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Abstract: Treatment and prevention strategies for schizophrenia require knowledge about the mech-
anisms involved in the psychotic transition. Increasing evidence suggests a redox imbalance in
schizophrenia patients. This narrative review presents an overview of the scientific literature regard-
ing blood oxidative stress markers’ evolution in the early stages of psychosis and chronic patients.
Studies investigating peripheral levels of oxidative stress in schizophrenia patients, first episode
of psychosis or UHR individuals were considered. A total of 76 peer-reviewed articles published
from 1991 to 2022 on PubMed and EMBASE were included. Schizophrenia patients present with
increased levels of oxidative damage to lipids in the blood, and decreased levels of non-enzymatic
antioxidants. Genetic studies provide evidence for altered antioxidant functions in patients. Antioxi-
dant blood levels are decreased before psychosis onset and blood levels of oxidative stress correlate
with symptoms severity in patients. Finally, adjunct treatment of antipsychotics with the antioxidant
N-acetyl cysteine appears to be effective in schizophrenia patients. Further studies are required to
assess its efficacy as a prevention strategy. Redox imbalance might contribute to the pathophysiology
of emerging psychosis and could serve as a therapeutic target for preventive or adjunctive therapies,
as well as biomarkers of disease progression.
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1. Introduction

Schizophrenia (SZ) is a complex, multifactorial psychotic disorder, affecting 1% of the
population worldwide [1]. The onset of SZ typically occurs between late adolescence and
early adulthood and groups together positive, negative and cognitive symptoms. Young
individuals at ultra-high risk (UHR) for psychosis can be identified, during the prodro-
mal phase of the disease, based on the presence of attenuated or time-limited psychotic
symptoms, or of a familial risk-factor, along with a drop in psychosocial functioning [2].
Despite the well-established clinical criteria required to identify UHR individuals, the risk
of conversion to a first episode of psychosis (FEP) in this population reaches 25% after
three years of follow-up [3].

Current treatments are mostly effective against the positive symptoms [4], while their
resolution does not systematically translate into functional recovery [5]. Indeed, it appears
that negative and cognitive symptoms are better predictors of functional recovery [6]. Al-
though increasing effort is being invested in the understanding of negative symptoms, new
generations of antipsychotics do not seem to make a difference in the treatment of negative
symptoms [7,8]. Moreover, antipsychotics are used to attenuate impairment or suffering in
UHR individuals. However, in this group of individuals, treatments with antipsychotics lead
to many side effects, and even increase the risk of transitioning in some individuals [9].

Therefore, it appears that the development of more effective treatments for SZ requires
a better understanding of the pathophysiology of this multi-factorial disorder. Indeed, early
neurobiological changes occurring during the UHR state could play a role as predictors of
the transition but also therapeutical targets for prevention strategies. The most promising
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window of opportunity for blocking the progression or preventing the onset of SZ, is
currently around the UHR state or the FEP [10].

Amongst the multiple molecular mechanisms and neural processes which are altered
in psychotic patients, a growing body of evidence suggests that oxidative stress responses
are overly active in patients with SZ [11]. Studies have highlighted a dysregulation in redox
metabolism during the onset of psychosis and increased oxidative damage is observed in
a consistent manner in UHR individuals who subsequently develop psychosis [12]. Oxida-
tive stress results from a shift in redox balance, that is, an accumulation of pro-oxidative
factors over the antioxidant defense, leading to damage to lipids, proteins and nuclear
and mitochondrial DNA (mtDNA) [13]. Reactive oxygen species (ROS) are produced as
a physiological process by mitochondria, immune cells, or as necessary intermediate in
enzymatic reactions, and participate in redox signaling and growth regulation [14]. They
can also be produced by the brain for redox signaling [15]. The brain is particularly exposed
to oxidative stress, due to its intensive neuronal activity which requires high oxygen levels
and leads to a higher production of ROS [16]. Moreover, the brain contains high levels of
free iron and polyunsaturated fatty acids, which are oxidizing substances and cause the
neurons to be particularly vulnerable to oxidative stress [17]. In addition to the oxidative
stress markers observed in the blood or brain of patients with SZ, genetic studies reveal
that high-risk polymorphisms occur in genes playing a role in redox regulation [18–21].

The oxidative stress theory, as a link between the multiple molecular changes observed
in psychosis, can be harnessed to identify oxidative markers of the development of psy-
chosis. Indeed, studies have highlighted a dysregulation in redox metabolism during the
onset of psychosis and increased oxidative damage is observed in a consistent manner in
UHR individuals who subsequently develop psychosis [12,22].

This review is driven by the present need for understanding the pathophysiological pro-
cesses involved in SZ in order to improve early treatment strategies. It provides an overview of
the experimental and clinical evidence examining oxidative stress in biospecimens, including
blood samples and cerebrospinal fluid (CSF), in patients with SZ. More specifically, changes in
levels of enzymatic and non-enzymatic antioxidant and oxidative stress markers in the blood
and the CNS of patients with SZ and UHR individuals are included.

