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Functional near-infrared spectroscopy (fNIRS) is a safe and non-invasive

optical imaging technique that is being increasingly used in brain-computer

interfaces (BCIs) to recognize mental tasks. Unlike electroencephalography

(EEG) which directly measures neural activation, fNIRS signals reflect

neurovascular-coupling inducing hemodynamic response that can be slow in

time and varying in the pattern. The established classifiers extend the EEG-ones

by mostly employing the feature based supervised models such as the support

vector machine (SVM) and linear discriminant analysis (LDA), and fail to timely

characterize the level-sensitive hemodynamic pattern. A dedicated classifier

is desired for intentional activity recognition of fNIRS-BCI, including the

adaptive acquisition of response relevant features and accurate discrimination

of implied ideas. To this end, we herein propose a specifically-designed

joint adaptive classification method that combines a Kalman filtering (KF) for

robust level extraction and an adaptive Gaussian mixture model (a-GMM) for

enhanced pattern recognition. The simulative investigations and paradigm

experiments have shown that the proposed KF/a-GMM classification method

can e�ectively track the random variations of task-evoked brain activation

patterns, and improve the accuracy of single-trial classification task of mental

arithmetic vs. mental singing, as compared to the conventional methods, e.g.,

those that employ combinations of the band-pass filtering (BPF) based feature

extractors (mean, slope, and variance, etc.) and the classical recognizers (GMM,

SVM, and LDA). The proposed approach paves a promising way for developing

the real-time fNIRS-BCI technique.
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Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-

invasive, safe, more portable, low-motion artifact, and low-cost

optical neural imaging technique that measures the cerebral

hemodynamic changes associated with functional brain activity

in multiple channels while people performing a wide range

of mental tasks (Ferrari and Quaresima, 2012; Alzahab et al.,

2021). The regional cerebral blood flow variation is caused

by the concentration variation of oxygenated hemoglobin

(HbO) and deoxygenated hemoglobin (HbR), which are primary

absorbing chromophores in the capillaries of the brain (Boas

et al., 2004). These days, many brain imaging modalities have

been investigated for use in brain-computer interface (BCI).

Nevertheless, fNIRS has received an enormous amount of

attention due to its superior environmental robustness to EEG

(Hong et al., 2020), and is silent and more tolerant to subtle

movement artifacts than functional magnetic resonance imaging

(fMRI) (Glover, 1999). Another notable advantage of fNIRS-BCI

is its suitability for repeatedmeasurements within short intervals

and long-term continuous measurements for future clinical use

(Li et al., 2017).

To measure the fNIRS signal, the optodes require direct

contact with the scalp, as hair (especially dark hair) leads to

attenuation of the fNIRS signal (Herff et al., 2013). However,

hair-covered regions of interest (ROI) such as the motor and

visual cortex regions have difficulty meeting this condition, as

a long preparation time may be required to remove the hair

from under the optodes before the experiment to ensure that

there is the minimum amount of hair is under the optode.

Nevertheless, the hair-free prefrontal cortex (PFC) region is an

ideal ROI for fNIRS measurements because it does not cause

attenuation of light intensity and allows for a fast set-up of

optode layout. In studies where the ROI is the PFC region, fNIRS

signal classification is essential to the development of the fNIRS-

BCI system. The classification of fNIRS signals acquired in the

PFC has applications in many fields, including volitional control

such as motor imagery (MI) (Ma et al., 2021), the identification

of different emotions (Nguyen et al., 2021), the classification of

mental workload levels (Lim et al., 2020), and the discrimination

of intentional activity of the brain such as different mental

tasks (Power et al., 2012; Chen et al., 2020). Most studies

of fNIRS-BCI have focused on MI, affective responses, and

mental workload, and less on mental task recognition. In this

paper, to investigate the suitability of different mental tasks for

BCI control and to improve their discrimination accuracy, we

conducted experiments on two mental tasks, namely mental

arithmetic (MA) and mental singing (MS). This is because MA

and MS are common and robust mental tasks in fNIRS-BCI

(Power et al., 2010). Among the studies on the classification of

mental tasks, Power et al. (2010) investigated a Hidden Markov

Model (HMM) classifier based on light intensity data to classify

MA and MS mental tasks. The results of the study showed an

average accuracy of 77.2% in 10 able-bodied participants. The

results suggest the potential of a two-choice fNIRS-BCI based on

mental tasks. In another study, Power et al. (2012) investigated

LDA classifiers constructed from feature sets of slope and

amplitude to classify the MA vs. MS vs. no-control state of seven

able-bodied adults, and the results indicated an overall accuracy

of 56.2%. Excluding the ineffective MS task, the accuracy of

the three untrained subjects was approaching 70%, which is

generally considered effective for binary BCI communication.

When users use and practice the fNIRS-BCI system to operate

external devices through mental tasks for prolonged periods of

time, factors such as learning effects and cognitive fatigue across

BCI trials may lead to slow variations in activation patterns

over time, which is leading to a reduction in accuracy. The

goal of the currently study was to overcome these dilemmas

and achieve accurately capturing changes in activation patterns

and improving the accuracy of mental tasks. Feature extraction

techniques and classification models are essential for improving

accuracy. For fNIRS signals, immediate characterization of

level-sensitive hemodynamic patterns is critical to improve

identification accuracy. Currently, fNIRS-BCI researchers have

mostly used various classification models based on statistical

features to enhance the classification accuracy of fNIRS signal

from ROI.

For using different feature extraction methods to improve

accuracy, the most used feature extraction techniques rely on

the use of BPF reconstructed hemodynamic response function

(HRF) to extract the statistical characteristics of the task-related

time-domain fNIRS signals, such as mean, slope, variance,

skewness, and kurtosis, and so on (Hwang et al., 2016; Noori

et al., 2017; Aydin, 2020). Hwang et al. used the Fisher score

method to select the best individual statistical feature for

each participant to construct the LDA classifier. The results

showed that the average accuracy of “yes” and “no” intentions

for the eight healthy participants was ∼75% when using the

best individual features (Hwang et al., 2016). However, these

statistical features cannot well characterize the hemodynamic

response in fNIRS-BCI that is fully depicted by the time-varying

activation levels. However, the highest accuracy may depend

on the participant-specific BPF-statistical features set and the

size of the selected time window. One limitation of fNIRS-

BCI is that it is time-consuming to process the fNIRS signal

to determine the optimal subset of features. Therefore, more

suitable adaptive feature extraction techniques are required

to overcome the limitations of BPF-statistical features that

cannot well characterize the HRF and the time-consuming

optimization of a subset of BPF-statistical features. For using

different classifiers to improve accuracy, many researchers have

tried to apply many machine learning-based classifiers in fNIRS-

BCI, such as LDA, SVM, HMM, k-nearest neighbor, Gaussian

mixture model (GMM), and artificial neural networks (Power

et al., 2010; Li et al., 2017; Zhang et al., 2018; Aydin, 2020;

Hong et al., 2020), and also tried to apply convolutional neural
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networks, recurrent neural networks, and other deep learning

(DL) algorithms (Trakoolwilaiwan et al., 2018; Asgher et al.,

2020; Wickramaratne and Mahmud, 2021), but limited studies

are available so far. Yoo et al. developed a long short-term

memory network (LSTM) classifier to classify three categories

of mental tasks (MA, mental counting, and puzzle solving) (Yoo

et al., 2018). The results indicated that the maximum accuracy

of the LSTMwas 83.30%, which was higher than that of the LDA

(37.50%) and SVM (37.96%) classifiers. Although DL methods

can automatically extract features and provide improvements

in classification performance, a non-negligible problem is that

DL usually requires a large amount of data to allow the model

to be adequately trained to prevent overfitting. However, it

is unrealistic, or even impossible, to obtain substantial-scale

labeled fNIRS signals. Therefore, the classifiers currently used

in fNIRS-BCI mostly employ the BPF-statistical features based

supervised classical models such as SVM and LDA. These

EEG-extending methods fail to characterize the HRF and trace

changes in activation patterns. For long-term measurements of

fNIRS signals, the fNIRS-BCI desires the design of a dedicated

adaptive classification method that includes adaptive extraction

of the activation level feature and accurate discrimination of

the intentional activities, which can capture the changes in the

neural activation pattern of users when they use and practice a

BCI system.

