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Around 85% of childhood Acute Lymphoblastic Leukemia (ALL) are of B-cell origin and
characterized by the presence of different translocations including BCR-ABL1, ETV6-
RUNXT, E2A-PBX1, and MLL fusion proteins. The current clinical investigations used to
identify ETV6-RUNXT translocation include FISH and fusion transcript specific PCR. In the
current study we assessed the utility of IGF2BP1, an oncofetal RNA binding protein, that is
over expressed specifically in ETVE-RUNXT translocation positive B-ALL to be used as a
diagnostic marker in the clinic. Further, public transcriptomic and Crosslinked
Immunoprecipitation (CLIP) datasets were analyzed to identify the putative targets of
IGF2BP1. We also studied the utility of using the mRNA expression of two such targets,
MYC and EGFL7 as potential diagnostic markers separately or in conjunction with
IGF2BP1. We observed that the expression of IGF2BP1 alone measured by RT-gPCR
is highly sensitive and specific to be used as a potential biomarker for the presence of
ETV6-RUNXT translocation in future.

Keywords: IGF2BP1, EGFL7, ETV6-RUNX1 translocation, B-ALL, receiver operating characteristic curve (ROC)

INTRODUCTION

B-cell acute lymphoblastic leukemia (B-ALL) is the commonest childhood cancer in the pediatric
population which originates from the propagation of cytogenetically altered and molecularly
abnormal B-lymphocyte progenitor cells (1). The defective progenitor cells, leukemic blasts,
exhibit uncontrolled proliferation, get accumulated in the bone marrow and further infiltrate
into various extramedullary sites, including spleen, liver, lymph node, thymus, and gonads (2).
About 50% of B-ALL tumors exhibit genetic rearrangements among which translocations are most
common (3). A set of sentinel genetic lesions, mostly BCR/ABL1, ETV6/RUNXI, E2A/PBX1, and
MLL rearrangements, have been well recognized in B-ALL. From Western literature, we see that
ETV6/RUNXI is the commonest translocation seen in B-ALL which decreases with increasing age.
The frequency of BCR/ABLI is very low in childhood ALL (4). However, the translocation profile
seen in the Asian population is quite different. ETV6-RUNXI is present at a lower frequency while
BCR-ABLI shows a higher prevalence (5-9).
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ETV6-RUNXI fusion is formed by the fusion of the first five
exons of ETV6 proximally to almost the entire RUNXI gene
depending upon the breakpoint region (10). Both ETV6 and
RUNXI are transcription factors and play an important role in
haematopoiesis (11) with ETV6 known to be a strong repressor
(12). The chimeric ETV6/RUNX1 transcription factor retains the
essential pointed N terminal protein-protein interaction domain
of ETV6 and the DNA-binding and transcriptional regulatory
sequences of RUNXI1 (13). ETV6-RUNXI translocation has been
seen in 1%-5% of normal new-borns (14-16) which is around
hundred times the number who develop overt clinical leukemia
(10, 16). This demonstrates that ETV6-RUNXI translocation
alone is insufficient for leukemogenesis and another genetic
event (e.g., deletion of the other ETV6 allele) is required (3).

In situ hybridization is an important technique in the field of
cytogenetics to study the presence of different chromosomal
abnormalities (17). With the improvement in this technique, the
identification of different translocations is now done by
Fluorescence-in Situ Hybridisation (FISH) (metaphase or
interphase), using fluorescent probes (18-20) which are expensive,
time consuming and labor-intensive (21). Despite having several
advantages, the major limiting factor from the diagnostic point of
view is the availability of patient sample. Further, the process may
fail occasionally due to unsuccessful culture. Alternatively, RT-PCR
for fusion transcripts is also used but has variable results in
comparison to FISH (22) along with a high rate of false-positive
results (15) as well as false-negative results due to RNA instability
(14). The success rate of these techniques depends upon the stability
of the fusion transcripts, hybridization of the probe (Fluorescent
probe or primer) to the DNA which further depends on the copy
number of the fusion transcripts in question.