2. Materials and Methods

An initial general search was performed using two databases PubMed and EMBASE.
We used the keywords: (“schizophrenia” OR “psychosis”) AND (“antioxidant” OR “ox-
idative stress”). The initial search screened titles and abstracts only. The limits used were
the date of publication (from 1991 to 2022), the species studied (humans) and the language
(English). Additional records were identified through other sources.

The inclusion criteria in selecting study were:

(i) articles published in peer-review journal
(ii) articles published in English language
(iii) patients diagnosed with SZ using standard diagnostic methods according to the

Diagnostic and Statistical Manual of Mental Disorders (DSM) or the International
Classification of Disease (ICD) systems

(iv) studies including both patients and healthy controls cohorts

Figure 1 presents the literature searching stages and the inclusion and exclusion for
each stage. Studies that solely focused on a particular oxidative stress biomarker that was
not commonly investigated were excluded, along with studies recruiting patients with
specific subtypes of SZ only. In addition, due to the contrasting effects that oxidative stress
can have on different tissues, studies investigating the levels of oxidative stress in tissues
other than the serum, the plasma, or the erythrocytes were excluded. Finally, additional
records that were identified from the bibliography of selected articles or from other sources
may introduce a bias in the results presented in this narrative review.
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Figure 1. Prisma flowchart.

3. Results

A total of 120 papers were identified on PubMed and 127 on EMBASE, of which
64 were relevant research articles according to the criteria mentioned in the Methods section
above and Figure 1. In addition, 12 research articles from the literature bibliography were
added. The selected articles included comparative studies between healthy individuals
and patients with SZ or at risk of developing the disease.

A summary of the core literature used, including 59 research articles, can be found in
Tables 1–3. The number of participants in each study can be found in the Supplementary
Materials. Articles were grouped according to their results regarding the levels of oxidative
stress or antioxidants defense in patients compared to healthy individuals. In addition, the
clinical status, including the treatment, of the patients included in each study is mentioned,
along with the sample in which biomarkers were measured.

Individuals at risk of developing SZ present decreased antioxidant defenses, except for
GPx enzymatic activity (Table 1). On the other hand, amongst FEP patients, more variability
is found across findings (Table 2). A larger number of studies found decreased antioxidant
defenses and increased oxidative damage products in this group of patients (Table 2).
Nonetheless, a study by Li et al., including 354 FEP patients, found decreased oxidative
damage to lipids and increased total antioxidant status (TAS) compared to controls [23].

Overall, a large number of results have assessed oxidative stress in patients with SZ,
resulting in consistent evidence about a dysfunction in antioxidant defense. Despite the
heterogeneity of the findings presented, it is important to note that lipid peroxidation levels
are persistently increased in the blood of chronic SZ patients, and that the TAS and the GSH
blood levels are decreased (Table 3). In particular, studies with more than 150 participants
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recruited, found that the TAS, the GPx and SOD activity were decreased in chronic SZ
patients [24–27] (Table 3, Supplementary Table S1).

Table 1. Selected peripheral biomarkers of antioxidant status and oxidative damage in unaffected
FDR and UHR individuals compared to controls.

Variables Schizophrenia Sources Status

Antioxidant Defense Peripheral Biomarkers

GPx
↑ Erythrocytes [28] Unaffected FDR [28]
↓ Serum [29] UHR subjects [29]

Catalase ↓ Erythrocytes [28] Unaffected FDR [28]
SOD ↓ Erythrocytes [28], Serum [29] Unaffected FDR [28], UHR subjects [29]
TAS ↓ Serum [30], Plasma [31] Unaffected FDR [30,31]

GPx: Glutathione Peroxidase; SOD: Superoxide Dismutase; TAS: Total Antioxidant Status; UHR: Ultra High Risk;
FDR: First-Degree Relatives.

Table 2. Selected peripheral biomarkers of antioxidant status and oxidative damage in FEP individu-
als compared to controls.

