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The thiazide-sensitive sodium chloride cotransporter (NCC), expressed in the

renal distal convoluted tubule, plays amajor role in Na+, Cl- and K+ homeostasis

and blood pressure as exemplified by the symptoms of patients with non-

functional NCC and Gitelman syndrome. NCC activity is modulated by a variety

of hormones, but is also influenced by the extracellular K+ concentration. The

putative “renal-K+ switch” mechanism is a relatively cohesive model that links

dietary K+ intake to NCC activity, and may offer new targets for blood pressure

control. However, a remaining hurdle for full acceptance of this model is the

lack of human data to confirm molecular findings from animal models.

Extracellular vesicles (EVs) have attracted attention from the scientific

community due to their potential roles in intercellular communication,

disease pathogenesis, drug delivery and as possible reservoirs of biomarkers.

Urinary EVs (uEVs) are an excellent sample source for the study of physiology

and pathology of renal, urothelial and prostate tissues, but the diverse origins of

uEVs and their dynamic molecular composition present both methodological

and data interpretation challenges. This review provides a brief overview of the

state-of-the-art, challenges and knowledge gaps in current uEV-based

analyses, with a focus on the application of uEVs to study the “renal-K+

switch” and NCC regulation. We also provide recommendations regarding

biospecimen handling, processing and reporting requirements to improve

experimental reproducibility and interoperability towards the realisation of

the potential of uEV-derived biomarkers in hypertension and clinical practice.

KEYWORDS

urinary extracellular vesicles, sodium chloride cotransporter, potassium, aldosterone,
hypertension, primary aldosteronism
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Introduction

Hypertension (using the cut-off of >139/89 mmHg) affects

up to 40% of adults worldwide, and is a major risk factor for

stroke, coronary heart disease, heart failure, chronic kidney

disease and development of severe coronavirus infection

complications (1–4). Excessive dietary sodium (Na+) intake is

generally accepted to play a role in the development of

hypertension (5). However growing evidence now spotlights

an inverse association between dietary potassium (K+) and

blood pressure (BP) (6–8). A recent population-wide salt

substitution initiative which replaced regular salt with a K+-

enriched salt substitute in Peru reported an average reduction of

1.29 in systolic BP and 0.76 in diastolic BP, and an over 50%

reduction in hypertension incidence in normotensive people (9).

The K+-enriched salt substitution trial in populations with

history of stroke or hypertension demonstrated to lower the

rates of stroke, major cardiovascular events and death, and

participants demonstrated a mean reduction of 3.34 mmHg in

systolic BP after five years (10). These observations indicate that

the impact of dietary K+ may be even higher than that of dietary

Na+ in regulation of body fluid volume and BP maintenance.

Renal Na+ handling has a profound effect on body fluid and

BP maintenance as exemplified by the use of diuretic

medications to treat states of volume expansion or

hypertension. The thiazide-sensitive NaCl cotransporter (NCC,

encoded by SLC12A3) plays a key role in the regulation of Na+,

Cl- and K+ balance and BP, as underscored by Gitelman

syndrome (loss-of-function mutation in SLC12A3) resulting in

normal to low blood pressure, hypokalaemia and metabolic

alkalosis, combined with significant hypomagnesaemia and

hypocalciuria. Activation of the renin-angiotensin-aldosterone

system (RAAS) was initially thought to be a primary driver of

NCC activity, but this system could not easily explain the

observations that NCC activity decreased during high

aldosterone states subsequent to high dietary K+ intake (11).

This conundrum was recently solved when it was demonstrated

that a reduction in plasma K+ (for example due to reduced

dietary K+ intake or prolonged aldosterone stimulation)

increased NCC activity (12, 13). This mechanism may

contribute to the volume expansion and hypertension

associated with conditions associated with aldosterone excess

(12, 13). The effects on NCC are dependent on a variety of K+

mediated alterations in cellular signaling, which together

orchestrate the putative “renal-K+ switch”, a mechanism which

may offer new targets for pharmaceutical or dietary

manipulation in health and disease. However, although the

renal-K+ switch has been robustly tested in various animal

models, a hurdle that still exists is the lack of data to confirm

the existence and relevance of this mechanism in humans.

Extracellular vesicles (EVs) are small vesicles derived from

their cells of origin and have been detected in blood, urine and

other biofluids. Urine is a favorable specimen for biomarker
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discovery and is used to diagnose and monitor kidney diseases.