To overcome these limitations, we tried to use RT-qPCR of
specific genes as an alternative to diagnose the presence of the
ETV6-RUNXI translocation. Overexpression of the RNA binding
protein (RBP), Insulin like Growth Factor 2 mRNA Binding Protein
1 (IGF2BP1) has been reported previously in ETV6-RUNX1 positive
B-ALL patients (23). IGF2BP1 is an oncofetal protein overexpressed
in epithelial cancers including colorectal and breast cancers and is
known to bind oncogenic mRNAs and increase their stability (24).
In this study, we have demonstrated the utility of IGF2BP1
expression in B-ALL patient bone marrow samples to diagnose
the presence of the ETV6-RUNXI translocation. Since IGF2BP1 is
an RNA binding protein (RBP), we have also used data mining of
multiple high throughput public datasets to identify its binding
targets and have tested the utility of the expression of two of these
targets, EGFL7 and MYC, to diagnose the translocation. We
conclude that all of these have the potential to be good candidates
for identifying the presence of the translocation with IGF2BP1 being
the best among them.

MATERIAL AND METHODS

Patient Samples

Inclusion/Exclusion criteria: Newly diagnosed B-ALL patients
(diagnosis established by morphology, immunophenotyping,
and molecular genetics), age from 0 to 18 years, and written

informed consent of parents obtained prior patient enrolment.
Patients treated elsewhere initially or ALL developing secondary
to another malignancy were excluded from the study.

From 261 enrolled naive B-ALL patients, we were able to
collect sufficient patient bone marrow (BM) samples from 114
patients at the time of routine diagnosis from March 2016 to
August 2019 at BR Ambedkar Institute Rotary Cancer Hospital at
AIIMS, New Delhi after obtaining ethical clearance from the
Institutional Ethics Committee and informed consent from a
guardian, and assent from children above 7 years of age. To
increase the power of the study, we have also included 29 [1 altered
cytogenetics, 13 other known translocations (11 BCR-ABLI, 1
E2A-PBX1, 1 MLL), 15 ETV6-RUNXI positive] archival samples
(bone marrow samples collected before March 2016) for this
study. Due to the limitation with the sample volume collected,
we were not able to study all the genes in all the patient samples.

Cell Culture

Reh (ATCC CRL-8286) (ETV6-RUNXI translocation positive B
lymphoblastic cell line) cells were cultured in RPMI1640
(Himedia AL199S) with 10% Fetal Bovine Serum (Gibco) and
1% antibiotics (Pen-Strep, Gibco) as recommended by ATCC at
37°C and 5% CO,.

Patient Sample Preparation

The bone marrow sample collected was subjected to RBC Lysis
Buffer for 30 min at 4°C. The samples were centrifuged at 1,500 g
for 10 min at 4°C and washed with 1X Phosphate Buffer Saline
(Gibco) followed by centrifugation. The pellet obtained was
resuspended in 1 ml of TRIzol (Thermo Fisher) followed by
RNA isolation.

RNA lIsolation

For every, 1 ml TRIzol sample, 200 ul chloroform was added and
mixed vigorously for 10 sec followed by 15 min incubation at room
temperature. After incubation, samples were centrifuged at 12,000
for 15 min at 4°C to allow layers to separate. After centrifugation,
the samples were taken out carefully and the upper aqueous layer
was collected without disturbing the interface in a fresh tube. To the
separated sample, 0.5 ml of isopropanol (Thermo) was added and
incubated for 10 min at room temperature. After incubation, the
samples were centrifuged at 12,000g for 10 min at 4°C to precipitate
the RNA. The supernatant was discarded and the precipitated RNA
was washed with 70% ethanol (Thermo) at 7,500g for 10 min. The
supernatant was discarded and the pellet was air dried to remove the
residual ethanol, dissolved in nuclease free water (Qiagen) and
stored at —80°C till further use.

Real Time PCR

cDNA was prepared from the isolated RNA using RevertAid
Reverse Transcriptase (Thermo Fisher) 10 U/pl, Random
Decamers 5 puM/reaction (Sigma) and Ribolock (Thermo Fisher)
1 U/ul with 500-1,000 ng of RNA. Real time PCR (qPCR) was
done (35 cycles, 95°C for 15 s, 60°C for 15 s, 72°C for 30 s) with
Syto9 (Invitrogen) using specific primers for IGF2BP1, MYC,
ETV6-RUNX1, and EGFL7 (Table 1). The qPCR reactions were
done in technical triplicates for all genes. The expression was
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TABLE 1 | Primer sequences used for real time PCR.