To this end, we herein propose a novel joint adaptive

classification approach called KF/a-GMM that combines the

KF method for robust level extraction and the unsupervised

a-GMM classification method for accuracy-enhanced pattern

recognition. The KF robustly extracts the activation level

based on the general linear observational model and the

Gaussian-Markov dynamic model, while the a-GMM adaptively

classifies the mental tasks through pattern changes-based

parameter adjustment. The general linear model (GLM) has

been established as a standard method for fMRI data analysis

and has also been applied to fNIRS studies using task-based

and event-related experimental designs (Schroeter et al., 2004;

Abdelnour andHuppert, 2009; Hu et al., 2010). In ourmodel, the

KF is used to adaptively estimate the weight coefficients in GLM

from all channels of fNIRS data in parallel (Welch and Bishop,

1995; Hu et al., 2010). The HRF-related coefficient estimated at

the last time step of a given channel is the extracted activation

level feature. The a-GMM has been successfully applied to

signal processing in neuroscience and has achieved excellent

classification results (Li et al., 2017; Cao et al., 2021). A recent

study made by Li et al. showed that an a-GMM classifier could

track activation pattern changes without requiring the true labels

of the input data (Li et al., 2017). In this paper, we utilize an

unsupervised adaptive GMM method, abbreviated as a-GMM,

with a transition model that has managed hyper-parameters

to adaptively classify different mental tasks. However, the

study by Li et al. may be inadequate in simulations, as

they only performed single-pattern variation studies and only

extracted mean features for pattern recognition (Li et al., 2017).

Glover et al. investigated the temporal characteristics of BOLD

responses in the sensorimotor and auditory cortex during finger

tapping while subjects performed listening to the metronome

pacing tones (Glover, 1999). Slow changes and shifts in the size

and center of activation regions over time were observed in the

dynamic brain activation map of motor and auditory cortical

regions, respectively. A similar phenomenon was observed in

the dynamic brain activation maps of pairing and transphrasing

stimuli in Lin et al.’s study of fNIRS-based Chinese-English

simultaneous interpretation (Lin et al., 2018). These changes

in neural activation patterns were also studied in simulations

by Li et al. (2017). Furthermore, considering that learning

effects and cross-trial cognitive fatigue may lead to changes

in hemodynamic patterns, it is reasonable to generalize to a

possible stochastic form of real-world changes in hemodynamic

patterns induced by prolonged mental task stimuli. Therefore,

in the present study, more complex randomly varying activation

patterns were simulated rather than single-pattern changes. In

addition, related in-vivo paradigm experiments were performed

to validate the classification performance of the proposed

method in recognizing different mental tasks.

To demonstrate the efficiency and superiority of the

proposed KF/a-GMM approach for high-accuracy classification

in mental tasks for fNIRS-BCI, simulation experiments and

paradigm experiments are performed to comparemostly employ

the BPF-statistical features based classical methods such as

GMM, SVM, and LDA. A total of six simulations with randomly

varying activation patterns over time are simulated to mimic

the possible random variations more realistically in the spatial

patterns of neural activation evoked by the two different tasks

(i.e., MA vs. MS). These simulations incorporate random walks

in the center of the activation region, random variations in

the size of the activation region, and random variations in the

amplitude of the hemodynamic response. The in-vivo paradigm

experiments are performed in single-trial classification between

the MA vs. MS mental tasks from the prefrontal activity in eight

healthy participants.

Methods

General linear model

In fNIRS-based studies, changes in the concentrations

of HbO and HbR (i.e., 1[HbO] and 1[HbR]) can reflect

changes in regional cerebral blood flow (rCBF). Since more

pronounced amplitude changes of1[HbO] can more sensitively

reflect the changes of rCBF. Therefore, only 1[HbO] was

considered in subsequent studies. For a given measurement

channel, using GLM to analyze the time series of 1[HbO] signal

(Abdelnour and Huppert, 2009). The least-squares method

(LSM) is generally used to solve the coefficient β in the
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GLM. The β constructed by the LSM method is shown below

(Hu et al., 2010):

βLSM = (XTX)−1XT1c (1)

where 1c ∈ R
T×1 is the T-point time series of observed raw

1[HbO] signal (i.e., unfiltered 1[HbO] signal), X ∈ R
T×L

is the design matrix in GLM with five explanatory variables,

including HRF, heartbeat signal, Mayer wave signal, respiration

signal, and constant (baseline drift). The frequencies of the

heartbeat, respiration, and Mayer wave are selected based on

the spectral analysis of the raw light intensity, as described in

Section Feature extraction. L is the total number of explanatory

variables (L = 5). βLSM ∈ R
L×1 is an unbiased estimate

of β with the minimum variance according to the Gaussian-

Markov theorem (Abdelnour and Huppert, 2009). However, this

method requires complete measurement data to calculate β but

fails the real-time estimation (Wang et al., 2018). In this study,

we use KF to recursively estimate the state value β at each

time step.

Kalman filtering

The KF method is an adaptive tracking scheme that

performs an optimal estimation of the state of a process using a

recursively regularized linear inversion routine (Kalman, 1960).

In the present study, the KF is used to robustly and parallelly

estimate activation level features from all channels of unfiltered

single-trial fNIRS data (Abdelnour and Huppert, 2009). For

a given measurement channel, the transition equation and

observation equation can be described as:

{

βk = Aβk−1 + wk

1ck = Xkβk + vk
(2)

where β = [β1
k
,β2

k
, . . . ,βL

k
]T(k = 1, 2, . . . ,T) is the state vector

representing the magnitude of each explanatory variable in the

GLM estimated at time step k,1ck is the measured raw1[HbO]

signal at time step k. Since the magnitude of each explanatory

variable is slowly varying with time, it can be assumed that

the state βk is a random walk with zero drift in the transition

equation over time. Therefore, the state transition matrix A

equals the identity matrix (Hu et al., 2010). As the random

walk process is a non-stationary process, the state vector can be

updated iteratively using KF. The distribution of process noise

and observation noise are wk ∼ N(0,Q) and vk ∼ N(0,R),

respectively. The priori estimates of the process noise covariance

Q and the observation noise covariance R are set toQ = (1%)2I

and R = (1.5)2I (Abdelnour and Huppert, 2009), where I is the

identity matrix. The iterative process for updating the estimate

of state βk can be found in Hu et al. (2010). The state vector βk

is initialized to zero.