Proteome analyses reveal that EVs isolated from urine may

represent a more targeted approach for biomarker discovery

than unfractionated urine (14–20). EVs originating from cells

lining the urinary tract contain molecules derived from

glomerular, tubular and bladder cells (21), and EVs released

from renal tubules carry protein channels from different

segments that are responsible for Na+ and water reabsorption

under hormonal regulation (22). Therefore, analysis of urinary

EVs can serve as a non-invasive novel approach to study

physiological and pathophysiological states and regulation of

NCC in humans.
Urinary extracellular vesicles

Urinary extracellular vesicles (uEVs) are a heterogenous

group of nanosized membrane vesicles excreted by cells lining

the urinary tract (21) that function as a carrier of information

(e.g. proteins (23), lipids (24) and nucleic acids (25–27)) for cell-

to-cell communication and intercellular exchange. The uEV

proteome and transcriptome contains multiple disease-

associated proteins and transcripts (18, 28), indicating that

uEVs are a non-invasive source of potential molecular

biomarkers to mirror molecular processes as well as

physiological and pathological conditions in the kidney and

other urinary tract tissues (16, 21, 22). Although uEVs are an

attractive research tool, their diverse origins and dynamic

molecular composition present an enormous methodological

challenge. This review aims to give a brief overview of the state-

of-the-art, challenges and knowledge gaps in current uEV-based

analyses, with a focus on the application of uEVs to study the

“renal-K+ switch” and NCC regulation. We also provide

recommendations regarding biospecimen handling, processing

and reporting requirements to improve experimental

reproducibility and interoperability towards the realization of

the potential of uEV-derived biomarkers in hypertension and

clinical practice.
Biology of EVs

EVs consist of exosomes, microvesicles and apoptotic bodies

(Figure 1). The biogenesis of exosomes and microvesicles both

involve membrane trafficking processes. Exosomes are generated as

intraluminal vesicles in the lumen of multivesicular endosomes by

inward budding of the endosomal membrane during the formation

and maturation of multivesicular endosomes (MVEs). Their

biogenesis pathways are intermediated within the endosomal

system and released outside the cells upon fusion of MVEs with

the cell surface for intercellular communication (35, 36). In contrast,

accumulation of calcium-dependent enzymes and changes in the

polarity of membrane phospholipids (37) cause outward budding
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and fission of the plasma membrane and the subsequent release of

microvesicles into the extracellular space (38). Apoptotic bodies are

formed during apoptosis when cells undergo characteristic outward

blebbing caused by breaks in the cytoskeleton (33, 34). Once

released by the cell, microvesicles and exosomes exhibit

overlapping size and composition, which makes it difficult to

determine their origin.
Origin of uEVs

uEVs originate from several parts of the urogenital tract,

including the kidneys, bladder, prostate in males and utero-

vaginal tract in females (Figure 2) (14, 39), and can be

differentiated by characteristic proteins (14, 39, 40). However, the

relative contributions of each part of the urogenital tract to the total

population of uEVs has not been determined. Non-urinary tract

material (proteins, microRNA etc.) or systemic EVs can also be

detected in urine (41, 42), suggesting that EVs can cross the

glomerular filtration barrier and basement membrane of the

kidney. How this occurs is unclear, but recent studies in

transgenic mice have emphasized that under physiological

conditions the majority of uEVs are derived from the kidney with

limited contribution of EVs from the circulation (43). In contrast, in
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pathophysiological states this contribution may be different. For

example, during lung cancer, uEVs have been reported to contain

tumour-specific proteins (44). Recent studies have demonstrated

that cancer-cell derived exosomes can cause blood-brain-barrier

leakiness by modulating actin dynamics of recipient endothelial

cells, resulting in the breakdown of tight junctions, higher vascular

permeability and metastasis (45–47). Exosome-mediated

dysfunction of glomerular filtration has also been suggested, with

glomerular endothelial cell-derived exosomes in a high glucose

environment triggering epithelial-mesenchymal transition and

dysfunction of podocytes (48). Therefore, it is likely that various

pathophysiological states impair the glomerular filtration barrier

allowing passage of systemic EVs into the urinary space. EVs in the

urine can also be derived from residing immune cells and bacteria

(49, 50). As urinary immune effectors, uEVs from healthy

individuals are enriched in proteins involved in host defence and

immunity with bacteriostatic/bactericidal functions, and proteins

that bind to bacterial surface molecules (51).
Molecular composition

uEVs carry proteins, nucleic acids, lipids and metabolites.

However, because uEVs are a population of vesicles commonly
FIGURE 1

Biogenesis of urinary extracellular vesicles (uEVs). Exosome biogenesis starts from inward budding of the plasma membrane (endocytosis) and
eventual formation of early endosomes. The membranes of early endosomes invaginate and bud into surrounding luminal space with
cytoplasmic content to form intraluminal vesicles (ILVs) (29). Late endosomal structures containing ILVs are known as multivesicular endosomes
(MVEs), which are eventually transported to the trans-Golgi network for endosome recycling, delivered to lysosomes for degradation of all
carried material, or fuse with the plasma membrane and release exosomes outside the cell (30). Microvesicles arises through outward budding
and fission of plasma membrane and is the result of dynamic interplay between phospholipid redistribution and cytoskeletal protein contraction
(31, 32). Apoptotic bodies are formed during apoptosis. Apoptosis progresses through several stages, first nuclear chromatin condensation, then
nuclear splitting and the frequent appearance of micronuclei, then membrane blebbing and finally splitting of the cellular content into distinct
membrane-enclosed vesicles, termed apoptotic bodies (33, 34).
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obtained following multiple steps, the actual composition of each

subtype of uEVs is unclear.

The protein composition of uEVs was originally studied in

the context of the feasibility of AQP2 detection in low-density

membrane vesic les isolated from human urine by

ultracentrifugation (52, 53). Thereafter, several major Na+

transporters were identified in urine low density membrane

fractions, such as Na/H exchanger 3(NHE3), Na-K-2Cl

cotransporter 2 (NKCC2) and NCC (54). By 2011, studies

using mass spectrometry techniques identified more than 1000

proteins in human uEVs (14, 39, 55, 56), including biomarkers

for the renal and urogenital system in pathological conditions

(57–60). Improvements in mass spectrometric techniques have

expanded the number of proteins identified in uEVs to over 3000

(61, 62), enabling deeper analysis of EV biology and

identification of additional biomarker candidates (63–66).