Gene Forward primer (5'23’) Reverse primer (5'23’)
IGF2BP1 TTACTGGGGCTGCTCCCTAT  TTCGGGTGGTGCAATCTTGA
MYC TACAACACCCGAGCAAGGAC  AGCTAACGTTGAGGGGCATC
ETV6-RUNXT TGCACCCTCTGATCCTGAAC  AACGCCTCGCTCATCTTGC
RNA CATCAAGAGAGTCCAGTTCGG CCCTCAGTCGTCTCTGGGTA
Polymerase Il

PPIA CACCGTGTTCTTCGACATTG ~ TTCTGCTGTCTTTGGGACCT

normalized using housekeeping genes RNA Polymerase II and
PPIA. AACt method was used to compare the gene expression (25).

Statistics

All experiments were done in triplicates. Relative expression was
compared between different groups using Mann Whitney (two
groups)/Kruskal-Wallis (more than two groups) statistical tests
using GraphPad Prism software version 5. ROC curve was made
using SPSS software version 20. A p-value of <0.05 was
considered to be significant.

RESULTS

Descriptive Statistics

A total of 261 pediatric B-ALL patients were registered in the
BRAIRCH OPD, AIIMS from March 2016 to August 2019. Out
of these patients, 64.7% cases belonged to the “No known
sentinel translocation” group, followed by ETV6-RUNXI
(13.8%), BCR-ABLI (12.3%), E2A-PBX1 (6.5%), and MLL gene
translocation (2.7%). A lower incidence of ETV6-RUNXI (13%)
incidence was noted as compared to the Western population
(25%) in our patient cohort which is in concordance with the
literature published for the Asian population (6-8). Similarly, a
higher incidence of pediatric BCR-ABLI (11.5%) translocation
was also observed as reported by other studies (7-9, 26, 27)

B-ALL SUBTYPES

W NO KNOWN SENTINEL
TRANSLOCATION

W BCR-ABL1 POSITIVE

m ETV6-RUNX1 POSITIVE

E2A-PBX1 POSITIVE

uMLL

AGE DISTRIBUTION

(Figure 1A, Table 2). A male preponderance (M: F = 2:1) was
observed in the pediatric population with a median age of 4 years
(Figures 1B, C and Table 2).

RT-gPCR Analysis for IGF2BP1 Expression

From the 261 patients, sufficient bone marrow sample for further
analysis could be obtained for 114 patients (Figure 2). These
patients were diagnosed on the basis of morphology,
cytochemistry and immunophenotyping. IGF2BP1 mRNA
expression was studied by real time PCR using cDNA prepared
from BM mononuclear cells using TRIzol. We also included 29
archival patient samples to increase the power of the study. The
final analysis was done on 143 patient samples including 37 ETV6-
RUNXI1 positive samples, 44 samples with other translocations
(E2A-PBXI (n = 15), BCR-ABLI (n = 24), MLL (n = 5) fusion
proteins), and 62 samples with no known translocations. The last
group also included 13 patients with altered cytogenetics [Hyper
diploidy (n = 8), hypodiploidy (n = 1), chromosomal deletions
(n = 1) (chr 6q21)]. The relative expression of IGF2BP1 was
normalized using RNA Pol II and PPIA. Similar results were
obtained using either of the housekeeping genes.