After processing the observed single-trial 1[HbO] data

through the iterative process, the βT estimated at the last

time step T is the final reconstructed β. The first element β1
T

in the final estimated vector βT is the estimated activation

level, which represents the amplitude of the HRF. The

β=[(β1
T)

1, (β1
T)

2
, · · · , (β1

T)
D
] is a feature sample of the observed

single-trial data, which consists of the estimated level features

for all channels. (β1
T)

d
(d = 1, 2, · · · ,D) denotes the level feature

extracted from the d-th channel, and D is the total number of

measurement channels.

Adaptive Gaussian mixture model

The a-GMM is a well-known model for data clustering and

classification. The uncertainty of the a-GMM parameters can be

described by a probability distribution to form a hierarchical

probability model. When a new sample arrives, variational

Bayesian inference is used to update a-GMM parameters, using

the previous parameter distributions as priors. Then, the a-

GMM gives clustering labels to the new sample data points,

and the clustering parameters are updated by a small amount

of data because the priors are strong. The detailed derivation

process of the unsupervised a-GMM approach can be found

in the literature (Li et al., 2017), and here, we only give a

brief description.

Probability model

For robustly extract level features by KF, the level feature

sample β̂ ∈ R
1×D extracted from single-trial fNIRS data for

all channels from class k are modeled as having a multivariate

normal distribution:

β̂ ∼ πkN(µk,3
−1
k

) (3)

where πk(k = 1, 2, · · · ,K) is the probability of the k-th category

of fNIRS data in the a-GMM, k indicates the category of

fNIRS data, and K is the total number of categories of fNIRS

data. K is set to 2 in this study, but it has no limitations in

a-GMM. µk is the d-dimensional mean vector, 3−1
k

is the

d × d covariance matrix, and 3k is the precision matrix. To

solve the parameters πk, µk, and 3k in the Gaussian mixture

distribution, first, the non-informative prior distribution needs

to be selected. These prior distributions are generally determined

by the conjugate distribution method, Jeffery principle, and

principle of maximum entropy (Li et al., 2017). The non-

informative priors are shown as follows:



















πk=1,...,K ∼ SymDir(j,α0)

3k=1,...,K ∼ W(W0, v0)

µk=1,...,K ∼ N[m0, (β03k)
−1]

zn=1,..,N ∼ Mult(1,π)

(4)

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.938518
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2022.938518

where N is the total number of trials SymDir(·), is the

j-dimensional symmetrical Dirichlet distribution, W(·) is

the normal-Wishart distribution, Mult(·) is the multinomial

distribution, and the zn is the latent variable. For each observed

feature sample β̂n, we have a corresponding latent variable zn =

{zn1, · · · , znK} comprising a 1-of-K binary vector with elements

znk for k = 1, . . . ,K. The zn is used to indicate the category

to which the corresponding observed feature sample belongs

to the fNIRS data. In order to distinguish the parameters of

the joint probability distribution, the above-mentioned prior

distribution parameters such as K, α0, β0, W0, v0, and m0 are

known as hyper-parameters. During the parameter fitting, these

hyper-parameters are fitted to the training data. An independent

Gaussian-Wishart prior defined using known hyper-parameters

can govern the random variable of µk and 3k of each Gaussian

component, given by:

p(µk,3k) =
∏k

k=1
N[µk|m0, (β03k)

−1]W(3k|W0, v0), (5)

where m0, β0, W0, and v0 are hyper-parameters in the

prior distribution.

Variational Bayesian inference

The variational Bayesian method is used to classify new

sample data and to update the hyper-parameters of the a-GMM

approximately. Then, the Bayesian posterior of the parameters is

calculated using the previous parameter distributions regarding

priors. However, the form of the posterior probability is usually

extremely complicated, and then we use the mean-field theory

to find another simple model (inferred posterior distribution) to

approximate instead of the true posterior distribution (Bishop,

2006). The difference between the posterior distribution and

inferred posterior distribution is measured using the Kullback-

Leibler (KL) divergence (Li et al., 2017).

The variational inference is to find the settings of the

hyper-parameters which minimizes the KL divergence. This

is equivalent to maximizing the variational lower bound.

The process is performed in an iterative manner, assigning

probabilistic labels to new sample data, and sequentially

updating a-GMM hyper-parameters until the lower bound

converges. The detailed iteration formula derivation can be

found in (Bishop, 2006) and (Li et al., 2017). For the class

labels, we define responsibility rnk as the probability that

the observed sample data β̂n belongs to class k. We set rnk
as follows:

rnk ∝ πk|3k|
1/2 exp[−0.5(β̂n − µk)

T
3k(β̂n − µk)] (6)

The normalized rnk satisfies the condition
∑K

k=1 rnk = 1. In the

present study, convergence in the iterative algorithm is regarded

as the change of the lower bound of <0.1%. Besides, we also set

a hard limit of 200 iterations. After the iterative algorithm ends,

the class label for each new sample data n belongs to class k with

the highest responsibility rnk. This is the maximum a posteriori

estimation. After that, whenmore sample data are reached, these

updated hyper-parameter values are used for the next run of

the algorithm.

Transition model

The difference between the a-GMM approach and the

GMM approach is the addition of a transition model, which

is used to manage the hyper-parameters and, thus, change the

parameters of the a-GMM (Li et al., 2017). Since we hope that

the a-GMM classifier can adaptively track the changes of task-

evoked brain activation patterns over time. This requires that

the parameters of the a-GMM are updated with newly arrived

sample data rather than becoming increasingly deterministic

based on the cumulative statistics of the previous sample data

(i.e., the parameter updates from newly arrived data will be

smaller and smaller). To this end, we need to model the change

in the parameters of the a-GMM classifier over time in order to

handle the change process of the activation pattern adaptively.

The transition model governing the hyper-parameters of the

prior distribution is presented in Equation (7). The transition

model can effectively force a certain degree of forgetting of

the old information so that the newly arrived data can still

update the a-GMM parameters. It makes the center of the

distribution of the a-GMM classifier parameters constant while

the distribution becomes wider, i.e., reduces the certainty of the

parameters. The parameters of the transition model are used

to directly reflect the rate of change of the hyper-parameters,

instead of simply using statistical variables to update. This allows

the classifier can classify tasks adaptively over time. The hyper-

parameters for the k-th category of fNIRS data are directly

updated as follows:











β̃k
0 = βk

0/(1+ c1β
k
0 )

ṽk0 = vk0c2

W̃k
0 = Wk

0/c2

(7)

where 0 ≤ c1 and 0 < c1 ≤ 1 are constants indicating the rate

of change of parameters. The right side of the equation is the

posterior hyper-parameter value from the previous algorithm

run, while the left side with the tilde sign is a prior hyper-

parameter value for the next run. Variational inference is

performed on one or a batch of new sample data by running the

algorithm to converge.

Experiments

Simulation experiments

Simulation of fNIRS signal

A series of simulation experiments of random variations in

the spatial patterns of brain activation over time is performed.
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TABLE 1 Detailed settings for generating simulated fNIRS signal.

hrf bp br bl rn

Generation/parameters cHRF*boxcar Heartbeat (1.0Hz) Respiration bl= 10 SNR= 10 dB

Mayer wave (0.1Hz) (0.2Hz)

Initial amplitude= 10 Initial amplitude= 10

Spatial filter Dynamic variation Randomly generated and static Randomly generated and static - -

*Denotes the convolution operator.