Various RNA species are present in uEVs, and include

protein coding transcripts (mRNAs) and a prominent

population of small non-coding RNAs. mRNAs in uEVs

derive from all regions of the nephron and could facilitate the

examination of kidney cellular transcriptional changes in health

and disease (67). The small non-coding RNAs in uEVs include

microRNAs (miRNAs), small nuclear RNAs (snRNAs), small

nucleolar RNAs (snoRNAs), transfer RNAs (tRNAs) and long

non-coding RNAs (lncRNAs) (68–71), which play an essential

role in intracellular communication by transferring genetic

information. Additionally, uEVs contain over 10,000 of the

~20,000 known protein-coding genes and ribosomal RNA

(rRNA) transcripts, which is more abundant compared to EVs

from other human biofluids (71, 72). Similar to kidney tissue,

uEVs have an RNA integrity profile with prominent 18S and 28S
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rRNA peaks (67). This finding suggests that the EV structure

protects the RNAs from degradation by ribonucleases during

urine passage, thus increasing the potential of using uEVs as a

source of reliable RNA-based biomarkers. However, the

presence of 18S and 28S rRNA in uEVs is not consistent (69,

73, 74). It remains unclear whether DNA is present in the lumen

of uEVs, but uEVs with and without DNase treatment showed

similar trends in read distribution of nucleic acid cargo following

deep sequencing (71).

Lipids and metabolites are relatively less investigated uEV

components. However, in human uEVs over 100 lipid species

have been detected by mass spectrometry, with cholesterol the

most abundant lipid species, followed by phosphatidyl serine

(75). Compared to EVs from other human biofluids, only in

uEVs, all phosphatidylethanolamine species were identified as

phosphatidylethanolamine-ether lipid species (75). The amount

of ether lipids in EVs can be regulated, and higher levels of ether

lipids in EVs have been associated with greater EV release and

altered EV protein composition (76). A study that profiled

metabolites in uEVs identified six main categories: organic

acids and their derivatives, nucleotides, sugars and derivatives,

carnitines, vitamin B/related metabolites, and amines. Among

the most abundant metabolites were ornithine, D-ribose 5-

phosphate, L-cystathionine, alanine and serine (77).
Current technologies for
studying uEVs

The general steps for studying uEVs include pre-analytical

urine handling, uEV isolation, uEV characterisation and
FIGURE 2

Origin and composition of urinary extracellular vesicles (uEVs). uEVs are generally considered to originate from several parts of the urogenital
tract, including the kidneys, bladder, prostate in males and utero-vaginal tract in females. Urine can also contain a small quantity of EVs derived
from other organs, epithelial cells, bacteria, yeast and viruses. uEVs carry proteins, nucleic acids, lipids and metabolites, and uEVs originating
from cell lining nephron lumen contain marker proteins of nephron segments.
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normalisation, and downstream analyses of uEV content. Careful

consideration of the applied technologies and approaches used at

each step are necessary as these aspects are major source of data

variability and can limit data reproducibility (16, 78–80).
Pre-analytical urine handling

Pre-analytical urine handling is a critical source of variability

as preservation and storage methods have a major impact on

outcomes. Important steps in urine handling include urine

collection (e.g. time of voiding, use of protease inhibitors),

processing and storage (e.g. immediate freezing at minus

twenty or eighty degrees, short-term storage at 4°C, uEV

isolation before storage), and urine handling after thawing

(e.g. rapid or slow thawing, extensive vortexing). Huebner and

colleagues summarized and compared currently applied

methods for urine collection and storage for uEV utilization

(16). Their studies concluded that the addition of protease

inhibitors and preservatives such as phenylmethanesulfonyl

fluoride, leupeptin, and sodium azide, long-term storage at

-80°C, and extensive vortexing of urine after thawing provide

the best quality uEVs for subsequent analyses (Table 1).

Technical details of each step should be standardized for

clinical and research purpose because data can be profoundly

influenced by these pre-analytical variables.

uEV isolation

Ultracentrifugation was the first method used to reproducibly

isolate uEVs (14). However, the resulting uEV pellet includes
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contamination with highly abundant urinary proteins such as

Tamm-Horsfall protein (THP, also known as uromodulin) and

albumin in pathological states. THP originates from a

glycosylphosphatidylinositol-linked protein present in the apical

plasma membrane of the thick ascending limb of the Henle loop,

and is excreted into urine by proteolytic cleavage (85). THP forms

large networks of fibre that can constrain uEVs in the urine and

interfere with fractioning procedures (86). Hence, techniques to

remove or eliminate THP in urine before uEV isolation are required

to enhance final yield. Progressive ultracentrifugation is the most

commonly used method (14). Initially, low speed centrifugation is

used to remove cells and debris, followed by incubation of the

resuspended low-densitymembrane pellet with reducing agents and

subsequent repeated ultracentrifugation. This procedure denatures

the zona pellucida domains in THP, thus inhibiting aggregation and

allowing THP to be removed in the supernatant. Reducing agents,

such as dithiothreitol (DTT) can depolymerize THP at 37°C by

breaking disulfide bridges between individual THP monomers (87–

90), which effectively eliminates polymeric entrapment of uEVs.

However, DTT may also cause remodeling of the exosomal

proteins, therefore hampering relevant functional studies and

reducing the potential for using affected proteins as biomarkers

(87). The detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-

propanesulfonic (CHAPS) has the capability of solubilising THP

while at the same time preserving the conformation and the

enzymatic activity of proteins contained within uEVs (88, 91),

hence it can be considered as an optimised substitute of DTT if

remaining physiological activity in the sample is of importance.

Unfortunately, both uEV treatments with DTT and CHAPS did not

completely remove THP or other abundant urinary proteins (92).