IGF2BP1 mRNA expression was significantly higher in ETV6-
RUNXI1 positive B-ALL (n = 37), (median value = 2.74)
compared to the negative samples (n = 106), (median value =
0.0022) (p < 0.0001, > 1,000 fold overexpression) (Figure 3A).
This group also showed a significant downregulation in wild type
ETVG6 expression levels, which is concordant with the loss of the
other wild type ETV6 allele reported in this subtype of B-ALL
(28) (Figure 3B). The expression of IGF2BPI appeared to be
specific to the ETV6-RUNXI translocation positive sub-group.
Interestingly, some patients (12/62) in the “No known sentinel
translocations” group had a high expression of IGF2BPI. In
addition, 4/12 of them had altered cytogenetics. One of them had
hyperploidy (53-54 chromosomes) including chromosome 17
which harbors the IGF2BPI gene. One patient showed extra

GENDER DISTRIBUTION

M

mF

mMOTO5m5TO10 m>10

SUBUVEES O AGE GROUP | O KNOWN SENTINEL [ BCR-ABLI [ETVSRUNX1|E24-PBX1| GENDER |NO. OF PATIENTS
OO NISENIINET TRANSLOCATION | POSITIVE | POSITIVE | POSITIVE
TRANSLOCATION e - -
BCR-ABL1 32 0TOS 74 (44%) 8 (25%) 2261%) | 4(23.5%) | 5 (71.4%)
Egﬂ:gg‘ ?g 5TO10 49 (20%) 13 (41%) 12(3%) | 6G353%) | 00%) . .
MLL 7 >10 46 (27%) 11 (34%) 206%) | 7(41.2%) | 2 (25.6%)

March 2016 to August 2019).

FIGURE 1 | Demographic data indicating the (A) B-ALL subtypes, (B) age distribution of B-ALL patients, and (C) gender distribution. (Patient data reported from
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TABLE 2 | Demographic data of B-ALL patients recruited from March 2016—
August 2019.

TRANSLOCATION AGE Total
0-5 5-10 >10

No known Sentinel Translocations 74 49 46 169

BCR-ABL1 8 13 ihl 32

ETV6-RUNX1 22 12 2 36

E2A-PBX1 4 6 7 17

MLL 5 0 2 7

Total 113 80 68 261

Gender Frequency Percent

Female 86 33.0

Male 175 67.0

Total 261 100.0

signals for 21q (RUNXI locus, iamp21) on FISH and one
patient’s sample was positive for extra signals for both 12p as
well as 21q. The other 8 were cytogenetically normal.

A new subtype of B-ALL known as “ETV6-RUNXI-like
leukemia” has been identified recently based on a gene
expression profile similar to that of ETV6-RUNXI translocation
positive leukemia in the absence of the translocation. This subtype
also reported a functional loss of ETV6 in the form of mutation or
deletions (29, 30). A lower relative expression of ETV6 was
noticeable in the patients with high IGF2BPI expression in the
“No known sentinel translocation” group. It is interesting to
speculate that these few patients might belong to the newly
identified ETV6-RUNXI like leukemia subgroup. Loss or
perturbation of the ETV6 or its regulatory loci might be
triggering an ETV6-RUNXI-like leukemia in these patients.

Testing the Efficacy of IGF2BP1 as a
Diagnostic Marker

The potential of IGF2BPI expression to identify the ETV6-
RUNXI translocation was studied using an ROC curve. ETV6-
RUNXI positivity confirmed either by FISH for the t(12;21)

as B-ALL (n=261)

—

Consent
obtained
214

r INCLUDED ﬂ

Sample
sufficient for
the study
114

|

Nelow ETV6-RUNXL Ml Other known

sentinel N :
translocation positive translocation
22 31

61

Sample
insufficient
for qRT-PCR

100

-
+

FIGURE 2 | Flowchart showing the recruitment of patients for the study.

Patients diagnosed

(Mar 2016-Aug 2019)

translocation or PCR for ETV6-RUNXI fusion transcript or by
both (Figure 3C) was utilized as the reference or gold standard
(STARD flowchart in Figure 4). The area under the curve was 0.91
having a sensitivity of 95% and specificity of 86%, with a cut-off of
>0.1 with respect to RNA Pol II. Various papers have previously
identified MYC as a known target of IGF2BP1 (24, 31, 32).
Interestingly, MYC expression showed significant downregulation
in the ETV6-RUNXI positive group (Figure 3D), contradictory to
the existing literature which suggests a MYC stabilizing role for
IGF2BP1 (24). This might imply the tissue-specific function of
IGF2BP1. ROC curves also suggested that reduced MYC expression,
with a cut-off value of <0.63 with respect to RNA Pol II, has the
potential to be used as a diagnostic marker to detect ETV6-RUNX1
translocation, albeit with a lesser sensitivity (73%) and specificity
(65%) than IGF2BP1I expression (Figure 3E).

