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Abstract
In this article, we consider the problem of change-point
analysis for the count time series data through an
integer-valued autoregressive process of order 1
(INAR(1)) with time-varying covariates. These types of
features we observe in many real-life scenarios espe-
cially in the COVID-19 data sets, where the number
of active cases over time starts falling and then again
increases. In order to capture those features, we use
Poisson INAR(1) process with a time-varying smoothing
covariate. By using such model, we can model both the
components in the active cases at time-point t namely,
(i) number of nonrecovery cases from the previous
time-point and (ii) number of new cases at time-point
t. We study some theoretical properties of the proposed
model along with forecasting. Some simulation studies
are performed to study the effectiveness of the pro-
posed method. Finally, we analyze two COVID-19 data
sets and compare our proposed model with another
PINAR(1) process which has time-varying covari-
ate but no change-point, to demonstrate the overall
performance of our proposed model.
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1 INTRODUCTION

Time series of count data have been widely studied during the last three decades or so due to
its increased relevance toward various fields of science. There are several ways to model count
time series data. For example, McKenzie (1985, 1986) and Al-Osh and Alzaid (1987) introduced
a class of stationary integer-valued autoregressive (INAR) time series process based on binomial
thinning operator. This process was further studied and generalized by Alzaid and Al-Osh (1990),
Jin-Guan and Yuan (1991), Freeland and McCabe (2004), Ristić, Bakouch, and Nastić (2009), Jazi,
Jones, and Lai (2012), Schweer and Weiß, (2014), Maiti, Biswas, and Das (2015) and many more.
In particular, McKenzie (1986) introduced the integer-valued AR(1) or INAR(1) models with geo-
metric and negative binomial marginals when the data are overdispersed. McKenzie (1985) and
Al-Osh and Alzaid (1987) developed an INAR(1) process with Poisson marginals, well known as
PINAR(1) process which is very popular due to its simple form. The INAR(1) process was fur-
ther extended to a more general INAR(p) process by Alzaid and Al-Osh (1990) and Jin-Guan and
Yuan (1991). Ristić et al. (2009) and Schweer and Weiß (2014) proposed a new INAR(1) process
based on negative binomial thinning operator which can also handle the overdispersion problem.
Jazi et al. (2012) and Maiti et al. (2015) studied zero-inflated PINAR(1) (ZIPINAR(1)) processes
for zero-inflated count data. Apart from these thinning-based INAR processes, Cameron and
Trivedi (1986) and Fokianos (2011) studied some regression-based time series models to model
count time series data.

In this article, we employ the INAR process to model the data of COVID-19 active cases
which is an example of count time series data. In an INAR process there are two components at
time-point t namely, (i) nonrecovery cases from the previous time-point (survival part) and (ii)
new cases coming in the process at time-point t (innovation terms). These INAR processes are
mainly stationary since the innovation terms involve no time-varying covariate, that is, the new
cases coming in the process are not time-dependent. But in real-life scenarios like the COVID-19
data sets, we can find that the rapid change in the number of infected cases makes the innovation
terms time-dependent. Besides this time-varying nature of the innovation terms, we also notice
some change-points in these data sets. In the current scenario of COVID-19 pandemic, we are
seeing mainly two types of curves for daily new cases reported in different parts of the world,
which are (i) the curve, at first, began to increase exponentially, but after major steps like “nation-
wide lockdowns,” “social distancing” measures, a massive number of testing, and so on taken by
the respective authorities in different countries, the curve started decreasing, and (ii) the curve
which came down, started to rise again as the respective authorities began to ease those measures
in some parts of the world. The curves of daily active cases are also changing in the same way
in those parts of the world. Hence we can spot one change-point (upward to downward) for the
curve described in Case (i) and two change-points (upward to downward and then downward to
upward) for the curve in Case (ii). In this article, we try to develop a PINAR process based on
binomial thinning operator for count time series data like the COVID-19 data where we model the
innovation terms through some time-varying covariates and smoothing change-point function
without changing the survival part.

PINAR process, introduced by McKenzie (1985) and Al-Osh and Alzaid (1987), is very popu-
lar due to its simple form and has a wide application in modeling count time series data. But this
PINAR process based on binomial thinning operator is not capable of handling the count time
series data which has both change-points and time-varying innovation terms. Hence we introduce
a new suitable PINAR model which is able to tackle both these features which can be found in the
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COVID-19 data sets. To incorporate the change-points in our proposed PINAR model, the inno-
vation terms are modeled with a smoothing version (see Smooth maximum, n.d.) of time-varying
covariate which consists of the change-points. The idea to capture the change-points in the inno-
vation terms through time-varying smoothing covariate is inspired by Chan and Tong (1986),
Hansen, (2000) and Fong, Huang, Gilbert, and Permar (2017) whose works are mainly based on
continuous data. We use this smoothing version of time-varying components in our proposed
model to catch the changing curvatures in the data of daily active cases. The effectiveness of the
proposed model for both the studies of one change-point and two change-points is reviewed later
by simulation study and the analysis of two COVID-19 data sets. We compare our proposed model
with another PINAR model which has time-varying covariate but no change-point, to illustrate
the overall performance of the proposed model.

The rest of the article is organized as follows. Section 2 discusses two real COVID-19 data sets.
Section 3 describes our proposed model along with a brief illustration of the INAR(1) process.
We provide the distributional forms of our proposed model and the h-step ahead forecasting dis-
tribution in Sections 4 and 5, respectively. In Section 6, we talk about the estimation method for
our proposed model. Some extensive simulation studies for our proposed model are provided in
Section 7. In Section 8, we analyze the COVID-19 data sets. Finally, some conclusions are drawn
in Section 9. All the proofs of the theoretical results are provided in the Appendix.

2 MOTIVATING DATA EXAMPLES: COVID-19 DATA

The world is now facing the biggest global health crisis in the name of COVID-19 pandemic
unlike any in recent times. The outbreak was first identified in Wuhan, China, in early Decem-
ber 2019. The World Health Organization declared the outbreak a Public Health Emergency of
International Concern on January 30 and a pandemic on March 11.

To restrict the spread of this virus in early stages, heavy measures have been implemented
in different parts of the world by the respective authorities like “nationwide lockdowns,” “rapid
testing” process, strict “social distancing,” using of masks and sanitizers in public places, and so
on. Hence in certain parts of the world, the situation of COVID-19 has improved, and the lock-
down has been eased in those parts. During that period, there were also some Gulf evacuations
took place in different countries, especially in India. Therefore the “community transmission”
has started in those parts of the world due to the highly infectious nature of this virus, and the
number of infected cases began to pile up again. For further discussion in this regard, we explore
two real COVID-19 data sets in Sections 2.1 and 2.2.

2.1 COVID-19 data of Italy

This data set is an example of Case (i) described in Section 1. We can only see one change-point
in the data of active cases of Italy and hence the study will be based on one change-point analysis.
The data (see Worldometer, n.d.) are collected from February 15 to June 6 (total 113 days). Though
the first case in this country was detected back in January 2020, the cases started to increase
rapidly from the beginning of March. After continuous measurements taken by the authorities,
the curve of active cases has started to come down. As of June 6, 2020, the total number of con-
firmed cases was more than 234k, and the number of deaths was more than 33.8k. The active
number of cases was more than 35 000. Figure 1 displays the data of new daily cases, the data of
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daily active cases, and the autocorrelation function (ACF) and partial ACF (PACF) plots of daily
active cases. From the ACF and PACF plots, it seems that the data have a good fit for the AR(1)
process.