First, we simulated task-related brain fNIRS signals (i.e.,

1[HbO]), then simulated task-evoked random variations in

activation patterns of the prefrontal region over time, and finally

performed adaptive decoding for two different tasks (i.e., MA vs.

MS). The simulated fNIRS signal of one channel is modeled as a

linear combination of five components (Duan et al., 2018):

sfNIRS = hrf+ bp+ br+ bl+ rn (8)

where hrf is the hemodynamic response of the task-evoked

prefrontal regions, bp and br are changes in fNIRS signal

induced by blood pressure and respiration, respectively, bl is

the baseline drift, and rn is the random noise (systemic noise),

i.e., additional background white noise during the measurement

period of the instrument, and sfNIRS is the final simulated

fNIRS signal.

The detailed settings for generating the simulated fNIRS

signal are shown in Table 1. An example of the simulated hrf,

rn, and the final combined fNIRS signal is illustrated in Figure 1.

The time series of the hrf component is generated by convolving

the canonical HRF (cHRF) evoked by a single stimulus with a

boxcar function for task activation time series, representing the

task and rest states alternation. The cHRF is modeled as a linear

combination of two different gamma-variant time-dependent

functions (Glover, 1999). The simulated hrfs evoked by the two

different tasks (i.e., MA vs. MS) are normalized to ensure equal

levels of activation. The time series of hrf components of all

channels are then multiplied by a spatial filter that varies with

time and obeys a two-dimensional (2D) Gaussian distribution

to simulate dynamic changes in brain activation patterns. The

time series of the physiological interference components are

generated based on realistic a priori physiological parameters,

and then multiplied by a spatial filter whose values for each

channel are randomly generated from the standard normal

distribution and are statically invariant, i.e., do not change over

time (Li et al., 2017). The bp signal is composed of two sinusoids

representing heartbeat (1.0Hz) andMayer wave (0.1Hz). The br

signal is a 0.2Hz respiration signal (Scarpa et al., 2013; Hoang-

Dung et al., 2018). The initial amplitudes of bp and br are set

to 10, at which point the average SNR (hrf for signal and all

noise components for noise) across all channels is −31.35 dB,

i.e., the noise level is 35. This higher noise level is a more realistic

simulation of the realistic measurement scenario. Each sinusoid

has a random phase and amplitude distortions. The baseline

amplitude is set to bl = 10.

To more realistically mimic the measurement process, we

also add Gaussian white noise (i.e., rn) with a signal-to-noise

ratio (SNR) of 10 dB to the baseline for each channel. The

difference in SNR between the hrf (hrf = hrf + bl) and

the baseline (bl) at time step k is proportional to the square

root of the absolute values of the difference between the

amplitude of the hemodynamic response hrf and the baseline

(i.e., 1SNRk ∞

√

∣

∣

∣
hrfk − bl

∣

∣

∣
; Wang et al., 2020). hrf signal

indicates hrf signal with baseline drift.

Simulation of randomly varying activation
patterns

We simulated an 18-channel montage (3×6) of fNIRS

measurements in the PFC region with a sampling rate of 10Hz,

as shown in Figure 2A, where the black numbers indicate the

position of the channels. One trial of the simulated fNIRS data

lasts 40 s, in which the first 20 s are the rest periods and the last

20 s contain the task-related activation. A total of 500 trials were

simulated in one simulation, with alternating trials for task 1

and task 2. The simulated activation pattern varies randomly

once every 50 trials and in total it varies randomly 10 times in

one simulation. To the best of our knowledge, the randomly

varying activation pattern has not been previously simulated

in any fNIRS-BCI study. To mimic the possible changes more

realistically in the spatial pattern of brain activation, a total of six

simulations are implemented for randomly varying activation

patterns as shown in Figure 2, which illustrates the optical

topographies (OT) of random variations in activation patterns

over the first 100 trials. Figures 2A–F correspond to simulation

experiments 1–6, respectively.

For a random walk in the center of the activation region

(Figure 2A), the center of the activation region moves linearly

during the two different activation pattern changes as shown

by the white arrow in Figure 2, but the change of the center

of the activation region from the initial point to the end point

is a random walking process. In simulation 1, the HRF spatial

filter obeys a 2D Gaussian distribution with a covariance matrix

of 0.2I (I denote the identity matrix) and remains constant,
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FIGURE 1

Example of simulated fNIRS signal with the amplitude of the baseline set to 2, the initial amplitude of the physiological interference set to 2, and a

Gaussian white noise with SNR = 10 dB. The gray and pink highlighted rectangles indicate stimulation periods for task 1 and task 2, respectively.

changing only its center. Two spatial filters are randomly

generated from 2D Gaussian distributions with three different

covariance matrixes (0.2I, 1.0I, and 5.0I, respectively) as the

initial and final patterns of random variation and multiplied

with the HRF of all channels to achieve random variation in

the size of the activation region (Figure 2B). The change in the

HRF spatial filter from the initial pattern to the final pattern is

a linear and slow morphing in time, whose specific setup can

be found in the literature (Li et al., 2017). The pattern variation

in Figure 2C is a superimposed hybrid pattern of Figures 2A,B,

i.e., both the center and the size of the activation region

change randomly with time. When the size of the activation

region evoked by task 2 in the simulations of Figures 2A,C no

longer remains stationary also varies randomly, corresponding

to the simulations of Figures 2D,E. The amplitude and waveform

of the HRF are the same for all channels between the two

tasks in simulations 1–5, and the amplitudes are normalized

to 1 indicating the same level of activation for both tasks.

Additionally, we also simulated differences in the amplitude of

the hemodynamic responses evoked by two tasks, as shown in

Figure 2F. The difference in the HRF amplitude for the two

tasks was set to be small in the stochastic dynamic variation

of the activation pattern. The HRF magnitude for task 2 is

normalized to 1, whereas that for task 1 is randomly generated

from a uniform distribution of 1.1–1.2 at each pattern change.

The centers of the activation regions for both tasks are randomly

walking rather than stationary, and the size of the activation

regions remains constant during the random variation.

Since the feature extraction and classification methods for

simulated experimental data and paradigm experimental data

are the same, a detailed description of the feature extraction,

feature data normalization and data classification for simulated

experimental data can be found in Subsections Feature

extraction and Classification of the “Paradigm experiments”

section. To better evaluate the classification accuracy of the

classifier for all simulated experiments, 10 runs of 10-fold cross-

validation were performed.

Paradigm experiments

Participants

Eight healthy right-handed participants (mean age: 23.5 ±

2.1 years, three men and five women) were recruited from

the students at Tianjin University to conduct the experiments.

None of the participants had reported a previous history of

any psychiatric, neurological, or brain disorder. The study was

conducted with informed consent and received ethical approval

from Tianjin University.

