any of 12 patients.

Mesothelin SS1: 0.7nM (62, 63)
Epitope: AA314-375
(Beatty: WO2015090230A1)

28z
BBz
28-BBz

Compared to BBz CART, 28z and 28BBz
CARTs generated stronger antitumor effects
(63, 64). CARTs were generated by lentivector
(63) or by mRNA electroporation (64).

NCT01355965 (65) (3 MPM): 1 PR but developed anaphylaxis
& cardiac arrest, due to anti-SS1 Ab (66).

NCT01897415 (67): (6 PADC): 0 PR, 2 SD. 1 metabolic CR in
the liver mets.

NCT0215971 (68) (15 patients of MPM, PDAC, OVCA): 0 PR
11 SD. CART persisted <28days, 8 developed anti-CAR Ab.

NCT02465983 (69): PDAC, 0/3 PR, 1SD. This is a combined
CART trial of CD19 and Mesothelin (SS1 scFv) CARTs.

M912: 1.5nM (EC50) (70).
Converted to KD (8.6-20nM)
based on reference (71)

28z NCT02414269 (Intrapleural local delivery of CART& PD1) (25
MPM, 1 metastatic lung Ca, and 1 metastatic breast Ca): 8 SD
(among which, 2 CR) (72)

P4 (human Ab) (73).
KD: 1-10nM (74)

z
28z

1. P4 28z CARTs generated better effects
than CD3z CARTs (74).
2. P4 CART with PD1+TCR KO (MPTK)
generated much better effect than P4 CART
(75).

NCT03545815 (Only MPTK CART was tested in patients (76):
15 patients (12 GI Ca and 3 other Ca): 0 PR/CR; 2 SD; CART
was short lived, peaked 7-14days and undetectable after 4 weeks.

M5 mAb (Human mAb); KD:
26.9nM. Epitope: aa485-572
(Beatty et al:
WO2015090230A1)

BBz NCT03054298 (14 OVCA, MPM, lung Ca): 0 PR. Similar to
SS1, M5 CART peaked D14 & disappeared after D28.

NCT03323944 (3 PDAC): 0/3 PR (https://www.med.upenn.edu/
cellicon2021/assets/user-content/documents/tanyi.pdf.

G11 mAb: 2.35nM (77) 28z Good antitumor effects in ovarian ca
xenografts (77)

No clinical trial No. 3 patients of Ovarian Ca. 0/3 PR, 2/3 SD
(77)

GPC3 GC33: EC50 = 0.24nM (78);
KD=1.38nM (79)

28z Preclinical study showed antitumor effects
(80).

NCT02395250 and NCT03146234 (13 liver Ca): 2PR (81), 1
patient survived more than 2 yrs.

YP7 (82), EC50: 0.3nM BBz
BB-28z

YP7-BBz CART has antitumor effects (83).
But 3rd gen may be toxic

NCT05003895: Started in 8/2021, Not data yet

C-Met Onartuzumab: 1.2nM (84) BBz NCT01837602 (85) (6 metastatic breast cancer) Intratumoral
injection of mRNA-CAR-Ts, No response (0/6)

CEA MFE23: 1.7nM (86) FcϵRIg
CD3z

Preclinical study showed CD3z CART was
better than FcϵRIg (87)

NCT01212887 (88) (14 patients with GI Ca (metastatic). 0 PR, 7
SD, Short persistence, off-target toxicity.

hMN14: 3.4nM (89) 28z Preclinical study (90) showed 28z CART was
better than CD3z CART

NCT01373047 (91): 6 patients with CEA+ liver Mets. Hepatic
artery injection of CARTs with (3) or without (3) IL2 support.
1SD.

ROR1 UC-961: 2nM (92) BBz NCT02706392 (93). (4 TNBC, 2 NSCLC). Decreased tumor
burden at some mets, 1PR after 2 infusion (94)

GD2 Hu3F8 (95) (humanized
murine 3F8 mAb)
KD: 11nM

28-BBz
28-27z

CART’s cytotoxicity diminished when
repeatedly exposed to the tumor (96). CARhi

Ts were depleted after co-culture with tumor
cells (97).