Variables Schizophrenia Sources Status

Antioxidant Defense Peripheral Biomarkers

GPx
↑ Erythrocytes [32,33], Serum [34] Antipsychotic-naïve [32–34] and

antipsychotic-treated [32,34] FEP
↔ Erythrocytes [23], Serum [35] Antipsychotic-naïve FEP [23,35]

↓ Erythrocytes [36], Serum [37],
Plasma [38], Whole Blood [39] Antipsychotic-naïve FEP [36–39]

GR ↔ Erythrocytes [23] Antipsychotic-naïve FEP [23]
Catalase ↑ Plasma [38] Antipsychotic-naïve FEP [38]

↓ Erythrocytes [33,36,40] Antipsychotic-naïve [33,36] and
antipsychotic-treated FEP [40]

GSH ↓ Erythrocytes [41], Serum [34,42],
Plasma [32,33,43]

Antipsychotic-naïve [32–34],
antipsychotic-free [42,43] and
antipsychotic-treated [32,34,41] FEP

SOD ↑ Erythrocytes [39], Serum [44],
Plasma [38,45] Antipsychotic-naïve FEP [38,39,44,45]

↔ Erythrocytes [33,40,46], Serum [35],
Plasma [36,47]

Antipsychotic-naïve [33,35,36] and
antipsychotic-treated FEP [40],
Antipsychotic-treated patients
with SZ [46,47]

TAS ↑ Serum [34], Plasma [38] Antipsychotic-naïve [38] and
antipsychotic-treated [34,38] FEP

↔ Serum [37,48] Antipsychotic-naïve FEP [37,48]

↓ Serum [49], Plasma [32,36,41,50,51] Antipsychotic-naïve [32,36,49–51] and
antipsychotic-treated [32,41] FEP

Oxidative Damage Products

AGEs ↑ Serum [34] Antipsychotic-naïve and
antipsychotic-treated FEP [34]

Kynurenine ↓ Serum [34] Antipsychotic-naïve and
antipsychotic-treated FEP [34]

MDA/TBARS (Lipid
Peroxidation) ↑ Plasma [39,52,53] Antipsychotic-naïve FEP [39,52,53]

↔ Plasma [23,36,40,44] Antipsychotic-naïve [23,36,44], and
antipsychotic-treated FEP [40]

↓ Plasma [38] Antipsychotic-naïve FEP [38]

LOOH (Lipid Peroxidation) ↑ Plasma [32] Antipsychotic-naïve and
antipsychotic-treated FEP [32]

NO ↑ Serum [42] Antipsychotic-free FEP [42]

GPx: Glutathione Peroxidase; GR: Glutathione Reductase; GSH: Glutathione; SOD: Superoxide Dismutase;
TAS: Total Antioxidant Status; AGEs: Advanced Glycation End-products; MDA: Malondialdehyde; TBARS:
Thiobarbituric Acid-Reactive Substances; FEP: First Episode of Psychosis.
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Table 3. Selected peripheral and brain biomarkers of antioxidant status and oxidative damage in SZ
patients compared to controls.

Variables Schizophrenia Sources Status

Antioxidant Defense Biomarkers in the CNS
GSH ↓ CSF [54], mPFC [54] Antipsychotic-naïve patients with SZ [54]

SOD ↓ CSF [55] Antipsychotic-naïve and antipsychotic-treated
patients with SZ [55]

Antioxidant Defense Peripheral Biomarkers

GPx ↑ Erythrocytes [56], Serum [34], Plasma [43]
Antipsychotic-naïve and antipsychotic-treated
patients with SZ [34,56], Antipsychotic-free
patients with SZ [43]

↔ Erythrocytes [46,57,58], Serum [37],
Plasma [59], Whole Blood [60]

Antipsychotic-naïve [60], antipsychotic-free
[46,60] and antipsychotic-treated [37,46,57–60]
patients with SZ

↓ Erythrocytes [28,61–66], Plasma [24–26,67]
Antipsychotic-naïve [63,64], antipsychotic-free
[66] and antipsychotic-treated
[24–26,28,61–63,65,67] patients with SZ

Catalase ↑ Erythrocytes [61,62,68], Serum [69] Antipsychotic-treated patients with SZ
[61,62,68,69]

↔ Erythrocytes [46,58,65], Plasma [24–26,43]
Antipsychotic-free [43,46] and
antipsychotic-treated [24–26,46,58,65] patients
with SZ

↓ Erythrocytes [28,63,66]
Antipsychotic-naïve [63], antipsychotic-free
[66] and antipsychotic-treated [28,63] patients
with SZ

GSH ↓ Erythrocytes [61,64,65], Serum [34,70],
Plasma [71,72], Whole Blood [73,74]

Antipsychotic-naïve [34,64] and
antipsychotic-treated [34,61,65,70–74] patients
with SZ

↔ Erythrocytes [58] Antipsychotic-treated patients with SZ [58]
GSSG ↑ Whole Blood [74] Antipsychotic-treated patients with SZ [74]

SOD ↑ Erythrocytes [46,56,61,65,75], Serum
[69,76,77], Plasma [45,59]

Antipsychotic-naïve [75,76], antipsychotic-free
[46] and antipsychotic-treated
[45,56,59,61,65,69,77] patients with SZ

↔ Erythrocytes [46], Plasma [47] Antipsychotic-treated patients with SZ [46,47]

↓ Erythrocytes [28,58,60,63,64,66,78], Serum
[73], Plasma [24–26,59,67]