Data acquisition

We have implemented a continuous wave fNIRS diffuse

optical tomography (DOT) system that adopts a lock-in

photon-counting technology to enable multi-channel parallel

measurements, as exhibited in Figure 3A (Liu et al., 2019).
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FIGURE 2

Six simulations with random varying spatial patterns of brain activation in prefrontal regions: (A) The center of the activation region is the

random walk but its size remains constant. (B) The size of the activation region varies randomly but its center remains the same. (C) Both the

center and the size of the activation region change randomly with time. (D) The center of the task 1 evoked activation region randomly walks

while the size of task 2 evoked activation region varies randomly. (E) Both the center and the size of the task 1 evoked activation region change

randomly with time while the size of task 2 evoked activation region varies randomly. (F) The center of the activation region is random walk for

both tasks, but the amplitude of the HRF for task 1 is randomly varying, while that of task 2 remains constant. The white arrows indicate the

direction of linear movement of the center of the activation region. The black numbers indicate the location of the sampling channels.

We use a total of four source-pairs, each containing both

785 nm and 830 nm laser diode sources and four photomultiplier

(PMT) detectors form a single-lattice arrangement scheme

(Figure 3B), resulting in 20 measurement channels for collecting

fNIRS signals, are secured against the PFC region of the

participant. The system sampling rate for data acquisition

is 4Hz, which is lower than the setting of the simulation

experiment. However, it is a moderate temporal resolution

for our measurement system, which can improve the SNR of

the measured data and meet the requirements of real-time

data processing.

According to the international 10–20 system, the source-pair

and detector are arranged to cover the optode positioning points

FP1 and FP2 of the PFC region, as shown in Figure 3B. In the

given configuration, we only considered signals arising from the

source-detector distance of 30mm (Power et al., 2010).
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FIGURE 3

Hardware instruments and experimental paradigms for in-vivo experimental data acquisition. (A) The schematic diagram of the fNIRS-DOT

instrument. (B) Experimental source and detector configuration. (C) Experimental paradigm of MA and MS.

Experimental protocol

In the paradigm experiment, all participants performed

the MA and MS mental tasks. The MA is one of the most

widely used and robust mental tasks in fNIRS-BCI research

(Power et al., 2012). The mental workload level of the MA

task was the same because participants were asked to repeatedly

subtract a small number (between 9 and 15) from a randomly

generated three-digit number. For the MS mental task (Hwang

et al., 2016), participants silently rehearsed self-selected Chinese

song fragments that they felt would provoke a strong and

positive emotional response within them. This means that the

MS task utilizes the emotional component of the music. The

self-selected Chinese songs were different in each trial for

each participant. The self-selected song presented in each trial

was randomly generated from the participant’s self-constructed

song library.

The schematic diagram of the in-vivo experimental

paradigm is shown in Figure 3C. Each participant was required

to perform 20 data collection sessions on the same day.

Figure 3C illustrates a data collection session consisting of a

30 s pre-rest period (i.e., baseline period), 6 trials, where each

trial consisted of a 20 s of MA or MS mental task followed by

20 s of rest, and a 30 s post-rest period in the end. During each

data collection session, each participant performed 6 trials in

which MA trials and MS trials were alternated. The fNIRS

optodes were not removed from the participants during all

data collection sessions. Data collection for all participants

was completed over a period of 5 days. The total number of

trials collected for each category of the mental task for each

participant is 60. Therefore, the total number of trials collected

for each participant is 120.

Signal pre-processing

The 5th order zero-phase Butterworth digital low-pass filter

with a cut-off frequency of 0.5Hz is used to eliminate the

heartbeat noise and high-frequency instrument noise for the raw

light intensity data. Then, the coefficient of variation (CV) of

the low-pass filtered raw light intensity signal is calculated to

evaluate the quality of data (i.e., the effect of motion artifacts on

the measured data) for each measurement channel. The CV can

be defined as:

CV = (σ [I]/E[I])× 100 (9)

where I denote the raw light intensity for a data collection

session. E[·] and σ [·] denote the mean and standard deviation,

respectively. When the measured raw light intensity data meets

the condition of CV > 10 (Piper et al., 2014), the channels are

rejected and not used in the subsequent further data analysis.

Furthermore, we used the modified Beer-Lambert law (MBLL)

to convert the raw light intensity signal into 1[HbO] and

1[HbR] (Weyand et al., 2015). The unfiltered 1[HbO] signal,

which has not been subjected to BPF or other filtering methods

to remove baseline drift and global physiological interferences,

was used in the GLM-KF for adaptive extraction of level

features. The GLM considers baseline drift and physiological

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.938518
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2022.938518

interferences when modeling the fNIRS signal. However, when

applying the GLM-KF method to real fNIRS data, it is required

to consider pre-task calibration. In long-term measurements

of real fNIRS data, excessive cognitive load can cause rapid

fatigue of the subject, causing changes in baseline across data

collection sessions for the same subject. In addition, due to

individual differences, the baselines between subjects were also

different. Therefore, the pre-task calibration for each session

of each subject used the fNIRS data for the baseline period

under that session. The parameter settings of the BPF for the

extraction of statistical-features are described in detail in Section

Hemodynamic changes. A zero-phase digital high-pass filter

(0.018Hz cutoff) in the BPF effectively removes the baseline drift

when extracting statistical-features (Bejm et al., 2019).

Feature extraction

In the previous fNIRS-BCI study, the most widely used

features including mean, variance, slope, skewness, and kurtosis,

which these BPF-statistical features are not designed to better

characterize hemodynamic responses (Weyand et al., 2015;

Hong et al., 2020). The fNIRS-BCI desires adaptive extraction of

dedicated level features of single-trial fNIRS data. In this study,

KF was used to extract the activation level recursively by solving

the GLM.

The frequency selection for each physiological interference

of the design matrix in GLM is based on the fast Fourier

transform of the raw light intensitymeasured by each participant

for spectrum analysis. Figure 4A shows the frequency spectra

for participant 1, where the normalized power amplitude of the

stimulation frequency (0.0233Hz) is relatively higher, and it is

slightly less than the theoretical value (1/40 = 0.0250Hz) of the

frequency of neural activation. This is due to the hemodynamic

response being delayed by 2–3 s after the neural activity

(Tomita et al., 2014).

Classification

The assessment metric used to quantitatively assess the

classifier’s ability to accurately discriminate the task is accuracy,

defined as shown below (Wickramaratne and Mahmud, 2021).

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

where TP is the number of true positives, FP is the number of

false positives, TN is the number of true negatives, and FN is the

number of false negatives. The accuracy results, in this paper, are

all obtained from the test set data. The classification process is

performed in an offline mode. To better assess the classification

performance of the classifier for the MA and MS mental tasks,

10 runs of 10-fold cross-validation were also performed as in

the simulations.

We compared the classification performance of the proposed

KF/a-GMM approach with the BPF-statistical features based

classical methods such as the GMM classifier, which uses GMM

to fit parameters on the same training data in the same way,

but does not update the parameters when it classifies the

testing data, SVM classifier with radial basis kernel function

and regularization parameter of 20, and LDA classifier. The flow

chart of activation level-based fNIRS signals decoding is shown

in Figure 4B. Feature samples are normalized by calculating

z-scores. For these normalized values, we use the principal

component analysis (PCA) method with the smallest principal

component number whose cumulative contribution rate exceeds

95% to reduce the dimensionality of feature sample data (Li

et al., 2020). The final dimensionality reduction data is used to

construct a classifier.