NCT02765243 (75). (10 pediatric neuroblastoma, NB): 0 PR, 4
SD.

murine 14.G2a (95)
KD: 77nM

z EBV-CTL with 14.G2a-CD3z CAR expanded
maintained long-term in the presence of EBV-
infected B cells (98). However, CAR-ATC
(activated general T cells) did not expand by
GD2.

NCT00085930: Initial report (99) found EBV-CTL transduced
with CAR generated better expansion than CAR-ATC, but a
later report (100) showed that CAR-ATC persists 4 yrs. Clinical
outcome: 3 CR (2 sustained for > 4yrs), 1PR, 1SD out of 11
patients.

28-
OX40z

14g2a-28-OX40z CAR signaling induces
sustained clonal expansion (101)

NCT01822652 (102). 11 NB: 5 SD, among the SD, 2 became CR
after salvage treatment. Higher dose plus chemo and PD1
extended survival.

(Continued)
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“the ABD affinity and CART’s on-target/off-tumor toxicity”),

but also enable them to generate stronger antitumor efficacy.

Thus, different from antibody drugs, in the CART development,

moderate ABD affinity may be better.

One exception to the “moderate-affinity” role is the

mesothelin targeting M5 CART. The M5 mAb is moderate

affinity (KD: 26.9nM), but the M5 CARTs had no antitumor

effects in treating multiple solid tumors (https://www.med.upenn.

edu/cellicon2021/assets/user-content/documents/tanyi.pdf).
Frontiers in Immunology 05
Further analysis showed that the Koff of M5-mesothelin is low,

thus the dwell time (T1/2) of M5-mesothelin is much longer than

that of the moderate affinity mAbs of 3D8 and 14.G2a (Table 2).

The T1/2 of M5-meosthelin is 613 seconds, while the T1/2 of 3D8-

PMSA and 14.G2a-GD2 complex is 5 and 62 seconds,

respectively. Thus, even though they have similar moderate

affinity, their binding kinetics of targets are different (see the

section of “The KD, Kon, Koff, and T1/2 of ABDs and their effects

on CARTs”). Due to the limited examples, it remains to be
TABLE 1 Continued

Target ABD (KD) ICD In vitro/Preclinical Clinical Responses

28z,
BBz,
OX40z
28BBz
28OX40z

In tumor xenografts, the 3rd gen 28BBz
CARTs showed better survival and antitumor
effects (103).

NCT03373097. 5/11 PR+CR out of 11 patients, correlating to
persistence of CARTs and low PMN-MDSC in blood (104).

BBz NCT04196413 (105): ¾ showed PR in treating DIPG

KM8138 (Humanized
KM666) (106)
KD: 149nM

28z Preclinical study showed in vitro killing
activity and antitumor effects in mice (107)

NCT02761915 (108, 109): 0/12. No response in all 12 relapsed/
refractory neuroblastoma patients, but some response in soft
tissue and bone marrow disease for 3 patients.

EGFR E10 (GenBank No:
JQ306330.1) (110). It has
higher affinity than 11F8 (KD

2.6nM (111).

BBz NCT01869166 (lv-CART);1. NSCLC: 2/11 PR (2-8 mos) (112)
2. Biliary Tract Ca: 1/17 CR (113)3. Pancreatic Ca: 4/16 PR
(2-4mos) (114)

No info on scFv, likely E10 BBz Preclinical study (115), CAR delivered by
Piggybac vector

NCT03182816 (76) (Piggybac CART) NSCLC: 1/9 PR

EGFRvIII C2173(humanized 3C10): KD:
101nM (116, 117) (original
3C10: 10nM)

BBz Some antitumor effects in human glioma
xenografts in NSG mice (116)

NCT02209376 (118).No significant clinical effect (1/10 SD)

C139 (119) KD: 290nM
(Table 30.1 in US patent
7.628.986.B2)

28-BBz C139 CARTs kill target cells and produce
cytokines (119). In mice, the CART generated
antitumor effects in intracerebral glioma (120)

NCT01454596 (121): 0 out of 18 glioblastoma patients had
responses (0/18 PR).