Antipsychotic-naïve [60,63,64,78],
antipsychotic-free [60,66] and
antipsychotic-treated
[24–26,28,58–60,63,67,73,78] patients with SZ

Ascorbic Acid ↓ Plasma [76,79] Antipsychotic-naïve [76] and
antipsychotic-treated [79] patients with SZ

TAS ↑ Serum [34] Antipsychotic-naïve and antipsychotic-treated
patients with SZ [34]

↔ Serum [37,60]
Antipsychotic-naïve [60], antipsychotic-free
[60] and antipsychotic-treated patients with SZ
[37,60]

↓ Plasma [27,80,81] Antipsychotic-free [81] and antipsychotic-treated
[27,80,81] patients with SZ

ROS-producing enzymes
XO ↑ Plasma [59] Antipsychotic-treated patients with SZ [59]
Oxidative Damage Products

AGEs ↑ Serum [34] Antipsychotic-naïve and antipsychotic-treated
patients with SZ [34]

Kynurenine ↓ Serum [34] Antipsychotic-naïve and antipsychotic-treated
patients with SZ [34]

MDA/TBARS (Lipid
Peroxidation) ↑

Erythrocytes [61,62,64,65], Serum
[49,69,70,76,77], Plasma
[24–26,43,52,56,58–60,67,73],

Antipsychotic-naïve [49,60,64,76],
antipsychotic-free [43,60] and
antipsychotic-treated
[24–26,52,56,58–62,65,67,69,70,73,77] patients
with SZ

↔ Erythrocytes [60,68], Serum [47] Antipsychotic-treated patients with SZ
[47,60,68]

LOOH (Lipid
Peroxidation) ↑ Plasma [66] Antipsychotic-free patients with SZ [66]

NO ↑ Plasma [59,66], Serum [73] Antipsychotic-free [66] and
antipsychotic-treated [59,73] patients with SZ

CSF: Cerebrospinal Fluid; mPFC: medial Prefrontal Cortex; GSH: Glutathione; SOD: Superoxide Dismutase; GPx:
Glutathione Peroxidase; GSSG: Glutathione disulfide; TAS: Total Antioxidant Status; ROS: Reactive Oxygen
Species; XO: Xanthine Oxidase; AGEs: Advanced Glycation End-products; MDA: Malondialdehyde; TBARS:
Thiobarbituric Acid-Reactive Substances; LOOH: Lipid Hydroperoxide; NO: Nitric Oxide; SZ: Schizophrenia.
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4. Discussion
4.1. Evidence of the Involvement of Oxidative Stress in SZ

There is growing evidence for oxidative stress imbalance in SZ, since the early phases
of the disorder, but the heterogeneity across studies must be highlighted. Depending
on the type of biological factors, both replicated or mixed findings have been reported.
Indeed, the blood levels of the antioxidant enzymes GPx, catalase, and SOD are found
to be increased by some studies, whereas other studies found it to be unchanged or even
decreased. On the other hand, findings about the blood levels of the antioxidant GSH, the
TAS, and the levels of several markers of oxidative stress, such as nitric oxide (NO) and
malondialdehyde (MDA), are consistent across studies. Blood levels of MDA are commonly
determined as thiobarbituric acid reactive substances (TBARS) and are used as a proxy
for peroxidation of membrane PUFAs. Indeed, MDA is a product of lipid peroxidation.
Multiple studies have demonstrated that patients with SZ have higher blood concentration
of MDA [39,69,70,76] and NO, including two meta-analyses [82,83]. One of these studies
revealed the good diagnostic performance for serum MDA levels in SZ patients [69]. These
findings reveal that a common pathophysiological pathway leads to oxidative stress and
membrane lipid damage in patients with SZ. Therefore, the discrepancy observed in the
blood levels of the antioxidant enzymes in different studies could be a result of the activation
of distinct antioxidant mechanisms in response to increased concentrations of ROS. Indeed,
a homeostatic regulation between the GSH and PRX antioxidant systems contributes to the
prevention of neuroanatomical defects in psychotic patients exposed to trauma who present
with low GPx activity [84]. It seems possible that different compensatory mechanisms
activate in response to the failure or the overload of one antioxidant system. Moreover, the
levels of GSH and the TAS are consistently decreased in the blood of chronic SZ and FEP
patients (Tables 2 and 3). Likewise, a meta-analysis of MRS studies of antioxidant defense
in the anterior cingulate cortex (ACC) of SZ patients revealed a reduction of GSH compared
to controls [85]. These findings have been replicated in several studies, revealing a strong
relationship between peripheral and brain GSH levels [72,86–89]. Although blood levels of
oxidative stress are important to determine potential peripheral biomarkers of SZ, levels of
these markers in the CNS are necessary to understand the role played by oxidative stress
in the pathophysiology of the disease. For instance, low medial prefrontal cortex (mPFC)
GSH concentration was shown to correlate with high levels of GPx activity in the blood of
patients but not in healthy controls, reflecting a defect in compensatory mechanisms under
oxidative conditions in patients with SZ [90].