2.2 COVID-19 data of Kerala

This data set is an example of Case (ii). Here we observe two change-points in the data of daily
active cases and hence the study will be based on two change-point analysis. In Kerala, the first
case was also detected back in January 2020, but the cases started to pile up from mid-March. Due
to heavy measurements taken by the state government of Kerala, the curve of active cases came
down, but from mid-May, the cases again started to rise when the Gulf evacuees began to come
into the state. The data for Kerala (see GoK Dashboard, n.d) are collected from March 9 to June 6
(total 90 days). More than 1800 cases and total of 15 deaths were reported in Kerala as of June 6,
2020, and the active number of cases was more than 1000. Figure 2 displays the data of new daily
cases, the data of daily active cases, and the ACF and PACF plots of daily active cases. It seems
that the data have a good fit for the AR(1) process.

3 MODEL

In this section, we develop a new model based on the integer-valued AR(1) process to capture
the change-points in the count time series data sets like the COVID-19 data sets of Italy and
Kerala.

Here we use the INAR(1) process (proposed by McKenzie, 1985 and Al-Osh & Alzaid, 1987)
consisting of binomial thinning operator (introduced by Steutel & van Harn, 1979), to develop
our proposed model for change-point analysis, which is given by

Yt = 𝛼 ◦Yt−1 + 𝜀t, (1)

where Yt denotes the number of daily active cases at time-point t and 𝜀t represents daily new cases
reported at time-point t. We assume that 𝜀t follows Poisson(𝜆t) where 𝜆t is assumed to have the
following form:

𝜆t = exp
(
𝛽0 + 𝛽1

(t − tch) exp(𝛿n(t − tch))
1 + exp(𝛿n(t − tch))

+ 𝛽2t
)
, (2)

where the tuning parameter 𝛿n(> 0) helps to capture the changing curvature of the data. tch
denotes the change-point in the data. The change-point tch can be easily estimated from the
data. The above model is defined only for one change-point. 𝜷1 = (𝛼, 𝛽0, 𝛽1, 𝛽2) are the regression
parameters, and 𝛽1 is the regression coefficient which associates with the time-varying covari-
ate consisting of the change-point. However, we can easily extend the model for more than one
change-point. For two change-points, only the form of 𝜆t will change and the functional form is
given by

𝜆t = exp
(
𝛽0 + 𝛽1

(t − tch1) exp(𝛿n(t − tch1))
1 + exp(𝛿n(t − tch1))

+ 𝛽2
(t − tch2) exp(𝛿n(t − tch2))

1 + exp(𝛿n(t − tch2))
+ 𝛽3t

)
, (3)
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where tch1 and tch2 are the two change-points in the data. Here 𝜷2 = (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3) are the
regression parameters, and 𝛽1 and 𝛽2 are the regression coefficients which associate with the
time-varying covariates consisting of the change-points. In the subsequent section, we provide a
general idea about our proposed model.

Remark 1. The use of one tuning parameter in data with one change-point can be widened for
more than one change-point like using two different tuning parameters 𝛿1n and 𝛿2n for data with
two change-points. But in our proposed process for two change-points, we put only 𝛿n instead of
𝛿1n and 𝛿2n, mainly because using 𝛿n reduces the computational difficulty and simplifies the form
of the proposed model.

3.1 Idea behind the model

The idea behind the form of 𝜆t, discussed in Equations (2) and (3), comes from the threshold
regression model setup (see Chan & Tong, 1986; Fong et al. 2017; Hansen, 2000). From the concept
of the segmented model in the threshold regression setup, we can write the form of log(𝜆t) for
one change-point as log(𝜆t) = 𝛽0 + 𝛽1(t − tch)+ + 𝛽2t, where (t − tch)+ = (t − tch) for t > tch and
(t − tch)+ = 0 for t ≤ tch. In this segmented form of log(𝜆t), we get to see sharp change (upward to
downward or downward to upward) in the curve of daily new cases and hence in the curve of daily
active cases. But in real-life scenarios like the COVID-19 data, we do not get to see sharp changes;
most of the time we notice changing curvature(s) in these data sets. So we try to capture those
changing curvature(s) in the data of daily active cases by modeling the data of daily new cases
(innovation terms) in the proposed model through some time-varying covariates and smoothing
change-point functions. Moreover, the function (t − tch)+ is not differentiable at tch. So we replace
(t − tch)+ (for 𝛿n > 0) by a smooth differentiable maximum function (see Smooth maximum, n.d.),
which is given by

(t − tch)+ ≈
0 × exp(0 × 𝛿n) + (t − tch) exp(𝛿n(t − tch))

exp(0 × 𝛿n) + exp(𝛿n(t − tch))
.

Hence the functional form of 𝜆t for one change-point is given by

log(𝜆t) = 𝛽0 + 𝛽1
(t − tch) exp(𝛿n(t − tch))

1 + exp(𝛿n(t − tch))
+ 𝛽2t for 𝛿n > 0,

that is,

𝜆t = exp
(
𝛽0 + 𝛽1

(t − tch) exp(𝛿n(t − tch))
1 + exp(𝛿n(t − tch))

+ 𝛽2t
)

for 𝛿n > 0.

In the similar way, we can find the functional form of 𝜆t for two change-points, which is given
by

𝜆t = exp
(
𝛽0 + 𝛽1

(t − tch1) exp(𝛿n(t − tch1))
1 + exp(𝛿n(t − tch1))

+ 𝛽2
(t − tch2) exp(𝛿n(t − tch2))

1 + exp(𝛿n(t − tch2))
+ 𝛽3t

)
for 𝛿n > 0.
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3.2 Conditions on 𝜷i’s

The changing behaviors of these data sets depend on some conditions on 𝛽i’s. We try to provide
those conditions through the form of the segmented model of threshold regression setup for both
sets of 𝛽i’s ((𝛽0, 𝛽1, 𝛽2) in Equation (2), and (𝛽0, 𝛽1, 𝛽2, 𝛽3) in Equation (3)) which enable our pro-
posed model to capture the change-point(s). The required conditions for both the studies of one
change-point and two change-points are given below.

(i) In the segmented form of log(𝜆t) for one change-point analysis, we model log(𝜆t) as
log(𝜆t) = 𝛽0 + 𝛽2t for t ≤ tch and 𝛽0 + 𝛽1(t − tch) + 𝛽2t for t > tch. So the derivatives of log(𝜆t) are
𝛽2 for t ≤ tch and (𝛽1 + 𝛽2) for t > tch in this segmented model setup for one change-point. So
for 𝛽2 > 0 and (𝛽1 + 𝛽2) < 0, log(𝜆t) increases when t ≤ tch and decreases when t > tch, that is, 𝜆t
increases when t ≤ tch and decreases when t > tch. Hence the change-point is tchth time-point in
the data of daily new cases. So for the count time series data of one change-point, the condition:
{𝛽2 > 0, (𝛽1 + 𝛽2) < 0} must hold.