Statistical analysis

In the real-time classification of mental tasks, we are also

more interested in whether the channel is significantly activated

at each time step k. First, we proposed the null hypothesis

(H0 : c
Tβk = 0) that the channel is not activated at time

step k, where c is a vector of contrast used to select the

coefficients of interest. This hypothesis is tested by calculating

the relevant t-values from the estimated GLM coefficient vectors

at all time steps and then performing a t-test with significance

criteria of 0.05 (Hu et al., 2010). Finally, we used paired-samples

t-tests of SPSS 22.0 software (IBM SPSS Inc., Chicago, IL,

USA) with significance criteria of 0.05 for statistical analysis of

classification accuracy.

Results

Simulative investigations

Extraction of activation level feature

Both the KF and LSM can extract the activation level features

for each channel of the measurement data. We construct the

same a-GMM classifier based on these two methods to extract

activation level features, respectively. Then, the effect of both

level extraction methods on accuracy in all simulations is shown

in Figure 5. Figure 5A shows the average accuracy of 10 runs

of the 10-fold cross-validation for each simulation experiment.

The average accuracy based on the two different level extraction

methods across all simulations is illustrated in Figure 5B.

As observed from the results that the accuracy of the KF-

based levels was higher than that of the LSM-based levels

in each of the simulations (Figure 5A). The average accuracy

obtained based on KF-level was 97.89% higher than that based

on LSM-level at 91.31% across all simulations (Figure 5B). The

paired samples t-test yielded statistically significant differences

in the two methods of level extraction. Since both KF and LSM

invisibly encompass the filtering process when solving the GLM,
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FIGURE 4

Activation level feature extraction and classification strategy for fNIRS signals: (A) Example of a spectrogram of participant 1 for frequency

selection of physiological interferences in the design matrix. (B) Flow chart of fNIRS signal classification based on level features.

FIGURE 5

Classification accuracy of the a-GMM classifier in all simulations was based on the level feature extracted by KF and LSM methods. (A) Average

accuracy of each simulated experiment, (B) average accuracy across all simulated experiments. The black dashed line indicates 70% accuracy of

e�ective binary BCI communication. Error bars indicate the standard deviations, *Represents the significant di�erence, *p < 0.01 and **p <

0.001.
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FIGURE 6

The single-trial average accuracy of six simulations with randomly varying activation patterns of the brain under Gaussian white noise with SNR

= 10 dB added at the baseline: (A–F) Are the accuracy results of simulations 1–6, respectively. AL is an abbreviated form of activation level. The

red bars indicate accuracy based on the activation level features, while the gray bars with di�erent saturation levels indicate the accuracy based

on five BPF-statistical features, namely mean, slope, variance, skewness, and kurtosis. Error bars indicate the standard deviations, *Represents

the significant di�erence, empty: p > 0.05, *p < 0.01, and **p < 0.001.

the filtering effect of KF is better than that of LSM, resulting

in a more accurate estimation of activation levels. Therefore,

KF was used for the level feature extraction method in the

subsequent sections.

Recognition of randomly varying activation
patterns

The single-trial average accuracy of six simulations with

randomly varying activation patterns under Gaussian white

noise with SNR = 10 dB added at the baseline is illustrated

in Figure 6. Figures 6A–F shows the results of the average

accuracy of simulations 1–6, respectively. The results exhibit the

accuracies obtained by the four classifiers based on activation

level features and BPF-statistical features. For the same classifier,

we only compared the accuracy based on the proposed level

features with that based on the individual BPF-statistical

features. This is because it would be fairer to compare the

proposed level features with individual BPF-statistical features

(for a one-to-one comparison) than with a set of BPF-statistical

features (for a one-to-many comparison).

As observed from the accuracy results, the decoding

accuracy based on level features was mostly higher than that

based on BPF-statistical features in each classifier for each

simulation. The accuracy of the level-based SVM classifier for

simulation 4 was slightly lower than that of the mean-based

one, and the accuracy of the LDA classifier for simulation

5 and simulation 6 performs in the same way. In addition,
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the paired-samples t-tests yielded significant differences in

the level features and each BPF-statistical feature of each

classifier in each simulation, except for the level feature vs.

the mean feature for the a-GMM classifier in simulation 4.

Moreover, the classification performance based on the mean

feature was the best among the five BPF-statistical features.

Moreover, the accuracy of a-GMM was mostly higher than that

of GMM, SVM, and LDA in six simulations, whether based on

BPF-statistical features or level features. Paired-samples t-tests

yielded significant differences between a-GMM classifiers based

on level features and other classifiers based on level features in

all simulations.

As observed from the results, the KF/a-GMM approach can

indeed accurately capture the random walk of the center of the

activation region (Figure 6A), the random variation in the size of

the activation region (Figure 6B), and their superimposed hybrid

pattern (Figure 6C), with corresponding accuracies of 94.25,

99.81, and 98.25%, respectively. When the activation pattern

evoked by task 2 changes from a stationary invariant state to a

random variation as well, the accuracies of the control methods

(relative to the KF/a-GMM) mostly decrease as illustrated in

Figures 6D,E. It is also observed from the classification results

that the accuracies of the control methods in simulation 5

were lower than that in simulation 4. However, the KF/a-GMM

approach in simulations 4 and 5 still maintains a significantly

higher accuracy of 99.98 and 99.85%, respectively. The accuracy

of random varies magnitude of the HRF under a random

walk in the center of the activation region was presented in

Figure 6F. The accuracies of GMM, SVM, and LDA classifiers

were all below 70%, while accuracies of a-GMM were all above

70%, whereas those based on BPF-statistical features are slightly

above 70% and those based on level features have a significant

advantage of up to 95.18%.

Noise sensitivity

To investigate the sensitivity of the KF/a-GMM method to

noise, we added different levels of Gaussian white noise with

SNRs of 1, 5, 10, 15, 20, 30, and 40 dB to the baseline for

all channels of the simulated data. In the pre-processing of

the fNIRS data, since the classical BPF method can effectively

suppress most of the physiological interferences, the white noise

in the passband of the filter cannot be eliminated. Therefore,

the effect of different levels of Gaussian white noise on the

classification results is investigated in all simulations with a fixed

level of physiological interference.

First, the effect of different levels of Gaussian white noise

on the accuracies of the four classifiers based on the same

level features was analyzed. As expected, the accuracy of all

classifiers increases with SNR in the six simulations, as illustrated

in Figure 7. However, the accuracy of a-GMM at each SNR

was higher than the other three classifiers. Moreover, at lower

SNR (SNR ≤ 10 dB), the a-GMM has a prominent decoding

advantage in simulations 4–6. Even at the lowest SNR = 1 dB,

the accuracy of a-GMM for all simulations was higher than 70%,

which demonstrates superior noise robustness. In simulation 6

with random variation in magnitude of the HRF, the accuracy

obtained by a-GMM demonstrated an overwhelming advantage

compared to control classifiers.