Moreover, there is genetic evidence supporting the oxidative stress theory of SZ de-
velopment. Indeed, in this study, the authors showed that low GSH levels in the mPFC
correlate with a trinucleotide repeat polymorphism in the gene encoding the catalytic sub-
unit of glutamate-cysteine ligase (GCLC), the rate-limiting enzyme for GSH synthesis [90].
Notably, it was found that individuals carrying the GCLC polymorphism were at higher
risk of SZ [19]. Conversely, the effects of GCLC polymorphism on ACC GSH levels were
not observed in a more recent study [91]. However, this study investigated SZ patients who
were non-responders to treatments and found that a higher proportion of patients with the
high-risk GCLC genotype were responders to clozapine [91]. These findings suggest that
SZ may arise from different pathophysiological mechanisms, and that oxidative stress is
one of the mechanisms at play. Another genetic evidence of reduced antioxidant defense in
SZ is the high risk polymorphism in the gene encoding for the glutathione-S-transferase
(GSST1) revealed by a meta-analysis [92]. Several other gene mutations associated with the
risk of developing SZ, such as DISC1, PROD, NRG and DTNBP1, lead to mitochondrial
dysfunction and increased oxidative stress [93–96].

Overall, evidence from genetic and biochemical studies of protein contents and activity
in SZ suggests that oxidative stress is involved in the pathophysiology of SZ. However,
it is important to note that oxidative stress may also be associated with other conditions
such as neurodegenerative diseases, or metabolic disorders. Likewise, several limitations
to these studies must be acknowledged. First, there are substantial discrepancies across the
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findings from these different studies. These may be a result of several factors, including the
assessment of indirect markers of oxidative stress and the variability of the sample source
(plasma, serum, erythrocytes). In addition, most studies report total GSH levels and do not
consider the contribution of the reduced (GSH) and oxidized (GSSG) forms of GSH. Even
so, reduced GSH levels are thought to reflect 80-95% of total GSH levels.

The limited replicability of these findings is further demonstrated by the fact that several
studies failed to reproduce the association found between peripheral and central GSH lev-
els [97]. However, a proteomics analysis of the changed proteins in post-mortem brains of SZ
patients and healthy individuals revealed specific alterations in mitochondrial functions and
oxidative stress [98]. Additionally, studies investigating levels of antioxidants in the brain of
patients consistently report decreased levels compared to controls [54,55]. Therefore, investi-
gating reliable biomarkers in the CNS would be a relevant strategy to identify individuals at
risk of developing SZ in a consistent manner. However, it is an invasive method, highlighting
the need for simultaneous analysis of blood and CNS redox biomarkers.

In addition, most studies consider the effects of clinical status on oxidative stress
markers. Whereas most studies compare SZ patients with controls, some divide the patients
into subgroups according to the duration of the disease [61], gender [67], their smoking
status [99], or the subtypes of SZ spectrum disorders [32,41,59,62,67]. These studies found
significant differences in antioxidant enzyme activities between males and females [67],
smokers and non-smokers [99], and the different subtypes of SZ [32,41,59,62,67]. Finally,
the effects of the clinical stage of SZ and antipsychotic treatments on antioxidant systems
and oxidation status must be considered carefully.

4.2. Oxidative Stress Biomarkers and Clinical Course of SZ

The previous section reviewed the evidence for oxidative stress in SZ patients. This section
will discuss these findings considering the clinical stage of the patients in order to identify
pathophysiological mechanisms that may be at play during the evolution of the disease.

Despite there being only two studies investigating individuals at risk of developing
psychosis, their findings converge towards increased oxidative stress in this population. In
healthy individuals with a family history of psychosis (familial high risk), TAS in the blood
is decreased compared to healthy individuals without a family history of psychosis [31].
Interestingly, the authors found that oxidative stress in these healthy individuals was not
influenced by negative family environmental factors [31]. In addition, during the preclinical
stages of psychosis, UHR individuals present with decreased activity of antioxidant enzymes
SOD and GPx compared to healthy individuals [29]. Regarding the early stages of psychosis,
there are many studies which focused on FEP patients and found elevated oxidative stress
and defects in antioxidant systems prior to the use of antipsychotic treatments [37,53,100,101].
Indeed, one study showed that antipsychotic-naïve FEP patients present with lower blood
activity of SOD than chronic SZ patients under antipsychotic treatments [45]. Increased lipid
peroxidation, in association with decreased blood levels of catalase, SOD, GPx and GSH in the
blood of antipsychotic-naïve FEP patients [101], seem to indicate increased oxidative stress
and defects in antioxidant systems. In addition, one meta-analysis reports lower blood TAS
and catalase levels in FEP patients, which are then reversed by antipsychotic treatment [13].
In this study, the authors mention that TAS and catalase blood levels could be viewed as state-
markers whereas SOD blood levels, which are decreased in both FEP and chronic medicated
patients, appear to be trait markers for SZ [13].