(ii) Similarly for the study of two change-points, we model log(𝜆t) as log(𝜆t) = 𝛽0 + 𝛽3t for
t ≤ tch1, 𝛽0 + 𝛽1(t − tch1) + 𝛽3t for tch1 < t ≤ tch2 and 𝛽0 + 𝛽1(t − tch1) + 𝛽2(t − tch2) + 𝛽3t for t > tch2.
Hence the derivatives of log(𝜆t) are 𝛽3 for t ≤ tch1, (𝛽1 + 𝛽3) for tch1 < t ≤ tch2 and (𝛽1 + 𝛽2 + 𝛽3) for
t > tch2 in the segmented model for two change-points. So for 𝛽3 > 0, (𝛽1 + 𝛽3) < 0 and (𝛽1 + 𝛽2 +
𝛽3) > 0, log(𝜆t) increases when t ≤ tch1, decreases when tch1 < t ≤ tch2 and again increases when
t > tch2, that is, 𝜆t increases when t ≤ tch1, decreases when tch1 < t ≤ tch2 and again increases when
t > tch2. Here the two change-points are tch1th and tch2th time-points in the data of daily new cases.
So the condition: {𝛽3 > 0, (𝛽1 + 𝛽3) < 0, (𝛽1 + 𝛽2 + 𝛽3) > 0} must hold for the count time series
data containing two change-points.

3.3 Choices of the tuning parameter 𝜹n

The tuning parameter of our proposed model, 𝛿n, helps to capture the changing curvature(s) in
the data. Here 𝛿n > 0. To compute the optimal value of the tuning parameter 𝛿n from the data, we
consider a grid search method (see Chakraborty, Laber, & Zhao, 2013, James, Witten, Hastie, &
Tibshirani, 2013). In this method, we use a goodness-of-fit measure based on which the optimal
value of 𝛿n is calculated. The idea of 𝛿n comes from the concept of Smooth maximum (n.d.) and
so as the value of 𝛿n increases the changing curvature becomes sharper. We show this property
in Figures 3 and 4 where we can clearly see as the values of 𝛿n shift from 0.05 to 1; the changing
curvatures become sharper for both the studies of one change-point and two change-points. We
also add the nonsmoothing version (no use of 𝛿n) of the generated data, that is, the segmented
data.

3.4 Estimation of change-point(s)

To estimate the change-point(s), we take the difference between every two consecutive obser-
vations (i.e., Δt = Yt − Yt−1) and consider the sign of those differences denoted by St = sign(Δt)
where St = + if Δt > 0 and − otherwise. For a data set with one change-point, the sequence {St}
should give us two runs: (1) run of +, and (2) run of − (see Wald & Wolfowitz, 1940). Depending
on the increasing or decreasing curve of Yt, the run of + and the run of − will be interchanged.
For example, if the original time series plot of Yt is bell-shaped (i.e., initially the observations are
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F I G U R E 3 The changing curvatures for one change-point study for 𝛿n = 0.05, 0.1, 1 along with segmented
data (no use of 𝛿n)

F I G U R E 4 The changing curvatures for two change-point study for 𝛿n = 0.05, 0.1, 1 along with segmented
data (no use of 𝛿n)

increasing and then after a certain time-point (say, tch) the observations are decreasing), we will
have a run of + first and then after the time-point tch we will have a run of −. The time-point at
which the first run of+ ends gives us an estimate of the original change-point tch. However, in real
scenarios, time series data with one change-point may not be smooth and often there are random
fluctuations present in the data. As a result, there might be many small runs of + and − which
make the above estimation procedure difficult to locate the true change-point. Hence we employ
a presmoothing approach before implementing the above run-based point estimation. That is,
instead of working with the actual time series data, we make the data smooth by implement-
ing some standard statistical approaches like m-point moving average, or through a pth degree
polynomial function.

For the time series data with two change-points (say, tch1 and tch2), the sequence {St} should
produce three runs: (1) run of +, (2) run of −, and (3) again run of +. Here the run of + and
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the run of − will be interchanged twice, that is, a run of + for the increasing curvature, then
a run of − for the decreasing curvature and another run of + when cases again begin to rise
(another increasing curvature). The time-point at which the first run ends gives us an estimate of
the first change-point tch1 and the time-point at which the second run ends provides an estimate
of the second change-point tch2. However, like the case of one change-point, here also time series
data sets are nonsmooth and hence the implementation of presmoothing approaches like m-point
moving average, or through pth degree polynomial function is required.

Later, in Section 7.2, we perform a simulation study where we estimate the true
change-point(s) and provide 95% confidence interval(s) (CI(s)) based on normal approximation.
And we study the large sample properties by varying the sample size.

4 DISTRIBUTIONAL PROPERTIES

In this section, we study the conditional and the marginal distributions of the proposed model.

4.1 Conditional distribution

Under our proposed setup, the conditional distribution of Yt given Yt−1 andt (the set of all covari-
ates up to time-point t including smooth time-varying and simple time-varying covariates up to
time-point t) can be derived as

p(j|i) = P(Yt = j|Yt−1 = i,t) =
min(i,j)∑

k=0

( i
k

)
𝛼k(1 − 𝛼)i−k exp(−𝜆t)𝜆j−k

t [(j − k)!]−1I[(j−k)=(0,1,…)], (4)

where I(⋅) is the indicator function. This is the probability of going from state i to state j in a
single step. The conditional mean and variance can be given as E(Yt|Yt−1,t) = 𝛼Yt−1 + 𝜆t, and
V(Yt|Yt−1,t) = 𝛼(1 − 𝛼)Yt−1 + 𝜆t, respectively.

4.2 Marginal distribution

Since the marginal distribution of Yt is difficult to obtain, we find the partial marginal distribu-
tion of Yt given t for t > 1, henceforth it is called the marginal distribution. Here we derive the
probability generating function (PGF) of Yn given n.

The derivation is valid for t > 1 and hence we assume that given 1, the marginal distribution
of Y1 is Poisson(𝜆1). The reason behind this assumption can be given as follows. We know the
elements which enter the system in the interval (t − 1, t] are the innovation term at time-point t
(𝜀t). Now for t = 1, the interval is (0, 1], and there is no previous existing interval in the system. So
in the interval (0, 1], the elements which enter the system can be seen as the first count process
Y1. Hence we can assume Y1|1 ∼ Poisson(𝜆1).

Theorem 1. Under the assumptions that Y1|1 ∼ Poisson(𝜆1) and 𝜀n|n ∼ Poisson(𝜆n), we can
show that the PGF of Yn|n is

ΦYn|n(s) = exp
[
−(𝛼n−1𝜆1 + 𝛼n−2𝜆2 + … + 𝜆n)(1 − s)

]
, (5)
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that is, Yn given n, follows Poisson distribution with mean
(
𝛼n−1𝜆1 + 𝛼n−2𝜆2 + … + 𝜆n

)
.

Proof. The derivation of this result is presented in Appendix A. ▪

Here we can also use a recursive formula as an alternative way to derive the marginal
distribution, which is given by

pt,j = P(Yt = j|t)

=
∞∑

i=0
p(j|i)P(Yt−1 = i|t)

=
∞∑

i=0

min(i,j)∑
k=0

( i
k

)
𝛼k(1 − 𝛼)i−k exp(−𝜆t)𝜆j−k

t [(j − k)!]−1P(Yt−1 = i|t)I[(j−k)=(0,1,… .)]