Therefore modifications such as the use of double-cushioning (93),
TABLE 1 Important steps of pre-analytical urine handling.

Steps Impact factors Comments

Urine
collection

Spot urine/timed
urine

Spot urine: first or second morning urine have similar EV contents and they are suggested to be used interchangeably for
experimental research purposes (80). However, specific uEV biomarkers may significantly altered between the two collections and
several renal functions have circadian rhythms (81, 82). The choice between first and second morning urine depends on the
pathology being investigated.

Addition
of
inhibitors/
enzymes

With/without
protease/
phosphatase
inhibitors

Some key proteins often detected in uEVs degrade without used of protease inhibitors (83). Immediately addition is necessary.

With/without DNase No large differences when comparing the read distribution of the uEV inner nucleic acid (67), but no addition of DNase increases
intergenic and intronic reads (84). If needed, immediate addition is necessary.

Storage 4°C/-20°C/-80°C Use fresh uEV isolates (4°C) for best results of morphological characterisation by electron microscopy (84); -20°C results in >50%
loss of EVs, -80°C causes 14% EV loss (80); -80°C offers a more stable condition for long-term use (83).

Defrosting Room temperature/
4°C overnight/
thawing under
running water

Unknown effects of thawing method on uEVs, but likely needs attention when studying heat liable molecules

Extensive
vortexing
after
thawing

Yes/no Over 87% recovery of EVs with extensive vortexing after thawing (83)
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use of heavy water and a sucrose gradient in ultracentrifugation

(94), or ultracentrifugation followed by size-exclusion

chromatography (95) have been introduced to improve uEV

purity. However, the long and laborious processing times and the

requirement of expensive equipment have rendered them less

attractive for clinical application.

New methodologies used for uEV isolation include EV

filtration techniques, uEV precipitation, hydrostatic dialysis,

acoustic trapping and immunocapture (Table 2). These

methods have shown varying degrees of improved efficiency

and yield, but further evaluation is required to determine

optimal isolation methods for different analytical purposes

(e.g., measurement of proteins, RNAs or lipids). In addition,

the patient’s clinical condition should be considered in the

isolation approach because, depending on the disease state

involved, urine may contain various amounts of albumin,

bacteria, erythrocytes, lymphocytes or other potentially

interfering substances. For example, in glomerular disease,

albumin and other proteins that leak into urine can bind to

the surface of EVs or form a protein complex (101, 102).
Frontiers in Endocrinology 06
Therefore, isolation methods that can reduce albumin and

other proteins in uEV isolates (e.g. ultracentrifugation followed

by size-exclusion chromatography, the use of sucrose or other

density gradients or hydrostatic filtration dialysis) are

recommended (101, 103).
uEV characterisation

EV characterisation is not straightforward, because non-EV

entities, such as argonaut 2 protein complex and lipoproteins

also contain components that are present in EVs (104, 105), and

the commonly used protocols and commercial kits that claim

high quality EV or exosome isolation or purification cannot fully

separate EVs from non-EV entities (106). In addition, variability

in experimental systems, investigator experience and the

instrumentation used contribute to the heterogeneity of

protocols and composition of recovered EVs, leading to

difficulties in interpretation of results. The International

Society for Extracellular Vesicles has recently provided
TABLE 2 Methodologies used for uEV isolation.

Technique Isolation
method

Advantages Disadvantages

Ultracentrifugation Progressive
ultracentrifugation
(14)

Reproducible results; high yield of intact
proteins and nucleic acids

5-7 h to process single sample; contamination by highly abundant proteins;
expensive equipment.

Double-cushion
ultracentrifugation
(93)

Less contamination of highly abundant
proteins; reproducible results

Long processing time; tedious separation techniques; expensive equipment

Sucrose gradient
ultracentrifugation
(94)

Ultracentrifugation-
size exclusion
chromatography
(95)

Filtration Nanomembrane
filtration (96)

Shorter processing time (0.5-2 h); many
samples can be processed at one time;
relatively inexpensive; Can be used in a
clinical setting

Possible clogging of membrane; sample loss; contamination by highly abundant
proteins

Micromembrane
filtration (97)

Precipitation Precipitation by
ExoQuick-TC (15)

Shorter processing time (0.5-2 h);
Yields intact RNA;
Relatively inexpensive; can be used in a
clinical setting.

Low purity of protein;
Modified protocol.

Hydrostatic
dialysis

Hydrostatic
filtration dialysis
(73)

Low cost, simple system, efficient pre-
processing and concentration for
biobanking purposes; suitable to any
downstream analyses; patients can be the
end-users

Protein purity is not as good as ultracentrifugation, but acceptable; contain
THP contamination; Comparing to ultracentrifugation, large vesicle fraction
(>500 nm) was underrepresented, low proportion of small EVs (60-140 nm)
and more very small size EV-like participles (<40nm) (72).

Acoustic trapping Polystyrene beads
model (98)

Rapid, automated, low-volume compatible,
robust; no impact on the integrity or
miRNA content of trapped vesicles

Amplifier used to drive the piezo may limit the possibilities for device
parallelization (99)

Immunocapture Antibody-based
affinity capture on
magnetic beads
(100)

Less expensive equipment, less expertise,
purer uEV fractions

Capture proteins displayed on the outer surface of uEVs
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updated criteria to guide researchers in EV characterisation for

the purposes of single EV characterisation, quantification, and

global characterisation (107). Detailed requirements of EV

characterisation are summarised in Table 3.