It is important to bear in mind the heterogeneity of findings as reported in Table 1.
Indeed, amongst the studies reported in this review, many present contradictory results, and
one meta-analysis even reports no difference in GSH levels between chronic patients, FEP
patients and healthy individuals [102]. In order to understand these discrepancies, it may
be recommended to investigate how oxidative stress relates with the patient’s symptom
profiles. Indeed, higher levels of oxidative stress correlate positively with the severity
of symptoms assessed by the Positive and Negative Symptoms Scale (PANSS) [43,66].
On the other hand, lower levels of antioxidants correlate negatively with the severity of
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positive and negative symptoms [27,50,51,66,71,81], and correlate positively with global
cognitive functioning [41,51]. Interestingly, electrophysiological abnormalities, such as
reduced gamma responses, which are frequently observed in SZ patients, correlate with
GSH levels in both patients and healthy individuals [74]. Blood GSH levels were also
associated with executive functions, as measured by several neuropsychological tests, in
both FEP patients and healthy individuals, despite no difference in redox markers between
the groups at baseline [36].

Overall, it appears that alterations in antioxidant functions are associated with symp-
toms severity in patients with SZ. Decreased activity of antioxidant systems has been
observed in the prodromal stage of the illness, supporting the hypothesis that oxidative
stress might play a causal role in the transition to psychosis [30].

4.3. Link between Oxidative Stress and Current Physiopathological Hypotheses

In order to understand the pathophysiological significance of oxidative stress during
the psychotic transition, this section will describe the mechanisms through which oxidative
stress might be involved. The different theories of SZ pathophysiology reveal interactions
between the mechanisms they describe.

The neurodevelopmental hypothesis of SZ states that interactions between genetic
and environmental factors influence brain development in utero, during birth and the first
years of life [103]. These neurodevelopmental abnormalities become fully expressed in the
mature brain, during early adulthood [103]. According to the oxidative stress hypothesis,
damage caused by oxidative stress might be the molecular basis of these changes [104].

A potential source of oxidative stress in the brain comes from auto-oxidation of excess
dopamine [105]. Indeed, auto-oxidizable neurotransmitters, like dopamine or epinephrine,
are present in excess in the brain, and their metabolism generates large amounts of hydrogen
peroxide (H2O2) [106]. Therefore, of all the brain regions, the basal ganglia, and in particular
the striatum, appear to be the most at risk of damage induced by oxidative stress due to
high amount of free iron [106,107] and dopamine. Moreover, the dopaminergic theory of
SZ proposes that increased dopaminergic activity in the striatum is mainly responsible
for the emergence of positive psychotic symptoms [108]. On the other hand, negative
symptoms such as a loss of motivation (avolition), or affective flattening, can only be
partially explained by hypodopaminergy in the prefrontal cortex (PFC) [108].

Pathological alterations in cortical inhibitory circuits are increasingly studied as thera-
peutical targets for cognitive and negative symptoms in SZ [109]. In particular, parvalbumin
GABAergic interneurons (PVI) and oligodendrocytes have a high susceptibility to oxidative
stress [11]. Indeed, PVI are energy demanding for high frequency neuronal synchroniza-
tion [16]. Therefore, their mitochondria produce ROS at a very high rate, and they require
a functional antioxidant system. Oligodendrocytes, on the other hand, have low antioxidant
levels despite their high metabolic activity, and thus are also very susceptible to oxidative
stress [110]. At the pathophysiological level, PVI and oligodendrocytes’ function is altered
in SZ. While oligodendrocytes ensure myelination of neurons [111], PVI are required for
synchronous firing [112], and both are required for synchronous network dynamics in the
brain. Connectivity alterations at the functional and structural levels in SZ have been exten-
sively studied and are present throughout all stages of the illness [113]. There is growing
evidence suggesting that PVI impairments constitute a hallmark of SZ [16,114], and are in-
volved in the excitatory/inhibitory neuronal imbalance observed in patients [115]. Altered
function of PVI neurons could also be due to N-methyl-D-aspartate (NMDA) receptors
hypofunction, a key feature of SZ, which forms the basis of the glutamatergic hypothesis
of SZ physiopathology [116]. Notably, GSH, which is an essential antioxidant and plays
an important role as a scavenger of ROS in brain, is a precursor of glutamate [117]. Indeed,
one study found that peripheral low GSH correlates with low glutamate in the ACC [72],
therefore it appears the antioxidant activity of GSH in the brain is prioritized over its role
as a precursor of glutamate [117].
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Eventually, oxidative stress appears to be a convergent ‘hub’ for the different theo-
ries explaining SZ physiopathology, as reviewed by Steullet, Cabungcal [118]. Figure 2
summarizes the interactions between the different theories mentioned.
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Figure 2. Interaction between the different theories of SZ physiopathology. Oxidative stress plays
a role in the activation of immune cells which in turn lead to more oxidative stress through the
production of ROS. Neuroinflammation leads to decreased activity of the GABAergic PVI, which are
involved in the emergence of negative and cognitive symptoms. The release of kynurenic acid by the
activated microglia acts on the NMDA receptors to decrease their function. Hypofunction of NMDA
receptors is also observed when GSH levels are decreased. Overall, it leads to altered function of
the GABAergic PVI, as well as increased function of dopaminergic neurons in the striatum. Striatal
hyperdopaminergia is thought to contribute to the positive symptoms of SZ.