=
∞∑

i=0

min(i,j)∑
k=0

( i
k

)
𝛼k(1 − 𝛼)i−k exp(−𝜆t)𝜆j−k

t [(j − k)!]−1pt−1,i I[(j−k)=(0,1,… .)], (6)

where I(⋅) is the indicator function.
Here the marginal mean and the marginal variance are given by

E(Yn|n) = 𝛼n−1𝜆1 + 𝛼n−2𝜆2 + … + 𝜆n, (7)

and

V(Yn|n) = 𝛼n−1𝜆1 + 𝛼n−2𝜆2 + … + 𝜆n. (8)

Theorem 2. Under the above setup, the autocovariance function (ACVF) of Yt given t+h using the
equation Yt+h = 𝛼h◦Yt +

∑h
i=1𝛼

h−i◦𝜀t+i can be derived as

𝛾y(h) = Cov(Yt,Yt+h|t+h) = 𝛼h (𝛼t−1𝜆1 + 𝛼t−2𝜆2 + … + 𝜆t
)
.

Proof. The derivation of this result is presented in Appendix B. ▪

Hence for h ≠ 0, the ACF can be derived as follows:

𝜌y(h) =
Cov(Yt,Yt+h|t+h)√

Var(Yt|t+h) Var(Yt+h|t+h)

=
𝛼h (𝛼t−1𝜆1 + 𝛼t−2𝜆2 + … + 𝜆t

)√
(𝛼t−1𝜆1 + … + 𝜆t)

(
𝛼t+h−1𝜆1 + … + 𝜆t+h

)

= 𝛼h

√(
𝛼t−1𝜆1 + … + 𝜆t

𝛼t+h−1𝜆1 + … + 𝜆t+h

)
.
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It can be seen that the above expression decays exponentially to 0 as h goes to ∞ for 𝛼 ∈ (0, 1)
and the restricted 𝛽i’s discussed in Section 3.2.

5 FORECASTING

5.1 h-Step ahead forecasting distribution

To find the h-step ahead forecasting distribution, we use the following recursive method:

Yn+h = 𝛼◦Yn+h−1 + 𝜀n+h

= 𝛼◦{𝛼◦Yn+h−2 + 𝜀n+h−1} + 𝜀n+h

…

= 𝛼h◦Yn +
h∑

i=1
𝛼h−i◦𝜀n+i.

Thus the h-step ahead conditional mean and conditional variance can be given as

E(Yn+h|Yn,n+h) = 𝛼hYn +
h∑

i=1
𝛼h−i𝜆n+i,

and

V(Yn+h|Yn,n+h) = 𝛼h (1 − 𝛼h)Yn +
h∑

i=1
𝛼h−i𝜆n+i.

The h-step ahead forecasting distribution of PINAR(1) process was derived by Freeland and
McCabe (2004) using the binomial thinning operator discussed by Al-Osh and Alzaid (1987) and
it turned out to be a convolution of binomial and Poisson distributions. Here we can calculate
the conditional PGF of Yn+h given Yn and n+h and then derive the forecasting distribution using
this.

Theorem 3. The conditional PGF of Yn+h given Yn and n+h can be shown as

ΦYn+h|Yn,n+h (s) =
(
1 − 𝛼h + 𝛼hs

)Yn

[
exp

(
−

h∑
i=1

𝜆n+i 𝛼
h−i(1 − s)

)]
.

Proof. The derivation of this result is presented in Appendix C. ▪

Corollary 1. From the above result, we can say that the h-step ahead prediction distribution of Yn+h
given Yn and n+h is a convolution of Bin

(
Yn, 𝛼

h) and some random variable Zn+h having the PGF
of the form

[
exp

(
−
∑h

i=1𝜆n+i 𝛼
h−i(1 − s)

)]
. Therefore Zn+h follows Poisson distribution with mean(∑h

i=1𝜆n+i 𝛼
h−i

)
.
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Thus, the prediction distribution can be presented as

Yn+h|Yn,n+h
d
= Bin(Yn, 𝛼

h) ∗ Zn+h,

where “ ∗” is called the convolution between two distributions.

Theorem 4. Using Corollary 1, the h-step ahead forecasting distribution of Yn+h given Yn and n+h
can be derived as

ph(j1|j2) =
min(j1,j2)∑

q=0

(
j2
q

)
𝛼qh(1 − 𝛼h)j2−q exp(−𝜆(h)) 𝜆(h)

j1−q

(j1 − q)!
I(0,1,..)(j1 − q), (9)

where I(⋅) is the indicator function, 𝜆(h) =
(∑h

i=1𝛼
h−i𝜆n+i

)
, and ph(k1|k2) = P(Yn+h = k1|Yn =

k2,n+h).

Proof. The derivation of this result is presented in Appendix D. ▪

5.2 Descriptive measure of forecasting accuracy

Given an observed data set {Y1, … ,Yn,Yn+1, … ,Yn+m} of size (n + m), we partition the data into
two sets. The training set containing the first n observations is used to estimate the parameters
of the model and based on the rest of m observations called the test set, we define the following
descriptive measure of forecasting accuracy. The h-step ahead predicted root mean squared error
(denoted by PRMSE(h)) is defined as

PRMSE(h) =

√√√√√∑n+m−h
t=n

(
Yt+h − Ŷ me

t+h

)2

m − h + 1
, (10)

where Ŷ me
t+h is the mean of the estimated h-step ahead forecasting distribution of Yt+h given Yt and

t+h mentioned in Theorem 4. Intuitively, the PRMSE(h) should increase in h.

6 ESTIMATION METHOD FOR THE MODEL PARAMETERS

6.1 Conditional least squares estimation

Conditional least squares estimation is usually used for estimating the regression parameters of
the model in the context of time series models. Freeland and McCabe (2004, 2005) used this
approach for PINAR(1) process.

In order to implement the conditional least squares estimation method, we need to mini-
mize the sum of squared deviation about the conditional expectation which is given as Q∗(𝜷) =∑n

t=2[Yt − E(Yt|Yt−1,t)]2 instead of Q(𝜷) =
∑n

t=2[Yt − E(Yt|t)]2 with respect to the regression
parameters of the model, where E(Yt|Yt−1,t) = 𝛼Yt−1 + 𝜆t and 𝜷 is the vector for regression
parameters. Here numerical methods are being employed to obtain the CLS estimates of the
regression parameters of the model as there are no closed forms of the CLS estimators.
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In the subsequent section, we have done an extensive simulation study for both the stud-
ies of one change-point and two change-points and from the simulation results, we have shown
consistency of the CLS method.

Note 1. In maximum likelihood estimation, given a data set of size n, the likelihood func-
tion for the process is given by L(𝜷) = p(Y1, … ,Yn|n) = p(Y1|1)

∏n
t=2p(Yt|Yt−1,t). In order to

obtain the MLE estimators, we maximize the log-likelihood function with respect to regression
parameters, which can be written as log L(𝜷) = log p(Y1|1) +

∑n
t=2 log p(Yt|Yt−1,t).

Here P(Yt = j|Yt−1 = i,t) =
∑min(i,j)

k=0

(
i
k

)
𝛼k(1 − 𝛼)i−k exp(−𝜆t)𝜆j−k

t [(j − k)!]−1. In real-life sce-
narios like the COVID-19 data, the number of daily active cases at time-point t (represented by
Yt) and the number of daily new cases at time-point t (represented by 𝜆t) will often be large and
hence in R programming language, we face difficulties to execute the MLE method because of
the terms like 𝜆

j−k
t (“j” is the number of daily active cases at time-point t and k = min(i, j) where

“i” is the number of daily active cases at time-point (t − 1)) involved in the likelihood function.
So the estimation method which we have employed for data analysis is CLS method.