HER2 FRP5 mAb,
KD: 6.5nM (122, 123)

28z Osteosarcoma model (124); Medulloblastoma
model (125)

NCT00902044: SD 4/17 (sarcoma patients) (126), 1/10 CR
(metastatic sarcoma) (127, 128).

NCT01109095: 0/17 PR, SD 3/17 (glioblastoma) (129)

4D5 (humanized is
Herceptin): 5nM.
KD of 4D5-28z for cells is
0.3nM (44).

28z
28-BBz

Preclinical study (44) showed better
persistence of 28BBz than 28z CARTs

NCI-09-C-0041 (NCT00924287) 0/1Death of the patient related
to off-target toxicity (130)

CA IX G250: 2.2nM (table 1 in
reference (131))

CD3z DDHK9729/P00.0040C: 0/12 renal cell carcinoma (132).

PMSA 3D8: 22.5nM (133) CD3z In vitro study showed killing (134) NCT01929239 (Tufts): 2/5 PR effect, last 2.5-5months (135)

J591, KD: 1.83nM (136, 137) 28z In vitro study (138), specific killing. NCT01140373 (MSKCC): 0/7 PR, 2/7 SD, persist 2 wks (139).

BBz Co-expressing dominant negative TGFRII
(140): Increased proliferation and cytokine,
resistance to exhaustion, persistence, and
antitumor effects in human prostate cancer
mouse models

NCT03089203 (Penn) (141): 0/13 PR according to RECIST. 1
patient had a 98% reduction of PSA and death due to CRS, 3
other patients have a 30% reduction of PSA

Claudin
18.2

hu8E5-2I scFv (142)
EC50 (ELISA): 6.4nM.
According to the conversion
formula in the reference (71),
the KD by SPR should be
37~83nM.

28z 28z CARTs show slightly better cytotoxicity in
vitro (142). CARTs built with hu8E5-2I CART
showed good antitumor effects in treating
xenografts

NCT03159819 (143):. Total 12 (11 evaluable) patients (7 Gastric
Ca (GCa), 5 Pancreatic Ca(PCa)): 1CR (GCa), 3PR (2GCa,
1PCa), 5SD, 2PD

NCT03874897 (144): GCa, 18/37 PR.

NCT04404595 (145): Done in USA. 8 patients (5 GCa, 3 PCa).
1CR (GC), 2PR (GC), 2SD (PCa), 3PD (PCa).
PR, Partial response; CR, Complete response; SD, Stable disease; PD, Progression disease; PSA, Prostate specific antigen; PMSA, Prostate-specific membrane antigen; lv, Lentiviral vector;
NSCLC, Non small cell lung carcinoma; PCa, Pancreatic cancer; PDAC, Pancreatic ductal adenocarcinoma; GCa, Gastric cancer; GI Ca, Gastrointestinal cancer; mos, Months; MPM,
Malignant pleural mesothelioma; NB, neuroblastoma; OVCA, Ovary cancer
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verified whether the higher Koff (thus shorter dwell time) of ABD-

antigen complex is indeed important in deciding the efficacy of

solid tumor CARTs.
The effects of ABD affinity on the
biology and function of CARTs