4.4. Re-Establishing Redox Balance

In addition to the variability observed in SZ patients, but also during pre-clinical
stages, patients taking antipsychotic treatments can present with increased or decreased
oxidative stress. This section discusses the effects of antipsychotic treatments on oxidative
stress, along with the use of antioxidants in clinical trials for SZ patients.

First generation (typical) antipsychotics, such as haloperidol, are thought to induce
higher levels of lipid peroxidation in patients than second generation (atypical) antipsy-
chotics, such as clozapine, quetiapine and risperidone [38,70,100,119,120]. Moreover, in
drug-naïve FEP patients, atypical antipsychotics reduce the levels of lipid peroxidation
after six weeks of treatment [44]. Typical antipsychotics can increase the metabolism of
monoamines, thus leading to more ROS being produced [121], whereas atypical antipsy-
chotics seem to demonstrate anti-oxidative and neuroprotective effects [122]. Interestingly,
first generation antipsychotics seem to be more frequently associated with side effects
such as extrapyramidal symptoms, deemed to be associated with oxidative stress [123,124].
Furthermore, it was found that patients with the high risk GCLC polymorphism were more
likely to respond to treatment with clozapine, which suggests that this antipsychotic drug
might act on redox pathways [91]. Nonetheless, discrepancies across the findings reveal
that the effects of antipsychotic drugs on redox systems are subjected to inter-individual
differences. Indeed, one study found that clozapine induced higher levels of lipid peroxi-
dation than haloperidol [77]. Other studies found no effect of antipsychotic treatments on
oxidative stress [60,67,81].

Still, a recent meta-analysis revealed promising results from randomized controlled
clinical trials using the antioxidant N-Acetyl Cysteine (NAC) as adjunct treatment to
antipsychotics in chronic and FEP patients [125]. In particular, adjunct treatment with
NAC seems to improve the negative and total PANSS scores in patients [125], along with
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cognitive functions such as working memory [126]. More clinical trials using NAC are
currently registered, which seems to confirm the importance of this hypothesis in SZ
development [127]. Adjunct treatment with the antioxidant vitamin C also proved to
reduce lipid peroxidation in patients, and also decreased scores on the Brief Psychiatric
Symptoms Scale (BPRS) [120]. Finally, in UHR individuals, omega-3 polyunsaturated
fatty acid supplementation had no effect on vitamin E, but decreased total GSH blood
levels [128]. The type of antioxidants and their effectiveness at different stages of the illness
still require further investigation.

5. Conclusions

The scientific literature on blood levels of oxidative stress markers in SZ is marked by
a high variability in the findings. Harmonization of assessment and study design should
be encouraged to ensure comparability and replicability and to be able to draw definitive
conclusions. Indeed, considering the association between brain and blood levels of GSH,
which appears to be decreased in the blood of both UHR individuals and FEP patients,
it would be an interesting biomarker to consider as part of a diagnosis. However, these
findings must be interpreted with caution to prevent the physiopathological mechanisms
being directly inferred from dosage. Indeed, reduced antioxidant enzymes activity could
indicate a reduced need for these enzymes because of low oxidative stress levels, or a defect
in the enzymes leading to high oxidative stress levels. In addition, oxidative stress levels
must be assessed while considering important factors such as the gender and smoking
status of the patients. Nonetheless, redox mechanisms appear to play a non-negligeable
role in the early phases of psychosis, and their potential value as biomarkers remains to be
explored. Redox mechanisms could also help to better understand the physiopathology of
emerging SZ and might serve as therapeutic targets for preventive or adjunctive therapies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11101870/s1, Table S1: Number of participants included in
each study.
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antipsychotics on antioxidant enzyme activities in human erythrocytes (in vitro study). Hum. Psychopharmacol. Clin. Exp. 2013,
28, 1–6. [CrossRef] [PubMed]

123. Schillevoort, I.; de Boer, A.; Herings, R.M.; Roos, R.A.; Jansen, P.A.; Leufkens, H.G. Risk of extrapyramidal syndromes with
haloperidol, risperidone, or olanzapine. Ann. Pharmacother. 2001, 35, 1517–1522. [CrossRef]

124. Tollefson, G.D.; Beasley, C.M., Jr.; Tamura, R.N.; Tran, P.V.; Potvin, J.H. Blind, controlled, long-term study of the comparative
incidence of treatment-emergent tardive dyskinesia with olanzapine or halperidol. Am. J. Psychiatry 1997, 154, 1248–1254.