7 SIMULATION STUDY

7.1 General setup

In this section, we perform extensive simulation studies for (a) the estimation of change-point(s),
(b) the estimation of model parameters, and (c) the forecasting performances of the proposed
model. To perform the studies, we simulate data from (1) one change-point model and (2) two
change-point model. The simulation studies are performed for varying sample sizes along with
different choices of model parameters, tuning parameter, and change-points.

For the simulation studies regarding the analysis of one change-point (tch), n (the set of all
covariates up to time-point n) is equal to {1,Z1,P1,Z2,P2, … ,Zn,Pn}where Zt =

(t−tch) exp(𝛿n(t−tch))
1+exp(𝛿n(t−tch))

,
which is the smooth time-varying component and Pt = t, which is the simple time-varying
component. And for the simulation studies regarding the analysis of two change-points (tch1
and tch2), n = {1,Z11,Z21,Q1,Z12,Z22,Q2, … ,Z1n,Z2n,Qn} where Z1t =

(t−tch1) exp(𝛿n(t−tch1))
1+exp(𝛿n(t−tch1))

, Z2t =
(t−tch2) exp(𝛿n(t−tch2))

1+exp(𝛿n(t−tch2))
, and Qt = t; here Z1t’s and Z2t’s are the smooth time-varying components and Qt’s

are the simple time-varying components. In the simulation studies, we use these components for
each of the studies to generate data sets of varying sample sizes by the data-generating processes
mentioned in Equation (2) for one change-point and Equation (3) for two change-points.

In the simulation study regarding forecasting performances, we compare our proposed model
with the following model

Yt = 𝛼∗◦Yt−1 + 𝜀t, (11)

where Yt denotes the daily number of active cases at time-point t and 𝜀t represents the daily num-
ber of new cases at time-point t. Here 𝜀t follows Poisson(𝜆∗t ) where 𝜆∗t is assumed to have the
following form:

𝜆∗t = exp (𝛾0 + 𝛾1t) .

This model involves no change-point. But the innovation terms depend on time-varying
covariates.
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7.2 Results on change-point(s) estimation

Here we perform a simulation study in order to provide 95% CIs for the true change-points from
the simulated data sets and examine the widths of those intervals with increasing sample size.
The estimation method of change-point(s) is discussed in Section 3.4. In order to perform this
simulation study, we simulate data from the proposed model with (1) one change-point (given in
Equation (2)), and (2) two change-points (given in Equation 3)). Two sets of regression parameters
are considered for each of the above two data-generating cases. Three different sample sizes (n) of
400, 450, and 500 are explored. Throughout the whole simulation study, we consider two different
values of 𝛿n as 0.1 and 0.2. All the simulations results are based on 1000 Monte Carlo replications.

7.2.1 Case 1: Analysis of one change-point

For one change-point simulation study, we assume the value of the true change-point tch to be
0.5n where n is the sample size of the data. The estimation method of the change-point is dis-
cussed in Section 3.4. Two sets of regression parameters used in the data-generating process are
𝜷1 = (𝛼, 𝛽0, 𝛽1, 𝛽2) = (0.4, 1.5,−0.08, 0.04) and (0.7,−1,−0.09, 0.05). For each set of the regression
parameters and the tuning parameter 𝛿n, we simulate the data using model (1) with 𝜆t given
in Equation (2). Here for the data-generating method of one change-point, n, set of all covari-
ates up to time-point n, consists of both the smooth time-varying components and the simple
time-varying components up to time-point n as described in Section 7.1, where n is the sample
size of the simulated data set. The process is repeated for 1000 times and we report the 95% CIs in
Tables 1 and 2 where we can see that as the sample sizes increase the widths of the CIs decrease.

7.2.2 Case 2: Analysis of two change-points

For the simulation study of two change-points, the true change-points tch1 and tch2 are
assumed to be 0.4n and 0.6n, respectively. Two sets of values of the regression parameters

T A B L E 1 95% confidence intervals (CIs) for the true
change-point for different sample sizes for different values of
𝛿n where the true change-point is at 0.5nth time-point and
true 𝜷1 = (0.4, 1.5,−0.08, 0.04)

𝜹n = 0.1

n 95% CI Width

400 (196.6439, 203.3801) 6.7362

450 (222.5360, 227.3340) 4.7980

500 (248.1794, 251.7426) 3.5632

𝜹n = 0.2

n 95% CI Width

400 (197.8427, 202.1033) 4.2606

450 (223.4354, 226.6266) 3.1912

500 (248.9330, 251.0090) 2.0760
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T A B L E 2 95% confidence intervals (CIs) for the true
change-point for different sample sizes for different values of
𝛿n where the true change-point is at 0.5nth time-point, and
true 𝜷1 = (0.7,−1,−0.09, 0.05)

𝜹n = 0.1

n 95% CI Width

400 (197.9393, 205.0067) 7.0674

450 (224.1986, 228.8794) 4.6808

500 (249.8242, 252.8998) 3.0756

𝜹n = 0.2

n 95% CI Width

400 (198.4818, 203.1122) 4.6304

450 (224.1968, 227.2532) 3.0564

500 (249.5226, 251.7134) 2.1908

T A B L E 3 95% confidence intervals (CIs) for the true change-points for different sample sizes for
different values of 𝛿n where the true change-points are at 0.4nth and 0.6nth time-points, and true
𝜷2 = (0.5, 3.5,−0.1, 0.1, 0.05)

𝜹n = 0.1

n 95% CI for first change-point Width 95% CI for second change-point Width

400 (158.7577, 161.6283) 2.8706 (235.0461, 245.1539) 10.1078

450 (178.9962, 181.0778) 2.0816 (265.5051, 274.5129) 9.0078

500 (199.3109, 200.7131) 1.4022 (296.0952, 303.7808) 7.6856

𝜹n = 0.2

n 95% CI for first change-point Width 95% CI for second change-point Width

400 (159.1228, 160.9412) 1.8184 (236.4025, 243.1755) 6.7730

450 (179.4911, 180.5349) 1.0438 (266.7304, 272.4936) 5.7632

500 (199.9124, 200.0876) 0.1752 (297.2184, 301.8216) 4.6032

used in the data-generating process are 𝜷2 = (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3) = (0.5, 3.5,−0.1, 0.1, 0.05) and
(0.7, 4.5,−0.08, 0.09, 0.04). For each set of the regression parameters and the tuning parameter
𝛿n, we simulate the data using model (1) with 𝜆t given in Equation (3). The estimation method
of the change-point is discussed in Section 3.4. Here for the data-generating method of two
change-points,n, set of all covariates up to time-point n, consists of both the smooth time-varying
components and the simple time-varying components up to time-point n as described in
Section 7.1, where n is the sample size of the simulated data set. The process is repeated for 1000
times and the 95% CIs are reported in Tables 3 and 4. From the tables, we can see that as the
sample sizes increase the widths of the CIs decrease.
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T A B L E 4 95% confidence intervals (CIs) for the true change-points for different sample sizes for
different values of 𝛿n where the true change-points are at 0.4nth and 0.6nth time-points, and true
𝜷2 = (0.7, 4.5,−0.08, 0.09, 0.04)