Unfortunately, there is no single technique that can fulfill the

requirements for describing EV morphology, size, number and

content. Current techniques used for EV morphological

characterisation include transmission electron microscopy

(TEM), cryogenic electron microscopy (cryo-EM), atomic

force microscopy (AFM) and super resolution fluorescence

microscopy, among which TEM is the most commonly used.

Because these techniques provide different information about

EV structure and size distribution, they are not necessarily

interchangeable or capable of providing images of comparable

quality. Techniques used to measure uEV size distribution and

count include nanoparticle tracking analysis (NTA) and tunable

resistive pulse sensing (TRPS). On the basis of Brownian motion,

NTA provides uEV particle size distribution and concentration

within a specific detection range, however it cannot exclude non-

EV entities and therefore NTA-based particle count may be

overestimated. TRPS is a relatively more accurate method that

measures particle size, number and surface charge (90).

Complementing these approaches, assessment of the presence

of EV-enriched/specific molecules (e.g. EV housekeeping genes/

proteins) and absence of potential contaminants by standard

methodologies are often utilised to describe EV content for the

purpose of global characterisation. For example, uEV protein

content can be measured by bulk analysis (western blotting,

ELISA) or high-throughput flow cytometry for single EV surface
Frontiers in Endocrinology 07
protein analysis. Techniques currently used for uEV

characterisation are listed in Table 4.
Normalisation

One of the greatest challenges in uEV-based research is the

requirement for normalisation of uEV contents between samples

or subjects, especially in clinical studies where spot urine is the

most frequently used and simplest collection method. Current

normalisation approaches, each with both benefits and

limitations, include comparing uEV contents to THP

abundance, urine creatinine concentration, known EV-

enriched proteins, uEV concentration or uEV numbers. THP

abundance highly correlates with EV markers such as ALG-2-

interacting protein X (ALIX) and Tumor Susceptibility Gene 101

Protein (TSG101) (87), but the association between THP

aggregation (polymerization) and the ionic strength and pH of

urine needs to be taken into account (119). In addition, THP is

less suitable for normalisation when DTT or other reducing

reagents are used during uEV isolation.

Urine creatinine is widely used to normalize analytes (e.g.

urine protein-to-creatinine ratio) in spot urine samples in

routine clinical practice (120), but its use in uEV

normalisation is less common (121–126). A recent study

quantifying urine particle in dilute and concentrated urines

randomly obtained from healthy volunteers and subjects with

kidney disease demonstrated a strong correlation between uEV

concentration and urine creatinine (127), indicating urine
TABLE 3 EV characterisation methods (107).

Characterisation
type

Details Requirement

Quantification Volume of fluid, and/or cell number, and/or tissue mass used to isolate EVs Mandatory

Global quantification by at least two methods: protein amount, particle number, lipid amount, expressed per volume of
initial fluid or number of producing cells/mass of tissue

Mandatory

Global
characterisation

Ratio of the 2 quantification figures Mandatory

Transmembrane or GPI-anchored protein localised in cells at plasma membrane or endosomes: e.g., tetraspanins (CD9,
CD63, CD81), integrins or cell adhesion molecules, growth factor receptors, heterotrimeric G proteins, phosphatidylserine-
binding MFGE8/lactadherin

Mandatory

Cytosolic protein with membrane-binding or association capacity: e.g., endosome or membrane-binding proteins (tumor
susceptibility gene 101 protein (TSG101), annexins, Rabs, signal transduction or scaffolding proteins (synthenin)

Mandatory

Assessment of presence/absence of expected contaminants: e.g., endoplasmic reticulum specific proteins (Grp94, calnexin,
Golgi, mitochondria), nucleus specific (histones), Argonaute/RISC complex

Mandatory

Presence of proteins associated with compartments other than plasma membrane or endosomes Mandatory if
applicable

Presence of soluble secreted proteins and their likely transmembrane ligands Mandatory if
applicable

Topology of the relevant functional components Encouraged

Single EV
characterisation

Image of single EVs by wide-field and close-up: e.g., electron microscopy, scanning probe microscopy, super-resolution
fluorescence microscopy.

Mandatory

Non-image-based method analysing large numbers of single EVs: NTA, TRPS, FCS, high-resolution flow cytometry, multi-
angle light-scattering, Raman spectroscopy, etc.

Mandatory
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creatinine can potentially be used to normalize spot urines.

However, normalisation for creatinine concentration in spot

urines does not address the influence of variable uEV recovery/

sedimentation rates during progressive ultracentrifugation or

other isolation approaches (128).

The abundance of EV-enriched proteins and uEV

concentration are considered relatively stable (129). As such,

EV-enriched proteins such as tetraspanins surface markers
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(CD9, CD63) and proteins of exosomal biogenesis (ALIX,

TSG101) are commonly used to characterize uEVs and for

normalisation/correction of protein abundances in uEVs.

However, some proteins may not be generally applicable for

all urine samples. Blijdorp et al. reported that the commonly

used uEV markers CD9 and CD63 are differentially expressed

throughout the urogenital system, and therefore use of CD9 or

CD63 as a normalizer can affect final outcomes (127).
TABLE 4 Current techniques for uEV characterisation.

Characterisation Technique Information giving Pros and cons

Morphology Transmission electron
microscopy (TEM)

Images of a heterogeneous group of EVs of different
sizes and shapes for sample purity;
TEM also shows EV heterogeneity by different staining
densities to highlight morphological characteristics and
surface features.

Pros: easier and more accessible than cryo-EM; commonly
used for EV morphology.
Cons: expensive and time consuming; must have a very
thin layer.