The sensitivity of IGF2BPI expression to identify this
translocation was compared against studying the expression of
the ETV6-RUNXI fusion mRNA itself. Varying mixtures of Reh
(ETV6-RUNXI translocation positive cell line: representing the
blasts) and control PBMCs (no ETV6-RUNXI) were subjected to
Real Time RT-PCR for IGF2BP1I as well as ETV6-RUNX1. The
correlation coefficient demonstrated the linearity and accuracy of
IGF2BP1 expression with an inferior correlation seen for ETV6-
RUNXI expression. While the expression of both ETV6-RUNX1
and IGF2BP1 correlated significantly with the blast percentage,
the relative expression of ETV6-RUNXI was much lower than
IGF2BP1 levels contributing to the higher sensitivity of IGF2BP1
expression (Figures 5A, B).

Validating the Efficacy of Putative IGF2BP1
Targets in Diagnosing ETV6-RUNX1
Positive Leukemia

Since IGF2BP1 is an RNA binding protein, we next proceeded on
elucidating its cognate targets. To identify ETV6-RUNX1 positive
B-ALL specific putative targets of IGF2BP1, we compared three
high-throughput gene expression datasets from published articles:
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FIGURE 3 | Real time expression data showing (A) IGF2BP1 overexpression in ETV6-RUNX1 translocation positive patients (N = 37), patients with other
translocations (N = 44, BCR-ABL1, E2A-PBX1, MLL), and patients with no known translocation (N = 62, includes patients with altered cytogenetics, N = 13);

(B) ETV6 expression in ETV6-RUNX1 translocation positive (N = 32) and translocation negative (N = 101) patients; (C) ROC curve for IGF2BP1 comparing it to FISH/
RT-PCR for ETV6-RUNX1; (D) MYC expression in ETV6-RUNX1 translocation positive (N = 34) and ETV6-RUNXT translocation negative (N = 106) patients, and

(E) ROC curve for MYC expression. ****p < 0.0001; **p < 0.001, **p < 0.01. ETV6-RUNX1 positive is denoted as E6R1+ and ETV6-RUNX1 negative as E6R1-.

Naive + Archival

Index test: qRT-PCR for IGF2BP1

FIGURE 4 | STARD diagram showing flow of participants through the study.

Reference test: ETV6-RUNX1 status analysed by qRT-
PCR for the fusion transcript/FISH for translocation
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1. Microarray analysis of ETV6-RUNXI translocation positive
patients (n = 4) compared to normal CD-19 positive B-cells
from healthy donors (n = 2) (33);

2. Differential gene expression analysis among subtypes of B-
ALL comprising of ETV6-RUNXI1, E2A-PBX1, and MLL
positive patients (n = 44) GSE65647 (34).

3. MILE (Microarray Innovations in LEukemia) study of B-ALL
patient samples (n= 3242) (35, 36).

The first study (33) compared the gene expression levels
of ETV6-RUNXI positive patients’ bone marrow with respect
to the MACS sorted CD19 + B cells’ RNA using a microarray.
We identified the top 100 overexpressed genes from this
differentially expressed list. These are the genes which are
specifically overexpressed due to the presence of the ETV6-
RUNX]1 fusion protein.

The second dataset (34) compared the gene expression pattern
between patient samples with three different translocations in
B-ALL: ETV6-RUNXI, E2A-PBX1, and MLL translocations by
microarray. From this data, we compared the three groups
among each other. The genes specifically overexpressed in the
comparison between these two different groups [ETV6-RUNX1
vs. E2A-PBX1 (203 genes), ETV6-RUNXI vs. MLL (329 genes)]
were identified. These are the ETV6-RUNXI positive B-ALL
specific genes from this study. Dataset 1 and 2 were overlapped
to identify common genes.

The third dataset we used is from the MILE (Microarray
Innovations in Leukemia) study (35, 36) which was used for
corroboration. We used this study to check the expression of all
the common genes from Dataset 1 and 2. We then selected only
those genes whose expression levels were high in the ETV6-
RUNXI1 cohort in the MILE study.