Different from conventional small molecule and antibody

medicines, CARTs are living drugs, i.e., they multiply and

expand, and must be alive and activated to be functional. In
Frontiers in Immunology 06
general, soluble antigen does not induce CART activation and

expansion (152), suggesting that oligomerization of CARs on cell

surface is important in CART activation although the

immunological synapse of CAR is nonclassical and not well

defined (153, 154). The engaging avidity between CART and

target cell is determined by the ABD affinity, CAR level, and

antigen level (155). In this article, we focus on the effect of ABD

affinity on CART’s biology and function, such as activation,

function, persistence, and antitumor effects, especially in solid

tumors, where the engagement between CART and tumor is

multi-dimensional, persistent, and intense.
FIGURE 1

Correlation of CART clinical efficacy and their ABD affinity. Each red dot represents the % of responses of one clinical trial. The blue line is the
Gaussian regression. Statistics was done with NCSS II software (Kaysville, Utah).
A B

FIGURE 2

GD2 sugar moiety (A) and correlation of anti-GD2 mAb affinity with clinical efficacy (B) of the GD2 CARTs.
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The ABD affinity needs to reach a threshold for CARTs to

have a productive engagement with tumor cells, which generates

sufficient signaling to activate and expand CARTs and to kill

tumor cells. An increase of ABD affinity within a range may

enhance CART activation and function (156). However, ABD

affinity beyond a certain level will not further enhance CART

function (157), but may be harmful. The ABD affinity can affect

CART biology and function in the following ways. 1) When the

CART-tumor cell engagement is too strong, the CARTs are

difficult to dissociate from the killed or dying tumor cells. The

occupied CARTs will be unable to re-engage with different target

cells and induce serial killing of tumor cells. 2) A strong CART-

tumor cell engagement may allow CAR to nibble a piece of the

target cell membrane and the associated antigen (158). This

process of trogocytosis will tag the CARTs to become the target

and victim of other CARTs (fratricide). Trogocytosis also cause

tumor escape due to antigen loss on target cells. For example, the

CD19 CARTs based on high-affinity FMC63 mAb had higher

trogocytosis and fratricide than the CD19 CARTs from a lower-

affinity CAT mAb (158, 159). 3) The strong and persistent

engagement of high avidity CARTs with tumor cells may drive

CARTs to exhaustion and activation-induced cell death (AICD).

We recently found that, compared to the CARTs with from

high-affinity GC33 mAb (KD=1.38nM), our GPC3-specific

CARTs derived from a novel moderate-affinity 8F8 mAb

(KD=23nM) are less exhausted and less apoptotic inside tumor

lesions (79). 4) The ABD affinity affects the polyfunctionality of

CARTs. Using CyTOF technology, Michelozzi et al. compared

the FMC63 (high-affinity) and CAT (moderate-affinity) CD19

CARTs and found that, after engaging with CD19+ leukemia

cells, the CAT CD19 CARTs contained significantly more

polyfunctional T cells than the FMC63-derived CARTs (160).

This suggests proper moderate-affinity ABD may allow CARTs

to preserve their polyfunctionality, which is important for

antitumor effect (161). Similarly, we also observed that the

low-affinity 8F8 CARTs maintain better cytokines of IL2 and

IFNg production inside solid tumor lesions (79). 5) The ABD

affinity affects the formation of memory T cells. Previous studies

showed that reduction of TCR functional avidity via lowering

Lck expression (162) or by TCR downregulation (163) increased
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memory T cells. Similarly, our recent study (79) showed that,

compared to GC33 CARTs, our 8F8 CARTs contained more

memory T cells and persisted longer in the solid tumors.

Importantly, the moderate-affinity 8F8 derived CARTs also

maintained better function in the tumors, resulting in durable

antitumor effects in treating human tumor xenografts. 6) The

ABD with reduced affinity allow CARTs to differentiate tumor

cells from normal cells based on quantitative antigen difference,

which will broaden the targetable tumor-associated surface

antigens that can benefit tumor selectivity (164) (also

seem below).
The ABD affinity on CART’s antigen
sensitivity and on-target/off-tumor
toxicity

Moderate-affinity ABD may be good for CARTs to maintain

function. However, lowering ABD affinity may reduce CART’s

sensitivity of detecting the antigenlow tumor cells. For example,

compared to the EGFR CARTs derived from the high-affinity

Cetuximab (KD=1.8nM), the CARTs derived from the low-

affinity Nimotuzumab (KD=21nM) could distinguish

antigenhigh vs. antigenlow target cells, but showed less control

of antigenlow human tumor xenografts in mouse (43).