Cryogenic electron
microscopy (cryo-EM)

Cryo-EM shows the lipid-bilayer and all particles in a
given volume can be imaged, not just those that adhere
to a surface (the grid) (108, 109).

Pros: preserves EV size better than the dehydrating
conditions used to fix samples for TEM and may be more
quantitative.
Cons: costly equipment that requires specialized staff to
setup.

Atomic force microscopy
(AFM)

Visualisation of uEVs with sub-nanometer resolution in
three dimensions in atmospheric or submerged
conditions (110).

Pros: samples do not require any special treatments that
would irreversibly change or damage the sample; most
AFM modes work well in ambient air or a liquid
environment.
Cons: can only obtain surface information from samples;
also limited by the single scan image size and the relatively
slow scanning speed.

Super resolution
fluorescence microscopy

Direct visualization of fluorescently labelled molecules
within vesicles with 20 nm resolution, revealing the
biomarker distribution and expression levels on single
vesicles (111–113).

Pros: provides better spatial resolution for observing
exosomes and enables intracellular tracking of exosomes.
Cons: special fluorophores required; phototoxicity
associated with multiple imaging/quenching cycles;
imaging close to coverslip.

Size distribution and
counts

Nanoparticle tracking
analysis (NTA)

Particle size distribution and particle concentration
within a range.

Pros: accessible and commonly used for EV morphology.
Cons: cannot exclude non-EV entities; particle count may
be overestimated; may generate biased results due to
calibrators in use; different software generates different
absolute particle count.

Tunable resistive pulse
sensing (TRPS)

EV particle size distribution, particle number and
surface charge (90)

Pros: rapid, convenient, accurate and reproducible.
Cons: discrepancy in count numbers between TRPS and
NTA.

EV content Western blotting/ELISA Specific uEV content Pros: easy and accessible; widely used for analysis and
validation of one or a few target proteins.
Cons: requires validated antibodies.

Flow cytometry Single EV surface protein Pros: bead-based commercial kit are available (114).
Cons: requires experienced staff to setup instrument for
sufficient resolution (115).

Liquid chromatography-
tandem mass
spectrometry (LC-MS/MS)

Protein profile within uEVs (116) Pros: precise, rapid and sensitive; requires small sample
size to produce data that can reach high statistical power.
Cons: expensive in terms of capital and running costs;
needs a skilled technician.

RNA-sequencing Transcriptome of uEVs (117) Pros: sequencing of small RNAs and targeted or capture
sequencing of longer RNAs has proved to be successful.
Cons: total RNA sequencing is limited by short fragment
length, low number of quantified genes or a high level of
ribosomal RNA contamination.

Ultra-performance liquid
chromatography coupled
to mass spectrometry
(UPLC–MS)

Lipids and metabolites of uEVs (77, 118). Pros: fast analysis of small molecular weight samples.
Cons: problems associated with dangerous organic solvents
in use which are toxic and injurious to the environment.
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Importantly, for unbiased uEV characterisation methods using

mass spectrometry or real-time quantitative polymerase chain

reaction, no reliable normalisation or housekeeping target is

currently available.

The uEV concentration depends not only on the isolation

method used, but also the uEV production and excretion rate

(secretion minus possible uptake) and the overall urine

concentration at the sampling time point. uEV excretion has

showed a circadian pattern that is independent of sex, fed-

fasting/hydration status and kidney injury, and this circadian

variation can be normalised by uEV particle number and its

marker protein TSG101 (130). A more recent study

demonstrated nephron mass determines uEV excretion rate,

but nephrectomy reduces uEV excretion less than expected

based on nephron loss due to compensatory hypertrophy

(131). The findings imply that proxies for nephron mass

including kidney function (e.g., eGFR and creatinine

clearance), total kidney volume and kidney weight should also

be included in uEV-based studies for inter-individual

comparisons, but these indicators may not suit for studies in

nephrectomy patients. The same authors furthermore identified

a sex difference in uEV excretion that is likely due to greater

nephron mass in men, which implies that when the excretion of

a uEV biomarker is studied in males and females, the results

should be corrected for uEV excretion rate to avoid false

estimation of biomarker levels. Nonetheless, a validated

normalisation method, or more specifically a normalisation

variable, is urgently required to substitute for time in analysing

the relative excretion rate of uEV proteins (87).

Reliability of uEVs in studying
physiological and pathophysiological
processes in kidney

Measurement of uEV protein abundances is frequently used

to reflect ongoing changes in the kidney or identify biomarkers

for specific diseases. For example, uEVs have been used for

quantitative assessment of the levels of different proteins in the

setting of patients with familial hyperkalaemic hypertension

(132), Bartter syndrome (133), Gitelman syndrome (133, 134),

primary aldosteronism (135–139), Cushing’s syndrome (140),

polycystic kidney disease (49) and nephrogenic diabetes

insipidus (123). However, matched kidney and uEV samples

isolated from patients undergoing nephrectomy demonstrated

no correlations in the abundance of nine proteins between the

two sources (141). Although there were technical limitations,

such as the correlations being based on a limited number of

proteins and a significant period of time between urine and

tissue collection, this study raised doubt as to whether changes in

uEV protein content faithfully reflect changes within kidney

tissue. In an attempt to address this concern, a recent study used
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large-scale proteomics to assess in an unbiased manner the

correlation between protein levels in uEVs and kidney tissue

from the same animal (142). The quantitative proteomic data

identified an overall good positive correlation between uEV and

kidney protein abundances, and furthermore provided a

catalogue of uEV proteins that track the abundance of the

parent protein in the kidney. Although this study supports the

reliability of using uEV protein changes to monitor physiological

responses and disease mechanisms, the use of a defined cohort of

genetically identical animals is a limiting factor and similar large

correlations in humans is still lacking. In addition, the usefulness

of uEV analysis has to be taken in context of the numerous

confounders that can affect results. Many factors, including

glomerular filtration rate (GFR), tubular metabolism and

reabsorption, dietary consumption, medical conditions,

medications, gender and age, can affect an individual’s urine

production and composition. In addition as described, multiple

steps involved in the pre-analytical phase and isolation when

studying uEVs also influence the results of subsequent

downstream analyses, such as characterisation and assays to

determine EV contents and function.
The putative “renal-K+ switch”