Using the three datasets, we had constructed a list of genes
commonly overexpressed in ETV6-RUNXI positive B-ALL. We
then intersected this list with the dataset from an eCLIP
experiment done for IGF2BP1 in K562 cell line (37). CLIP
(Cross-linked Immunoprecipitation) is a technique where cells
are UV-crosslinked, pulled down with an IGF2BP1 specific

FIGURE 5 | (A) IGF2BP1 and (B) ETV6-RUNX1 expression in a mixture of Reh (corresponding to blasts) and PBMCs.

antibody followed by RNA isolation and sequencing. The
peaks from this dataset were visualized on the UCSC browser.
The binding of IGF2BP1 to its targets was quantified as weak (+),
medium (++) or strong (+++/++++).

The final list consisted of only 12 such genes which we further
segregated based on their known function and putative role in
any hematological malignancy (Figure 6 and Table 3). Out of
these 12 genes, EGFL7, CALN1, TUSC3 and TNFRSF21 were the
top genes that were found to be highly expressed (>2 log fold
change) in ETV6-RUNXI positive group in comparison to MLL
and E2A-PBX1 positive groups as well as were bound strongly by
IGF2BP1 from the eCLIP dataset. CALNI has previously known
to be overexpressed in ETV6-RUNXI leukemia but its exact
function is still unknown (38), while TUSC3 is reported to be a
tumor suppressor gene (39). Among these gene, EGFL7 has been
shown to play a role previously in the pathogenesis of Acute
Myeloid Leukemia (AML) and hematopoiesis and is also known
to be overexpressed in ETV6-RUNXI leukemia (40, 41). Hence,
we tested the potential of using EGFL7 expression to diagnose the
ETV6-RUNXI1 translocation.

EGFL7 mRNA was also found to be significantly over
expressed in the ETV6-RUNXI translocation positive group in
our cohort (Figure 7A). ROC curves for EGFL7 also showed
potential of being a biomarker to diagnose ETV6-RUNXI
translocation but still slightly inferior to IGF2BP1 expression
(AUC = 0.865 with a sensitivity of 88.9% and specificity of 81.6%,
with cut-off >0.309 with respect to RNA Pol II) (Figure 7B). We
tried using the expression levels of IGF2BP1, MYC, and EGFL7 in
various combinations to study their diagnostic efficiency. All the
combinations had a good AUC but IGF2BPI expression alone
was the best with the highest sensitivity and specificity at a
relative expression cut-off >0.1 (Figures 8A-C).

The heatmap showing the expression of IGF2BPI1, MYC, and
EGFL7 in ETV6-RUNXI translocation positive and negative
patients highlights the discriminatory power of IGF2BPI to
identify this translocation (Figure 9). Previous studies have
identified various genes including EPOR, TCFL5, and TERF2 to
be specifically overexpressed in ETV6-RUNXI leukemia (38).
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FIGURE 6 | Schematic showing the algorithm used to identify putative targets of IGF2BP1 in ETV6-RUNX1 positive B-ALL.

TABLE 3 | List of putative IGF2BP1 targets.

List of genes with IGF2BP1 binding and overexpression in ETV6-RUNX1 positive B-ALL

Gene ETV6-RUNX1 Vs. CD19+ve Leukemia MILE study Microarray data eCLIP of IGF2BP1
log FC
mRNA E6R1+ Normal EARLY B cell E6R1Vs. MLL E2A-PBX Vs. MLL E6R1 Vs. E2A-PBX BINDING
Fold Change B-ALL

IGF2BP1 59.39268 High (+++) Low 5.7 No change 6.17 ++
EGFL7 88.58453 High (+++) Low 25 -1.4 3.9 +++
CALN1 65.20498 High (+++) NA 2.99 No change 3.08 ++
TUSC3 65.20426 High (+++) High (+) 3.12 No change 3.37 ++
TNFRSF21 59.27442 High (+++) High (+) 3.02 No change 3.13 +
FSCN1 85.27267 High (++)  High(+++) 1.06 -2.8 3.8 .
MDK 79.06593 High (+++) Low 4.93 3.5 1.42 +++
MYO18B 70.15012 High (+++) NA 1.64 No change No change ++
SPTA1 100 High (++)  Low 1.9 No change 1.8 +
TMEM136 100 High (+++) High (+) 4.04 No change No change +
DYRK3 99.44952 High (+++) Low 2.42 2.62 No change +++
SOCS2 95.09744 High (+++) High (+) -1.14 -6.5 5.4 +++