Fortunately, affinity is not the only factor that affect antigen

sensitivity. The affinity of TCR is much lower than CARs, but is

able to detect single molecule of pMHC complex (165), while

CARTs need 200 molecules of antigen for activation (166). Even

with the same affinity, the sensitivity of TCR 10-100 times higher

than CAR (167), suggesting that the signaling apparatus of TCR

complex also play an important role in deciding the antigen

sensitivity. Along this line, it was reported that manipulation of

CD domain and ITAM enhanced the antigen sensitivity of

CARTs (168). Thus, it is possible to lower the ABD affinity

while maintaining the antigen sensitivity.

A positive side effect of losing antigen sensitivity is the

reduction of on-target/off-tumor toxicity because most tumor

antigens are not unique to tumor cells, but rather are the shared
TABLE 2 Relationship of Koff and T1/2 of ABDs and clinical efficacy of CARTs.

Target mAbs Kon Koff KD (nM) T1/2 (second) Efficacy (PR+CR)% (Responder/total patients)

PMSA 3D8 (133) 6.04e+6 1.36e-1 22.52 5 40 (2/5)

J591 (137) 1.02e+5 1.23e-4 1.21 5,634 0 (0/20)

GD2 14.G2a (95) 1.5e+5 1.12e-2 74.67 62 30 (10/33)

Hu3F8 (95) 9.19e+4 1.03e-3 10.4 673 0 (0/10)

KM8138 (106) 1.14e+4 1.7e-3 149 407 0 (0/12)

Mesothelin M5* 4.2e+4 1.13e-3 26.9 613 0 (0/17)

SS1* 5.55e+6 5.60e-4 0.1 1,237 2.7 (1/27)
*The Kon, Koff, KD, and T1/2 of mAbs M5 and SS1 were from Patent: WO2015090230A1. The clinical trial reference was the same as Table 1.
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self-antigens that are also present in normal cells albeit at lower

levels. In fact, the initial studies of utilizing low-affinity ABDs in

CART development were intended to distinguish the antigenhigh

tumors from antigenlow normal cells to avoid off-tumor toxicity

(43, 47, 169–173). Some recent preclinical in vivo studies further

illustrated that the CARTs derived from low-affinity ABDs were

indeed less toxic. Using the transgenic mice that express different

levels of HER2 antigen, Castellarin et al. showed that CARTs

built with low-affinity HER2 mAbs had less in vivo toxicity, but

also generated better antitumor effects compared to high-avidity

CARTs because they are less likely be trapped in the antigenlow

normal tissues (173). In another latest report, Giardino et al.

developed a pair of new GPC3-specific mAbs, GPC3-1

(KD=73nM) and GPC3-2 (KD=11nM), which could bind both

human GPC3 and mouse GPC3. They demonstrated that GPC3-

1 and GPC3-2 CARTs generated similar antitumor effects in

mouse models. However, the low-avidity GPC3-1 CARTs

demonstrated much lower toxicity in mice than the GPC3-2

CARTs (174). Thus, it is important to find an optimal moderate-

affinity ABD to construct CARTs that maximize its effects on

target tumor cells, while minimizing off-tumor toxicity. Different

targets may need different optimal affinities. For example, in our

meta-analysis of clinical trial data, we found that the CARTs

built with the KD of ABDs between 20-100nM generated

effective CARTs (Figure 1). However, in the ICAM-1 targeted

CARTs, the KD of LFA binding ICAM-1 is at micromolar

(KD=20µM) to generate the most effective antitumor effects

with reduced toxicity in preclinical tumor model (171).
The KD, Kon, Koff, and T1/2 of ABDs
and their effects on CARTs