𝜹n = 0.1

n 95% CI for first change-point Width 95% CI for second change-point Width

400 (158.5181, 162.2079) 3.6898 (233.8636, 244.1944) 10.3308

450 (178.6895, 181.8585) 3.1690 (264.5409, 273.4491) 8.9082

500 (198.8991, 201.3409) 2.4418 (294.9574, 302.7986) 7.8412

𝜹n = 0.2

n 95% CI for first change-point Width 95% CI for second change-point Width

400 (158.8499, 161.4501) 2.6002 (235.8058, 242.6082) 6.8024

450 (179.0436, 181.0664) 2.0228 (266.2779, 272.0281) 5.7502

500 (199.3532, 200.7068) 1.3536 (296.5623, 301.5857) 5.0234

7.3 Results on estimation of model parameters

Here we perform a simulation study to investigate the consistency of the estimation
method used for the proposed model. In order to perform this simulation study, we sim-
ulate data from the proposed model with (1) one change-point (given in Equation (2)),
and (2) two change-points (given in Equation (3)). Three sets of regression parameters
are considered for each of the above two data-generating cases. Those values are men-
tioned in the subsequent sections. Three different sample sizes (n) of 100, 200, and 500
are explored. Throughout the whole simulation study, we consider three different val-
ues of 𝛿n as 0.1, 0.5, and 1. All the simulations results are based on 1000 Monte Carlo
replications.

7.3.1 Case 1: Analysis of one change-point

For one change-point simulation study, we assume the value of the change-point tch to be
0.4n where n is the sample size of the data. Three sets of regression parameters used in the
data-generating process are 𝜷1 = (𝛼, 𝛽0, 𝛽1, 𝛽2) = (0.5, 0.1,−0.2, 0.02), (0.6,−0.2,−0.04, 0.02), and
(0.8,−0.1,−0.02, 0.01). For each set of the regression parameters and the tuning parameter 𝛿n, we
simulate the data using model (1) with 𝜆t given in Equation (2). Then we estimate the regres-
sion parameters using CLS estimation method. Here for the data-generating method of one
change-point, n, set of all covariates up to time-point n, consists of both the smooth time-varying
components and the simple time-varying components up to time-point n as described in
Section 7.1, where n is the sample size of the simulated data set. The process is repeated for 1000
times and we report the mean estimates and mean squared errors (MSEs) of the regression param-
eters in Tables 5–7. From Tables 5 to 7, we can see that as the sample size increases MSE of the
estimated regression parameters decreases. This empirically establishes the consistency of the
CLS estimation.
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T A B L E 5 Mean estimates of the regression parameters 𝜷1 with their respective mean
squared errors (MSEs) for different sample sizes and different values of 𝛿n where the true
𝜷1 = (0.5, 0.1,−0.2, 0.02)

𝜹n = 0.1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE)

100 0.3840 (0.0317) 0.1896 (0.1905) −0.2264 (0.0245) 0.0207 (0.0002)

200 0.4198 (0.0188) 0.1862 (0.0853) −0.2024 (0.0016) 0.0205 (0.0000)

500 0.4503 (0.0089) 0.1522 (0.0284) −0.1985 (0.0002) 0.0202 (0.0000)

𝜹n = 0.5

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE)

100 0.4007 (0.0290) 0.1596 (1.7079) −0.3031 (0.2222) 0.0220 (0.0011)

200 0.4357 (0.0149) 0.1782 (0.0926) −0.2333 (0.0302) 0.0203 (0.0000)

500 0.4595 (0.0076) 0.1536 (0.0333) −0.1982 (0.0004) 0.0201 (0.0000)

𝜹n = 1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE)

100 0.4015 (0.0290) 0.2021 (0.1847) −0.3268 (0.0006) 0.0211 (0.0003)

200 0.4383 (0.0145) 0.1802 (0.0838) −0.2412 (0.0006) 0.0205 (0.0001)

500 0.4602 (0.0071) 0.1466 (0.0311) −0.1979 (0.0001) 0.0201 (0.0000)

T A B L E 6 Mean estimates of the regression parameters 𝜷1 with their respective mean
squared errors (MSEs) for different sample sizes and different values of 𝛿n where the true
𝜷1 = (0.6,−0.2,−0.04, 0.02)

𝜹n = 0.1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE)

100 0.5341 (0.0131) −0.1468 (0.2255) −0.0427 (0.0005) 0.0218 (0.0002)

200 0.5600 (0.0064) −0.1627 (0.0995) −0.0409 (0.0000) 0.0206 (0.0000)

500 0.5701 (0.0040) −0.1676 (0.0270) −0.0401 (0.0000) 0.0202 (0.0000)

𝜹n = 0.5

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE)

100 0.5308 (0.0136) −0.1345 (0.2083) −0.0425 (0.0004) 0.0218 (0.0002)

200 0.5597 (0.0060) −0.1507 (0.0871) −0.0405 (0.0000) 0.0204 (0.0000)

500 0.5778 (0.0036) −0.1884 (0.0257) −0.0402 (0.0000) 0.0202 (0.0000)

𝜹n = 1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2(MSE)

100 0.5329 (0.0126) −0.1276 (0.2027) −0.0414 (0.0005) 0.0211 (0.0002)

200 0.5583 (0.0065) −0.1511 (0.0857) −0.0409 (0.0000) 0.0205 (0.0000)

500 0.5752 (0.0037) −0.1776 (0.0240) −0.0401 (0.0000) 0.0201 (0.0000)
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T A B L E 7 Mean estimates of the regression parameters 𝜷1 with their respective mean
squared errors (MSEs) for different sample sizes and different values of 𝛿n where the true
𝜷1 = (0.8,−0.1,−0.02, 0.01)

𝜹n = 0.1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE)

100 0.7190 (0.0126) −0.0579 (0.3042) −0.0262 (0.0026) 0.0134 (0.0004)

200 0.7586 (0.0045) −0.0924 (0.1265) −0.0204 (0.0002) 0.0105 (0.0001)

500 0.7765 (0.0018) −0.1037 (0.0622) −0.0200 (0.0000) 0.0100 (0.0000)

𝜹n = 0.5

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE)

100 0.7211 (0.0129) −0.0614 (0.3907) −0.0231 (0.0078) 0.0110 (0.0104)

200 0.7625 (0.0039) −0.1007 (0.1208) −0.0209 (0.0001) 0.0106 (0.0000)

500 0.7771 (0.0018) −0.1011 (0.0654) −0.0199 (0.0000) 0.0100 (0.0000)

𝜹n = 1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE)

100 0.7234 (0.0116) −0.0582 (0.2681) −0.0240 (0.0006) 0.0135 (0.0003)

200 0.7602 (0.0043) −0.0883 (0.1321) −0.0207 (0.0006) 0.0103 (0.0001)

500 0.7769 (0.0020) −0.1058 (0.0663) −0.0199 (0.0001) 0.0098 (0.0000)

7.3.2 Case 2: Analysis of two change-points

For two change-point simulation study, the change-points tch1 and tch2 are assumed to be 0.4n and
0.6n, respectively. Three sets of values of the regression parameters used in the data-generating
process are 𝜷2 = (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3) = (0.5, 0.1,−0.05, 0.04, 0.02), (0.6,−0.2,−0.04, 0.03, 0.02), and
(0.8,−0.3,−0.02, 0.02, 0.01). For each set of the regression parameters and the tuning parame-
ter 𝛿n, we simulate the data using model (1) with 𝜆t given in Equation (3). Then we estimate
the regression parameters using CLS estimation method for a given simulated data. Here for the
data-generating method of two change-points, n, set of all covariates up to time-point n, con-
sists of both the smooth time-varying components and the simple time-varying components up to
time-point n as described in Section 7.1, where n is the sample size of the simulated data set. The
process is repeated for 1000 times and the combined mean estimates and MSEs of the regression
parameters are reported in Tables 8–10. We can see as the sample size increases MSE of the esti-
mated regression parameters decreases. This establishes the consistency of the CLS estimation
empirically.