The distal tubule is critical in fine-tuning Na+ reabsorption

and K+ excretion, and these processes are intimately related, as

exemplified by amiloride induced hyperkalaemia and the

presence of hypokalaemia in patients with thiazide induced

hyponatraemia. The primary channels involved in distal

tubular Na+ handling include ENaC expressed from the late

distal convoluted tubule (DCT) through the connecting tubule

(CNT) and the medullary collecting duct (CD), and NCC

expressed only in the DCT. ENaC is thought to be the major

target of aldosterone in the distal nephron. Although NCC

activity was originally proposed to be increased by aldosterone,

more recent studies indicate this largely occurs through low K+

induced increases in NCC phosphorylation (which activates the

transporter) via activation of the Cl‐ -sensitive With-No-Lysine

kinases (WNK) and SPS1-related proline/alanine-rich kinase

(SPAK) network (11, 13, 143, 144) – a mechanism often

referred to as the “renal-K+ switch” (Figure 3). The switch

proposes that a low K+ intake acts as a trigger that links K+

and NCC regulation. The switch “turns on” NCC in response to

a low dietary K+ intake, and “turns off” NCC in response to a

high K+ intake, altering the amount of Na+ delivered to

downstream ENaC and altering the degree of Na+/K+

exchange to modulate extracel lular fluid (ECF) K+

concentrations (13, 144). Hence, although aldosterone

stimulates ENaC to promote distal Na+ reabsorption and K+

excretion, the ECF K+ concentration itself regulates NCC

abundance and phosphorylation. The switch pathway centers
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around the WNK-SPAK kinase network (11). Importantly,

mutations of WNK1 and WNK4 or components of WNK

regulatory ubiquitin ligase complex culin3 (CUL3) and kelch-

like family member 3 (KLHL3) cause familial hyperkalaemic

hypertension (FHHt, also known as Gordon’s syndrome) by

increasing NCC activity. Inhibition of NCC by thiazide diuretics

corrects the hypertension and hyperkalaemia in FHHt. These

observations, and the use of thiazide diuretics as a BP lowering

agent for hypertension, highlight the critical role of NCC in

regulation of Na+ and K+ balance and BP. Unfortunately,

difficulties in obtaining human kidney tissue have hampered

studies of the “renal-K+ switch” model in the clinical setting. To

navigate this roadblock, analysis of human uEVs has been used

recently as an indirect readout to assess the roles of K+ and

aldosterone in regulating NCC expression and activity.
Use of uEVs for studying NCC

The presence of NCC in low-density membrane fractions

from urine of normal rats first raised the possibility that analysis
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of urine samples may be useful in clinical settings (54). By

utilising uEVs, Mayan and colleagues demonstrated a marked

increase in NCC in FHHt subjects compared to controls,

providing evidence of a central role of NCC in the

pathophysiology of FHHt (132). The calcineurin inhibitors

cyclosporine-A and tacrolimus, often used as anti-rejection

drugs in transplant patients, can cause hypertension and

hyperkalaemia, resembling FHHt. Calcineurin inhibitor

treatment also increased NCC and phosphorylated NCC

(pNCC) in human uEVs (154), concomitant with thiazides

lowering the blood pressure in these patients (155). In

Gitelman syndrome, NCC is absent or reduced in uEVs,

consistent with the patients’ renal tissue (156). NCC in uEVs

can also differentiate salt-sensitive and salt-resistant

hypertensive patients (157). However, no reduction in NCC

after high NaCl diet in salt-sensitive hypertensives while

fractional sodium reabsorption significantly decreased, and the

lack of association between changes in BP with NaCl intake and

change in NCC in uEVs in the study suggests that the effect of

NaCl intake on NCC may be altered renal sodium handling in

salt-sensitive hypertension.
FIGURE 3

The putative “renal-K+ switch” mechanism. In the basolateral membrane, K+ channels Kir4.1/5.1 and a Cl- channel ClC-Kb can indirectly regulate
NCC activity by modifying intracellular [Cl-] and hence the autophosphorylation of WNKs (145). High dietary K+ intake increases plasma [K+],
resulting in reduced K+ extrusion by Kir4.1 and plasma membrane depolarisation of the early DCT (DCT1). This limits Cl- removal by ClC-Kb and
hence intracellular Cl- mediated inhibition of the WNK-SPAK-NCC pathway remains (146–148). In addition, the effects on Kir4.1 may facilitate
extracellular Ca2+ influx across the membrane via an unknown voltage-gated Ca2+ channel. This increased intracellular Ca2+ is proposed to
activate protein phosphatase 2 (PP2A/B) to inhibit WNK (149, 150), and potentially PP2A/B may modulate the protein phosphatase 1 inhibitor (I-
1) protein phosphatase 1 (PP1) pathway leading to NCC dephosphorylation (151–153). In contrast, a low K+ diet reduces the plasma K+