The affinity can be measured by SPR and ELISA. ELISA

measures the EC50 (the concentration required to obtain a 50%

maximum protein-ligand binding), whereas SPR measures the

association (Kon) and dissociation rate (Koff) for the calculation

of equilibrium dissociation constant KD(equal Koff/Kon), a more

widely used parameter for binding affinity. Individual Kon

(Number/M*S) and Koff (Number/S) value can represent

ligand binding kinetics much better in a time-dependent

manner (175): A higher number of Kon means faster ligand

binding whereas a higher Koff indicates that the complex

dissociates faster. As both Kon and Koff determined the ligand

binding affinity (KD), 2 ligands with same or similar affinity (KD)

might have different Kon and Koff value changing in the same

direction (either increase or decrease), and thus show completely

different binding kinetics. In this case, the ABD binding kinetics

(Kon and Koff) may be even more important than KD or EC50 in

determining the CART’s efficacy. Another important parameter

in comparing the ligand binding is the half-life of the

complex, T1/2, which relates to Koff by the formula T1/2=Ln2
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(0.693)/Koff (175). Thus, T1/2 indicates the stability or dwell time

of the complex.

The effect of Kon and Koff (0r related dwell time (T1/2) of

TCR-pMHC complex on T cell activation has been well-studied

(165, 176, 177). If the TCR and pMHC have a fast on-rate

(higher Kon), the TCR-pMHC complex with a higher Koff (a

short dwell time) can be highly stimulatory (165) because the

pMHCs can bind and rebind the same TCR (178) or multiple

TCRs (175) several times, creating an effective longer dwell time

than a single TCR-pMHC encounter (165). This may contribute

to the high sensitivity of TCR that can detect one pMHC

complex on target cells (178). On the other hand, if the Kon is

low, the dissociated ligand will not easily rebind a TCR. Under

such circumstances, the outcome of the TCR-pMHC

engagement will likely depend on the dwell time of the TCR-

pMHC complex. In other words, if the Kon is low, the complex

needs to be stable (lower Koff) to generate sufficient signaling

for activation.

A similar principle may apply to the CART-tumor

engagement. The affinity (KD) of ABD-antigen engagement is

in the range of pM-nM (179), which is ~3 logs lower than that of

TCR-pMHC (176). Thus, the dwell time of antibody-antigen

complex is in the range of hours or even day (180), much longer

than that of TCR-pMHC (normally in seconds) (176). Such long

stable engagement may result in persistent activation of CARTs

that can drive them into exhaustion and AICD. A long

engagement may not be necessary, but rather be harmful in

solid tumors. Such argument is in agreement with the fact that

moderate-affinity 14.G2a-based GD2 CARTs generated much

better clinical efficacy than the high-affinity 3F8-based CARTs

(Supplemental Table 1 and Figure 2B). The anti-GD2 mAb

14.G2a has similar Kon as 3F8, but has 10x higher Koff (95). Thus,

the engagement dwell time of 14.G2a CARTs is 10x shorter than

the 3F8 CARTs. This fast-on/fast-off “fly-kiss” mode of

engagement by 14.G2a CARTs allows CARTs to have a

shorter intermittent disengagement in the solid tumors. Such

transient break during “off” time may rejuvenate and preserve

CART function (37). Similarly, the moderate-affinity CAT mAb

has similar Kon as high-affinity FMC63, but has much higher Koff

(151), which may contribute to the formation of memory T cells

and polyfunctionality of CAT CARTs (160) and durable

antitumor effects (151). Thus, the dwell time and kinetics of

ABD-target engagement may be more important than affinity

(KD) in deciding the outcome of CARTs. For example, the M5

mAb has a T1/2 of 613 seconds (Table 2), which may be the

reason why M5 CARTs did not generate therapeutic effects in

clinical trials. In contrast, the 3D8 and 14.G2a CARTs that

generated impressive clinical responses have the ABDs with

higher Koff. Their T1/2 is 5 and 62 seconds, respectively (Table 2).