In addition, we also analyze the effect of different levels

of Gaussian white noise on the accuracy of the same a-GMM

classifier based on level feature and BPF-statistical features as

shown in Figure 8. As observed from the results, the accuracy

of a-GMM based on activation level, mean, and slope features

increases with SNR in all simulations, but the variance, skewness,

and kurtosis features do not reveal any regularity. The accuracy

of the skewness and kurtosis features fluctuated irregularly with

the SNR, but both have lower accuracy at each SNR compared

to the level feature. Also, an attractive phenomenon found in

the accuracy results is that there is an abnormal fluctuation in

the accuracy based on the variance feature in the lower SNR

region, especially in simulation 2 where the fluctuation of SNR

= 5 dB reaches a maximum peak of 96.25%. A reasonable

reason for this occurrence may be that the white noise in the

passband of the Butterworth BPF is not entirely suppressed,

and the spurious activation caused by the white noise at this

level has the strongest effect on the statistical characteristic-

based variance feature, which happens to magnify the difference

between the activation patterns of the two-class tasks and finally

leads to abnormally high accuracy. However, the accuracy of the

a-GMM based on the level feature was the highest among all

simulations, except for the variance-based feature of simulation

2. In addition, the classification performance of the mean-based

feature was the best among all BPF-statistical features when the

SNR was >10 dB.

In-vivo paradigm experiments

Hemodynamic changes

The primitive 1[HbO] and 1[HbR] data are band-pass

filtered with the 5th order zero-phase Butterworth filter with

cutoffs of 0.018 and 0.3Hz to eliminate global physiological

interference. The hemodynamic signals obtained across the

six repeated trials of the MA and MS mental tasks during

the two data collection sessions were averaged, respectively.

To evaluate whether the channels are activated at each time

step, the estimated GLM coefficients are converted into the

corresponding t-statistics value. At time step k, a larger t-value

for a channel indicates a more significant activation of that

channel. The t-values for all channels of participant 1 after 15 s

from the onset of theMA andMS tasks stimulation are presented

in Table 2. As observed from the results in Table 2, the most

significantly activated channels were channel #5 of the MA and

channel #6 of theMS. The corresponding hemodynamic changes

of the two channels were shown in Figure 9. As expected, an
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FIGURE 7

The e�ect of di�erent levels of Gaussian white noise on the classification accuracies of the four classifiers based on the level feature. (A–F)

Correspond to the accuracy results of simulations 1–6.

FIGURE 8

The e�ect of di�erent levels of Gaussian white noise on the classification accuracy of the same a-GMM classifier based on level feature and

BPF-statistical features. (A–F) Correspond to the accuracy results of simulations 1–6. AL is an abbreviated form of activation level.

TABLE 2 The t-values for all channels of participant 1 after 15 s from the onset of the MA and MS tasks stimulation.

t-values

Mental task CH #1 CH #2 CH #3 CH #4 CH #5 CH #6 CH #7 CH #8 CH #9 CH #10

MA 2.63 −8.05 −4.15 1.95 10.16 2.59 4.72 3.53 −14.15 −15.54

MS −0.18 −1.27 −1.74 −1.00 −0.31 1.44 0.70 −0.07 −1.33 1.38

CH, channel.
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FIGURE 9

Trial-averaged hemoglobin concentration changes for participant 1 in the most significantly activated channels: (A) Channel #5 in the MA and

(B) channel #6 in the MS were significantly activated. The gray highlighted rectangles indicate the stimulation periods. 1[HbT] indicates the

change in total hemoglobin concentration. The shades of the same color around the curves represent the standard deviation.

increase in 1[HbO] and a decrease in 1[HbR] were observed

during the MA and the MS stimulation period as shown in the

gray shaded area in Figures 9A,B.

The OT of trial-averaged 1[HbO] signal across 6 repetitions

of MA and MS tasks during two data collection sessions

for participant 1, after 15 s from the task onset, are shown

in Figures 10A,B, respectively. The magnitude of the MA-

evoked 1[HbO] is significantly higher than that of the MS

for participant 1. Furthermore, channels #5 and #6 were

significantly activated under the MA and MS stimulation

task, respectively.

Classification accuracy

Primarily, we used the same a-GMM classifier to classify MA

and MS tasks, comparing the single-trial accuracy between the

level feature and the BPF-statistical features. The individual and

average accuracy of MA vs. MS is illustrated in Figure 11. The

red dashed line indicates 70% accuracy of effective binary BCI

communication (Vidaurre and Blankertz, 2010). The paired-

sample t-test yielded significant differences between activation

level features and BPF-statistical features at average accuracy

for all participants. As observed from the results, the individual

and average accuracy obtained by the KF/a-GMM method

are significantly higher than those BPF-statistical features. In

addition, the average accuracy of only the activation level and

mean feature reached above 70%, which has been regarded as a

threshold for practical binary communication.

Then, different classifiers are performed to classify MA

vs. MS based on the same level features. The individual and

average accuracy of MA vs. MS is illustrated in Figure 12.

The paired-samples t-test yielded significant differences between

the a-GMM classifier and other classifiers in accuracy for all

participants. As observed from the results, the average accuracy

obtained by the a-GMM classifier was the highest among all

classifiers, with an average accuracy of 87.01± 4.11%. However,

only the LDA classifier obtained an average accuracy below 70%

among all classifiers. For the a-GMM classifier, participant 1 and

participant 2 achieved excellent classification accuracies of 91.50

and 93.09%, while participant 3 and participant 6 are also very

close to 90%.

Discussions

For in-vivo paradigm experiments, we initially compared

the accuracy of the same a-GMM classifier based on different

features, and the average accuracy of the KF/a-GMM approach

reached 87.01 ± 4.11% for all participants, as shown in

Figure 11. Compared with the skewness feature (61.50± 3.41%,

p= 8.8975× 10−7), the classification performance based on the

level feature has a maximum improvement of up to 41.48%, and

the minimum improvement is 11.31% compared with the mean

feature (78.17 ± 5.22%, p = 0.0051). Then the classification

performance of different classifiers based on the same level

feature is compared. As observed in the results of Figure 12,

up to 6.20, 15.72, and 26.50% improvement in average accuracy

was achieved by a-GMM compared with GMM (81.93± 5.54%,

p = 0.0012), SVM (75.19 ± 4.69%, p = 3.9656×10−5), and

LDA (68.78 ± 7.26%, p = 0.0020) classifier for all participants,

respectively. In classifyingMA vs.MS, the classification accuracy

of our proposed KF/a-GMMmethod was 12.71% improved over

that of the light intensity based HMM classifier used by Power

et al. (2010). Therefore, the KF/a-GMM approach can indeed

enhance the accuracy of binary classification for MA and MS

mental tasks.

The effect of the c1 and c2 parameters of the transitionmodel

in the a-GMM classifier on the 10-fold cross-validated accuracy

of MA and MS for all participants is shown in Figure 13. The
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A B

FIGURE 10

The OT of averaged 1[HbO] across the six repeated trials for participant 1 evoked by (A) MA and (B) MS after 15 s from the onset of the task. The

black numbers denote the position of the sampling channels. The vertical color bar indicates the range in µmol/L.

A B

FIGURE 11

Classification accuracy of MA vs. MS obtained using the same a-GMM classifier based on di�erent features extracted from single-trial data of all

participants: (A) Individual accuracy and (B) average accuracy. Error bars indicate the standard deviations, *Represents the significant di�erence,

*p < 0.01 and **p < 0.001. The red dashed line indicates 70% classification accuracy of e�ective binary BCI communication.

 

A B

FIGURE 12

Classification accuracy of MA vs. MS for di�erent classifiers constructed by extracting the same level features: (A) Individual accuracy and (B)

average accuracy. Error bars indicate the standard deviations, *Represents the significant di�erence, *p < 0.01 and **p < 0.001. The red dashed

line indicates 70% classification accuracy of e�ective binary BCI communication.

accuracy of a-GMM was the highest at c1 = 0.01 and c2 = 1.