We compared the expression of IGF2BP]1 as well as these genes in
ALL patient samples from the publicly available Leukemia MILE
study (36) on the BloodSpot database (35). Although all these
genes are overexpressed in ETV6-RUNXI positive B-ALL, it is
evident that IGF2BPI expression stands out in being extremely
specific to this subtype (Figure 10).

DISCUSSION

Routine diagnostic techniques used in ALL diagnosis and
management include flowcytometry (for immunophenotyping),
RT-PCR, Karyotyping, and FISH. FISH is the gold standard
technique which is commonly used to diagnose the presence of

leukemic translocations and it has distinct advantages (21, 42).
The average turnaround time (TAT) for FISH is 3 days (43) and
cytogenetics is 7 days (44) in standard laboratories. We have
investigated the utility of studying the expression of IGF2BP1, an
RNA binding protein known to be overexpressed in ETV6-
RUNXI leukemia, by qPCR, to be used as a cheaper and quicker
alternative to diagnose the presence of the translocation. This
would facilitate risk stratification using low amounts of patient
bone marrow sample. This would be especially useful in pediatric
patients where the sample obtained during the bone marrow
aspiration is not sufficient enough to even complete the panel of
routine diagnostic tests (45). If utilized, the TAT for gene
expression analysis is ~6 h and can be done easily in house
without incurring extra cost to the patient. Based on the
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sensitivity and specificity of the gene as demonstrated in the
results, we could potentially add the qPCR for IGF2BPI as a
diagnostic marker for the presence of ETV6-RUNXI translocation.
This study has utilized the most commonly observed sentinel
translocations (BCR-ABL1, E2A-PBX1, MLL-AF4). This study has
not addressed the newer gene expression based minor subtypes
including the “ETV6-RUNX1I-like” leukemia which would be part
of the “no known sentinel translocations” group.

This is the first study to analyze the utility of gene expression
analysis of IGF2BP1 for the diagnosis of ETV6-RUNXI positive
B-ALL. It is also the first time that such an exercise has been

carried out in an Indian patient cohort of over 100 patients. Since
IGF2BP1 is an RNA binding protein, we have used data mining
from public high throughput datasets to identify its targets in B-
ALL. We have utilized three datasets to identify an ETV6-
RUNXI1 specific gene signature which was then overlapped
with an eCLIP dataset of IGF2BP1. The overlapped dataset
gave us a novel list of ETV6-RUNXI specific genes bound and
stabilized by IGF2BP1.

From this list we have further characterized two genes
(EGFL7 and MYC) for their sensitivity and specificity in
identifying the translocation. Both these genes were also found
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to have the potential to be used as biomarkers to identify the
translocation. However, IGF2BPI mRNA expression by RT
qPCR was found to be an excellent candidate to be used as a
biomarker to diagnose ETV6-RUNX1I translocation showing 95%
sensitivity and 86% specificity at a relative expression cut off of
0.1. IGF2BP1 expression in the bone marrow as well as peripheral
blood can be utilized as a rapid test to diagnose the presence of
the ETV6-RUNXI translocation in the future.

This increase in IGF2BP1 expression might be due to the loss
of ETV6 which might be repressing IGF2BP1 or the presence of
the ETV6-RUNX1 fusion protein or it might be a combination of
both factors. Interestingly, the de-repression of IGF2BPI in
ETV6-RUNXI positive ALL is so strong that its gene

expression is ~100 fold higher than the expression of the
ETV6-RUNXI fusion RNA. This contributes to the extremely
high sensitivity and specificity of this assay. Future work could
also involve identifying the mechanistic role of IGF2BPI1 in
leukemogenesis and developing it into a therapeutic target in
this particular subset of B-ALL.
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