125. Yolland, C.O.; Hanratty, D.; Neill, E.; Rossell, S.L.; Berk, M.; Dean, O.M.; Castle, D.J.; Tan, E.J.; Phillipou, A.; Harris, A.W.; et al.
Meta-analysis of randomised controlled trials with N-acetylcysteine in the treatment of schizophrenia. Aust. N. Z. J. Psychiatry
2020, 54, 453–466. [CrossRef] [PubMed]

126. Pyatoykina, A.S.; Zhilyaeva, T.V.; Semennov, I.V.; Mishanov, G.A.; Blagonravova, A.S.; Mazo, G.E. The double-blind randomized
placebo-controlled trial of N-acetylcysteine use in schizophrenia: Preliminary results. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova
2020, 120, 66–71. [CrossRef]

http://doi.org/10.1016/j.jpsychires.2015.07.003
http://doi.org/10.1016/j.psychres.2012.07.024
http://doi.org/10.1177/0269881119845820
http://www.ncbi.nlm.nih.gov/pubmed/31039654
http://doi.org/10.1001/archpsyc.1987.01800190080012
http://www.ncbi.nlm.nih.gov/pubmed/3606332
http://doi.org/10.1016/S0920-9964(97)00151-5
http://doi.org/10.1155/2018/9163040
http://www.ncbi.nlm.nih.gov/pubmed/30245802
http://doi.org/10.1111/j.1471-4159.2006.03907.x
http://doi.org/10.2174/157015909787602823
http://doi.org/10.1038/nrn1648
http://doi.org/10.1523/JNEUROSCI.18-16-06241.1998
http://doi.org/10.1152/physrev.2001.81.2.871
http://doi.org/10.1038/nrn2044
http://www.ncbi.nlm.nih.gov/pubmed/17180162
http://doi.org/10.1016/j.neubiorev.2010.11.004
http://www.ncbi.nlm.nih.gov/pubmed/21115039
http://doi.org/10.1016/S0920-9964(01)00188-8
http://doi.org/10.2174/1566524015666150303003028
http://www.ncbi.nlm.nih.gov/pubmed/25732149
http://doi.org/10.1111/pcn.12823
http://doi.org/10.1016/j.bbrc.2011.04.087
http://doi.org/10.1016/j.schres.2014.06.021
http://doi.org/10.1111/pcn.12631
http://doi.org/10.1007/s00213-005-0117-1
http://doi.org/10.1016/S0197-0186(00)00108-X
http://doi.org/10.1002/hup.2272
http://www.ncbi.nlm.nih.gov/pubmed/23124725
http://doi.org/10.1345/aph.1A068
http://doi.org/10.1177/0004867419893439
http://www.ncbi.nlm.nih.gov/pubmed/31826654
http://doi.org/10.17116/jnevro202012009166


Antioxidants 2022, 11, 1870 16 of 16

127. Cotton, S.M.; Berk, M.; Watson, A.; Wood, S.; Allott, K.; Bartholomeusz, C.F.; Bortolasci, C.C.; Walder, K.; O’Donoghue, B.; Dean,
O.M.; et al. ENACT: A protocol for a randomised placebo-controlled trial investigating the efficacy and mechanisms of action of
adjunctive N-acetylcysteine for first-episode psychosis. Trials 2019, 20, 658. [CrossRef]

128. Smesny, S.; Milleit, B.; Schaefer, M.R.; Hipler, U.C.; Milleit, C.; Wiegand, C.; Hesse, J.; Klier, C.M.; Holub, M.; Holzer, I.; et al.
Effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system in individuals at ultra-high risk of
psychosis. Prostaglandins Leukot. Essent. Fat. Acids 2015, 101, 15–21. [CrossRef] [PubMed]

http://doi.org/10.1186/s13063-019-3786-5
http://doi.org/10.1016/j.plefa.2015.07.001
http://www.ncbi.nlm.nih.gov/pubmed/26260538

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Evidence of the Involvement of Oxidative Stress in SZ 
	Oxidative Stress Biomarkers and Clinical Course of SZ 
	Link between Oxidative Stress and Current Physiopathological Hypotheses 
	Re-Establishing Redox Balance 

	Conclusions 
	References