concentration. Low extracellular K+ results in cellular K+ extrusion by Kir4.1 leading to membrane hyperpolarization and release of Cl- from the
cell through ClC-Kb. The subsequent reduction in intracellular Cl- relieves the inhibition of WNK4 autophosphorylation and allows the WNK-
SPAK pathway to phosphorylate and activate NCC, leading to more NaCl reabsorption.
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Primary aldosteronism is a common and potentially

curable form of hypertension, characterized by excessive

production of aldosterone by the adrenal glands that is

partially or completely autonomous of the RAAS, and

associated with suppressed renin activity and variable but not

universa l hypokalaemia . In pat ients with primary

aldosteronism, pNCC in uEVs was higher than in patients

with essential hypertension, a study which first utilized uEV

pNCC as a clinical biomarker (135). Our group examined uEVs

from patients with primary aldosteronism undergoing 4-day

co-administration of fludrocortisone acetate and oral NaCl

loading (fludrocortisone suppression testing, as a means of

confirming or excluding primary aldosteronism), with variable

amounts of KCl supplements to correct or prevent

hypokalaemia during testing (136). There were marked

increases in uEV levels of NCC and pNCC at the end of

testing, providing evidence that NCC is mineralocorticoid-

sensitive. However, an inverse correlation between

abundances of NCC and pNCC and plasma K+ in the study

suggested that the observed effect on NCC may be attributable

to changes in plasma K+ rather than direct mineralocorticoid

stimulation. Soon after, in another group of patients who

underwent the same procedure but with a greater rise in

plasma K+ due to KCl supplementation, the increase in uEV

NCC was not apparent (139). This observation is consistent

with recent mice studies that demonstrated that K+

supplementation reduced the degree of upregulation of NCC

abundance induced by aldosterone infusion (158, 159). These

observations raise the possibility that higher plasma K+

induced by KCl supplements during the testing may

counterbalance mineralocorticoid-induced NCC stimulation.

However, interpretation of the findings of the two uEV studies

was compl i ca t ed by the f ac t tha t they invo lved

mineralocorticoid, KCl and NaCl supplementation. The effect

of NaCl loading and volume expansion on the uEV NCC

profile and a possible role (if any) of intravenous NaCl

load ing a lone on NCC in pat i ent s wi th pr imary

aldosteronism was recently examined (137). Despite a

significant fall in plasma aldosterone in the patients, there

were no changes in uEV NCC and pNCC after normalisation,

suggesting aldosterone is not a major regulator of NCC

abundance and phosphorylation. By contrast, the inverse

association of plasma K+ with uEV NCC further highlights

that ECF K+ concentration is a potent regulator of NCC.

In Cushing’s syndrome, NCC and pNCC are more abundant

in uEVs of patients with a suppressed RAAS than those with

non-suppressed RAAS and healthy controls (140). In this study,

patients with Cushing’s syndrome and suppressed RAAS had

similar blood pressure but significantly lower plasma K+

(although within the normal range) than those with non-

suppressed RAAS, with inverse correlations of plasma K+ and

uEV abundances of NCC and pNCC. These observations are
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similar to patients with primary aldosteronism, that uEV levels

of pNCC are indeed a reliable readout for NCC activity and that

plasma K+ may override any stimulatory effect of

mineralocorticoid/aldosterone on NCC. The hypokalaemia in

patients with primary aldosteronism or Cushing’s syndrome

may contribute to hypertension through increased Na+

reabsorption via enhanced NCC activity. Recently, Kong et al.

reported that differences in NCC and pNCC in uEVs can be used

as biomarker for subtyping of primary aldosteronism and

potentially for avoiding the need for adrenal venous sampling

(AVS) in differentiating unilateral from bilateral forms (138).

The use of uEVs as biomarkers for primary aldosteronism

subtyping appears valid; however, uEVs cannot be used to

avoid AVS because even if associated to unilateral forms, the

side of lateralization cannot be identified. The study concluded

that the observed differences were due to higher aldosterone in

the unilateral group, but an effect of low K+ on NCC and pNCC

may have been overlooked because they corrected hypokalaemia

with KCl supplements.
Future perspectives

Use of uEVs as a tool to assess NCC abundance and activity

in a variety of human studies has provided insight to the relative

roles of K+ and mineralocorticoids in NCC regulation. The

observations in uEVs support the notion that suppressive

effects of K+ override stimulatory effects of mineralocorticoid

on NCC in humans. Using uEVs to explore molecular

mechanisms in humans with the intent to combine them with

information from animal models and clinical assessment

provides novel insights into the interactions between kidney

Na and K handling, blood pressure and the RAAS. However, use

of uEV NCC, pNCC or other molecules as biomarkers for

diagnosis, prognosis and guidance for treatment is still

methodologically challenging. Apart from the already known

great differences in uEVs between patients in different gender

(160, 161), age (162) and states of disease (131, 163, 164),

limiting technical variations throughout the uEV analysis

workflow and establishing standardised protocols are required

before clinical application of uEV assessment. Moreover, the lack

of robust molecular normalisation controls or normalisation

controls for urine volume is still a major challenge in the field

(165). Although the International Society of Extracellular

Vesicles has provided recommendations for uEV research

(107), new information derived from research in this rapidly

growing field has evolved so that they are not universally

accepted among different researchers. Nevertheless,

with ongoing refinement and standardization, the study of

uEVs remains a promising tool, for both research into

disorders of BP regulation and possibly for incorporation into

clinical practice.
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