7.4 Results on forecasting performance

Another simulation study is done to study the h-step ahead forecasting performances of the pro-
posed process for varying h, compared with the comparison method mentioned in Equation (11).
For comparison, we consider the measure of forecasting criteria, namely PRMSE(h), defined
in Equation (10). In order to perform this simulation study, we simulate data from the pro-
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T A B L E 8 Mean estimates of the regression parameters 𝜷2 with their respective mean squared errors
(MSEs) for different sample sizes and different values of 𝛿n where the true 𝜷2 = (0.5, 0.1,−0.05, 0.04, 0.02)

𝜹n = 0.1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.4294 (0.0140) 0.1483 (0.1438) −0.0531 (0.0008) 0.0415 (0.0007) 0.0218 (0.0002)

200 0.4522 (0.0072) 0.1455 (0.0627) −0.0509 (0.0001) 0.0405 (0.0001) 0.0205 (0.0000)

500 0.4642 (0.0037) 0.1249 (0.0210) −0.0502 (0.0000) 0.0400 (0.0000) 0.0202 (0.0000)

𝜹n = 0.5

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.4222 (0.0155) 0.1727 (0.1312) −0.0529 (0.0007) 0.0414 (0.0007) 0.0215 (0.0001)

200 0.4549 (0.0069) 0.1584 (0.0559) −0.0502 (0.0001) 0.0398 (0.0001) 0.0202 (0.0000)

500 0.4572 (0.0042) 0.1512 (0.0243) −0.0502 (0.0000) 0.0400 (0.0000) 0.0201 (0.0000)

𝜹n = 1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.4231 (0.0154) 0.1713 (0.1180) −0.0512 (0.0007) 0.0394 (0.0007) 0.0212 (0.0001)

200 0.4549 (0.0069) 0.1284 (0.0634) −0.0510 (0.0001) 0.0404 (0.0001) 0.0207 (0.0000)

500 0.4563 (0.0042) 0.1482 (0.0234) −0.0502 (0.0000) 0.0400 (0.0000) 0.0202 (0.0000)

T A B L E 9 Mean estimates of the regression parameters 𝜷2 with their respective mean squared errors
(MSEs) for different sample sizes and different values of 𝛿n where the true 𝜷2 = (0.6,−0.2,−0.04, 0.03, 0.02)

𝜹n = 0.1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.5145 (0.0161) −0.1179 (0.2584) −0.0420 (0.0013) 0.0298 (0.0010) 0.0219 (0.0003)

200 0.5563 (0.0062) −0.1405 (0.0818) −0.0403 (0.0001) 0.0299 (0.0001) 0.0203 (0.0000)

500 0.5669 (0.0040) −0.1677 (0.0419) −0.0402 (0.0000) 0.0300 (0.0000) 0.0202 (0.0000)

𝜹n = 0.5

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.5212 (0.0151) −0.1173 (0.1854) −0.0427 (0.0010) 0.0310 (0.0009) 0.0217 (0.0002)

200 0.5547 (0.0058) −0.1381 (0.0738) −0.0405 (0.0001) 0.0302 (0.0001) 0.0204 (0.0000)

500 0.5576 (0.0045) −0.0985 (0.0462) −0.0399 (0.0000) 0.0299 (0.0000) 0.0200 (0.0000)

𝜹n = 1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.5163 (0.0150) −0.1113 (0.1854) −0.0410 (0.0010) 0.0288 (0.0009) 0.0216 (0.0003)

200 0.5575 (0.0057) −0.1376 (0.0738) −0.0406 (0.0001) 0.0304 (0.0001) 0.0203 (0.0000)

500 0.5594 (0.0042) −0.0948 (0.0462) −0.0398 (0.0000) 0.0299 (0.0000) 0.0199 (0.0000)
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T A B L E 10 Mean estimates of the regression parameters 𝜷2 with their respective mean squared errors
(MSEs) for different sample sizes and different values of 𝛿n where the true 𝜷2 = (0.8,−0.3,−0.02, 0.02, 0.01)

𝜹n = 0.1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.6923 (0.0183) −0.1259 (0.4098) −0.0265 (0.0019) 0.0200 (0.0021) 0.0150 (0.0004)

200 0.7489 (0.0053) −0.1638 (0.1152) −0.0206 (0.0001) 0.0195 (0.0001) 0.0108 (0.0000)

500 0.7786 (0.0015) −0.2734 (0.0235) −0.0204 (0.0000) 0.0201 (0.0000) 0.0103 (0.0000)

𝜹n = 0.5

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.6951 (0.0178) −0.0900 (0.2900) −0.0241 (0.0013) 0.0196 (0.0012) 0.0137 (0.0003)

200 0.7500 (0.0050) −0.1546 (0.1238) −0.0202 (0.0001) 0.0195 (0.0001) 0.0105 (0.0000)

500 0.7808 (0.0013) −0.2894 (0.0234) −0.0205 (0.0000) 0.0201 (0.0000) 0.0101 (0.0000)

𝜹n = 1

n 𝜶̂ (MSE) 𝜷0 (MSE) 𝜷1 (MSE) 𝜷2 (MSE) 𝜷3 (MSE)

100 0.7013 (0.0161) −0.1013 (0.3606) −0.0232 (0.0017) 0.0182 (0.0019) 0.0135 (0.0004)

200 0.7501 (0.0052) −0.1605 (0.1238) −0.0211 (0.0002) 0.0205 (0.0001) 0.0106 (0.0000)

500 0.7809 (0.0014) −0.2752 (0.0200) −0.0204 (0.0000) 0.0201 (0.0000) 0.0103 (0.0000)

posed model with (1) one change-point (given in Equation (2)) and (2) two change-points (given
in Equation (3)). Two sets of regression parameters are considered for each of the above two
data-generating cases. Throughout the whole simulation study, we consider two different values
of 𝛿n as 0.1 and 0.2. Each time we generate a total sample of size 100 of which a training set of size
85 is used to fit the two models considered for comparison and a test set of size 15 is considered
to find PRMSE(h) for h = 1, 2, 3. This procedure is repeated for 100 times.