A high Kon allow ABD bind target quickly, a higher Koff may

benefit for CART survival because of faster dissociation. This

bind/off/rebind “fly-kiss” style of engagement may be optimal

for CART to exert their function while avoiding being-driven
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into exhaustion, especially in solid tumor mass. Along this line of

analysis, measuring the Kon and Koff of the Claudin 18.2 mAb

Hu8E5-2I should help verify if the fast-on/fast-off “fly-kiss”

intermittent engagement mode indeed enhances CART’s

antitumor efficacy. Similarly, it will be very interesting to

know whether the recently developed low-affinity GPC3

specific mAb GPC3-1 (174) that has a high Koff will generate

clinical efficacy in future trials.
A fast-on/fast-off “fly-kiss” mode of
engagement may be required for
effective solid tumor CARTs

A fundamental anatomical difference between blood cancers

and solid tumors is the tumor mass, in which CART-tumor cell

engagement is intense and persistent. In hematological cancers,

tumor cells are in the blood and do not aggregate together to form

tumor mass, and thus CARTs have immediate access to target

tumor cells after infusion. Importantly, the engagement of CART-

tumor cells in the blood is individualized in 1-on-1 mode and

intermittent (Figure 3). CART can “enjoy a temporary break” after

each killing before finding the next target. On the other hand, in
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solid tumors, CARTs first need to migrate into a tumor mass. Once

CARTs infiltrate a tumor lesion, they are surrounded by tumor cells

from every possible direction. Thus, the engagement of CART-

tumor cells in a solid tumor is multi-dimensional 1-on-N or N-on-

Nmode and persistent (Figure 3). There is no intermittent break for

the CARTs unless they can spontaneously be disengaged due to

higher Koff or until the tumor mass is eliminated. Furthermore, a

solid tumor has a complex extracellular matrix stroma that further

restrains CART movement and aggravates the antigen assault on

them. Such constant and intense engagement with antigens will

drive CARTs exhaustion or AICD. Thus, due to different mode and

intensity of CART-tumor engagement, the ABD affinity

requirement for solid tumor CARTs is likely different from the

CD19 and other blood cancer CARTs. CARTs with high-affinity

ABDs will be more prone to exhaustion and AICD in solid tumors

than in blood cancers.

Thus, we propose that moderate-affinity ABD and fast-on/fast-

off engaging kinetics are especially necessary for solid tumor CARTs

to be effective. A higher Kon of the ABD will make sure that CARTs

will bind to target cell fast even when the antigen level is low; a

higher Koff will allow CARTs to disengage even if they are

surrounded by tumor cells in a solid tumor mass. Such a fast-on/

fast-off “fly-kiss” style of engagement allows CARTs to kill tumor

cells without being-driven into exhaustion and AICD. In addition,
A

B

C

FIGURE 3

Different engagement modes of CART-tumor cells in hematological cancers (A) and in solid tumors (B). The CARTs engage tumor cells in a
solid tumor mass in 1-on-N or N-on-N multi-dimensional mode. (C) The fast-on/fast-off (bind-off-rebind) “fly-kiss” style of CART-tumor
engagement when both the Kon and Koff is high. High Koff allows CARTs to disengage from tumor cells even they are surrounded in solid
tumors. High Kon make sure that CART will re-engage tumor cells even when tumor antigen level is level.
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currently, we have little knowledge on how the different mode and

kinetics of CART-tumor engagement may affect the epigenetics,

gene expression, metabolism, and thus the fitness of CARTs.

Further investigation into these mechanisms will likely help

design more effective CARTs for solid tumors. We think that

solid tumor CART development should focus more on the ABD

affinity and the engaging kinetics of CART and tumor cells.

Recently, strategies have been discussed to tune the ABD affinity

for better and effective CART development (181) even though there

is no obvious approach to select ABDs with particular Kon and Koff

yet. This intentional and rational design of CARs with tuning ABD

affinity and binding dynamics in mind will likely generate more

effective solid tumor CARTs that can potentially match the

remarkable success observed in hematological cancers.
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