The c1 parameter adjusts the rate of change of the activation

mean, slightly>0 will achieve higher accuracy. The c2 parameter

is related to the rate of change of the activations covariance, and

accuracy is probably better when it is close to 1. Further study on

parameter selection can be adaptively iterated over a range of a

priori parameters to obtain the optimal combination rather than

relying on empirical selections.
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FIGURE 13

E�ect of c1 and c2 parameters of the transition model on the 10-fold cross-validated accuracy of MA vs. MS for all participants.

Our proposed KF/a-GMM classification method has

achieved considerable success in subject-level decoding.

However, achieving the goal of across-subject fNIRS decoding is

still quite challenging as the large individual differences make

it more difficult to find population-level regularities that hold

between individuals. Across-subject decoding in fNIRS-BCI

classification is an important future direction (Raizada and

Connolly, 2012; Jin and Kim, 2020). The drawback of k-fold

cross-validation used to evaluate the classification model is

that fNIRS data from the same subject are present in both

the training and test datasets. Hence, classification models

with parameters and hyper-parameters learned from the same

subject’s data may struggle to generalize to new subjects. Thus,

the leave-one-subject-out cross-validation was used to evaluate

and compare the performance of the classification model

(Gholamiangonabadi et al., 2020). In each cross-validation

iteration, one subject’s data is used for testing and the remaining

subjects’ data for training to conduct the subject-independent

evaluation. In the across-subject fNIRS decoding MA vs. MS,

the decoding accuracy of the a-GMM classifier based on the

same level features was 78.44%, higher than that of the GMM

(52.81%), SVM (49.69%), and LDA (51.46%) classifiers. The

preliminary research results showed that our proposed KF/a-

GMM method can learn population-level regularities under the

same mental task and has potential advantages in across-subject

decoding. The across-subject fNIRS decoding mental task is

more complex and needs further study in the future.

The levels estimated by the KF algorithm at each time point k

can also be used as real-time features, which can subsequently be

used for the real-time classification of the classifier. The potential

advantage of KF lies in the real-time and parallel estimation

of level features for all channels. The KF algorithm takes an

average time of 0.0040 ± 0.0017 s (about 250Hz) to estimate

the simulated fNIRS signal with 18-channel at each time step

in parallel on a computer configured with an Intel(R) Core

(TM) i7-4790 CPU @ 3.60 GHz and 16.0G RAM. In addition,

the average time required by the a-GMM algorithm to decode

each test data is 0.0035 ± 0.0023 s (about 286Hz). Hence, both

the KF and a-GMM have low computational costs when they

deal with fNIRS data acquired at sampling rates of a few Hz to

tens of Hz, and their fast computational speed greatly meets the

requirements for real-time classification. It also incorporates the

fact that a-GMM can be used for multi-class task classification

(without the need to convert a multi-class classification problem

into multiple binary classification problems), so that the KF/a-

GMM approach can handle the real-time classification of multi-

class tasks and be applied to long-term neurofeedback training

(NFT) (Luhrs and Goebel, 2017) and rehabilitation training

(Matarasso et al., 2021). The threshold for the a-GMM in

the practical real-time BCI decoding is typically set to 50%

(Abdelnour and Huppert, 2009). The KF/a-GMM method is

used to calculate the estimation of the mental task at each

time point after stimulus onset. If more than half of the

time points within the stimulus period during a single-trial

epoch are correctly classified, we obtain an overall correct

classification label.

This study has some limitations that will be addressed in

the future study. First, the baseline component added to the

simulated fNIRS signal is a constant. It might be more realistic

to give the baseline a Gaussian pattern. Second, since we use the

HRF with fixed parameters in the design matrix, but the HRF of

each participant is different, we should accurately estimate the
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HRF for each participant. Third, the physiological interference

components of the design matrix can be acquired in real-

time by auxiliary measurements, replacing manual selection

based on spectral analysis. Fourth, as motion artifacts and

probe registration have a large impact on single-trial level

analysis, it is also worthwhile to investigate how to ensure

the robustness of the single-trial GLM model. Measurement

equipment for more accurate and rapid positioning of optodes

and advanced algorithms for removing motion artifacts are

also important directions for future study. Fifth, the initial

values of the Q and R in the KF have a significant influence

on the estimated results (Hu et al., 2010). However, the

selection of Q and R based on prior knowledge at the

beginning of the experiment also depends on the rich user

experience to give an appropriate tracking of the evoked signals.

Sixth, the combination of the proposed level features and

BPF-statistical features to form a feature set is interesting

and valuable and may be helpful in further improving the

recognition accuracy of our proposed approach for single-trial

mental tasks. Seventh, the comparison of classification methods

in this paper is incomplete, comparing only the commonly

used LDA classifiers and not the regularized LDA classifier

(Bauernfeind et al., 2014) and the adaptive LDA classifier

(Li et al., 2017). Eighth, considering the low sample size,

preliminary conclusions have been drawn for now. Future

studies will increase the sample size to corroborate again.

Ninth, channel selection plays a critical role in classifying

mental tasks for fNIRS-BCI by reducing data dimensionality,

saving model training time, and improving model classification

performance (Gulraiz et al., 2022). Besides the commonly used

Fisher score method for channel selection (Hwang et al., 2016),

the least absolute shrinkage and selection operator homotopy-

based sparse representation method proposed by Gulraiz et al.

for channel selection can improve the accuracy of walking

and resting states (Gulraiz et al., 2022). This method has

aroused our great interest and may improve the accuracy

of our proposed KF/a-GMM. Tenth, the ongoing activation

patterns may vary during the NFT session due to learning

effects, and this process may affect the performance of brain

state classifiers trained using data obtained before the session

(Bagarinao et al., 2020). However, the biggest advantage of our

proposed KF/a-GMM is that it is good at tracking changes in

activation patterns, which can improve the accuracy of real-

time brain states in NFT. On the other hand, the findings of

Wang et al. demonstrated that visual-haptic NFT based on EEG-

BCI improved cortical activation and the accuracy of MI (Wang

et al., 2019). Thus, both our proposed KF/a-GMM and NFT

can improve the classification performance of the BCI system,

and jointly they can be used to improve cognitive function

and enhance the quality of life of patients suffering from brain

cognitive disorders. Finally, this approach currently only uses

offline mode for data processing and analysis, and we will

develop an online version.

Conclusion

A joint adaptive classification approach KF/a-GMM that

combines the KF and the unsupervised a-GMM classifier

is proposed for accuracy-enhanced pattern recognition for

mental tasks. Its effectiveness and advantages are validated by

performing both simulation experiments and in-vivo paradigm

experiments. The results show that this approach is an effective

strategy for tracking random variations in brain activation

patterns with time evoked by two-class mental tasks and

considerably ameliorates the single-trial accuracy of unfiltered

and unlabeled fNIRS data from MA and MS mental tasks. The

average accuracy of the KF/a-GMM method for all participants

in the MA and MS mental tasks was 87.01%, higher than the

BPF-statistical features based GMM, SVM, and LDA classifiers.

Overall, these results are encouraging and demonstrate the

potential of the KF/a-GMM method to improve classification

accuracy on mental tasks and provide a new perspective for

real-time multi-class mental task classification.
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