7.4.1 Case 1: Analysis of one change-point

For one change-point simulation study, we assume the value of the change-point tch to be
0.3n where n is the sample size of the data. Two sets of regression parameters used in the
data-generating process are 𝜷1 = (𝛼, 𝛽0, 𝛽1, 𝛽2) = (0.3,−0.8,−0.12, 0.09) and (0.2,−0.5,−0.15, 0.1).
For each set of the regression parameters and the tuning parameter 𝛿n, we simulate the data using
model (1) with 𝜆t given in Equation (2). Here for the data-generating method of one change-point,
n, set of all covariates up to time-point n, consists of both the smooth time-varying components
and the simple time-varying components up to time-point n as described in Section 7.1, where n is
the sample size of the simulated data set. The process is repeated for 100 times and we report the
h-step ahead forecasting performances for both the proposed model and the comparison model
for h = 1, 2, 3 in Tables 11 and 12 where we see the average PRMSE(h) of the proposed process is
relatively smaller than that of the comparison process. It is also observed from the tables that the
measure seems to have an increasing pattern in h, and this coincides with the theoretical result
mentioned in Section 5.2.
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T A B L E 11 Predicted root mean squared error (PRMSE(h)) values for
varying h for different 𝛿n where the data-generating process is our proposed
method of one change-point, and the true 𝜷1 = (0.3,−0.8,−0.12, 0.09)

𝜹n = 0.1

h Proposed model (PRMSE(h)) Comparison model (PRMSE(h))

1 1.2784 1.5581

2 1.3285 2.0101

3 1.3409 2.2905

𝜹n = 0.2

h Proposed model (PRMSE(h)) Comparison model (PRMSE(h))

1 1.2475 1.4388

2 1.3172 1.7750

3 1.3226 2.0305

T A B L E 12 Predicted root mean squared error (PRMSE(h)) values for
varying h for different 𝛿n where the data-generating process is our proposed
method of one change-point, and the true 𝜷1 = (0.2,−0.5,−0.15, 0.1)

𝜹n = 0.1

h Proposed model (PRMSE(h)) Comparison model (PRMSE(h))

1 0.9143 1.2301

2 0.9193 1.6439

3 0.9221 1.9372

𝜹n = 0.2

h Proposed model (PRMSE(h)) Comparison model (PRMSE(h))

1 0.8870 1.1384

2 0.8898 1.4843

3 0.8922 1.7281

7.4.2 Case 2: Analysis of two change-points

For the study of two change-points, the change-points tch1 and tch2 are assumed to be 0.2n and
0.6n, respectively. Two sets of regression parameters used in the data-generating process are 𝜷2 =
(𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3) = (0.3,−1.7,−0.3, 0.15, 0.2) and (0.4,−0.8,−0.25, 0.15, 0.15). For each set of the
regression parameters and the tuning parameter 𝛿n, we simulate the data using model (1) with
𝜆t given in Equation (3). Here for the data-generating method of two change-points, n, set of
all covariates up to time-point n, consists of both the smooth time-varying components and the
simple time-varying components up to time-point n as described in Section 7.1, where n is the
sample size of the simulated data set. The process is repeated for 100 times and we report the
h-step ahead forecasting performances for both the proposed model and the comparison model
for h = 1, 2, 3 in Tables 13 and 14 where we see the average PRMSE(h) of the proposed process is
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T A B L E 13 Predicted root mean squared error (PRMSE(h)) values for
varying h for different 𝛿n where the data-generating process is our proposed
method of two change-points, and the true 𝜷2 = (0.3,−1.7,−0.3, 0.15, 0.2)

𝜹n = 0.1

h Proposed model (PRMSE(h)) Comparison model (PRMSE(h))

1 1.1941 1.2209

2 1.2836 1.3087

3 1.3084 1.3088

𝜹n = 0.2

h Proposed model (PRMSE(h)) Comparison model (PRMSE(h))

1 1.1764 1.2360

2 1.2545 1.3146

3 1.2972 1.3215

T A B L E 14 Predicted root mean squared error (PRMSE(h)) values for
varying h for different 𝛿n where the data-generating process is our proposed
method of two change-points, and the true 𝜷2 = (0.4,−0.8,−0.25, 0.15, 0.15)

𝜹n = 0.1

h Proposed model (PRMSE(h)) Comparison model (PRMSE(h))

1 1.1532 1.1551

2 1.2791 1.2953

3 1.2970 1.3138

𝜹n = 0.2

h Proposed model (PRMSE(h)) Comparison model (PRMSE(h))

1 1.2303 1.2378

2 1.3271 1.3631

3 1.3880 1.4039

relatively smaller than that of the comparison process. It is also observed that the measure seems
to have an increasing pattern in h, and this coincides with the theoretical result mentioned in
Section 5.2.

8 DATA ANALYSIS

In this section, we consider two real data sets: (i) Italy COVID-19 data with total of 113 observa-
tions and (ii) Kerala COVID-19 data with total of 90 observations, to illustrate the usefulness of
our proposed model. We compare our proposed model with the comparison model mentioned
in Equation (11). For investigating the predictive performances of these two models, we take 100
observations of Italy data as the training set along with the remaining 13 observations as the test
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set, and for Kerala data, we consider 78 observations as the training set along with the test set of
remaining 12 observations.

8.1 COVID-19 data of Italy

8.1.1 Data fitting

In this section, we analyze the COVID-19 data of daily active cases of Italy (described in
Section 2.1) through our proposed method. We also fit the comparison model (described in
Equation (11)) to this data set. We consider 113 data points from February 15 to June 6.
Here n, the set of all time-varying covariates up to time-point n, contains both the smooth
time-varying covariates which have the change-point and the simple time-varying covariates up
to n time-points as described in Section 7.1. For this data set, n = 113. From the daily time series
plot, we see that there is only one change-point during that period and hence we fit the proposed
model with one change-point (given in Equation (2)).

For the proposed model with one change-point, the change-point tch for the COVID-19 data
of Italy is estimated using the method described in Section 3.4 and the estimated point is the 36th
time-point. This mostly implies that the number of cases increased up to March 21 (36 days from
February 15) and after that, the number of daily new cases started decreasing gradually. In order
to estimate the optimal 𝛿n, we consider a set of points in the interval [0.1, 10] with an increment
of 0.1. For each of the 𝛿n in the set, we fit our one change-point model to the data. For every fit, we
calculate the goodness-of-fit measure namely root mean squared error (RMSE). Then we consider
the minimum value of this measure to obtain the optimal 𝛿n. 𝛿n = 0.1 gives the minimum value
of RMSE which is 949.85. Hence the estimated value of 𝛿n is 0.1.

For this data set, the estimates of the regression parameters of our proposed model by CLS
method are 𝜷1cls = (𝛼̂cls, 𝛽0cls, 𝛽1cls, 𝛽2cls) = (0.9703, 3.5562, −0.1705, 0.1381), and that of the
comparison model are (𝛼∗

cls, 𝛾0cls, 𝛾1cls) = (0.9925, 7.5794, −0.0156). The RMSE corresponding
to our proposed model for the data set is 949.85, which is much lower compared with that for the
comparison model, which is 1940.95. In Figure 5, we provide the plot of RMSEs against each of
𝛿n’s in the set [0.1,10]. And in Figure 6, we give the plot of the original data along with the fitted
data through both the comparison model and the proposed model.

F I G U R E 5 𝛿n versus root mean squared error (RMSE) (for Italy)
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F I G U R E 6 Fitted data (active cases) by both the comparison model and the proposed model of one
change-point study (for Italy)

In Figure 6, if we observe closely, we can find that the fitted data through our proposed model
overlaps with major portions of the original data, but for the comparison method, we can dis-
tinguish between the original data and the fitted data in those major portions. The differences
between the fitted data through our model and that through the comparison model seem to be
small in Figure 6 since the magnitudes of observed data points are very high and hence the RMSEs
help us here to see the differences between our proposed process and the comparison process
easily rather than the plot. Overall, we can say the fit through our proposed model is good.

8.1.2 Forecasting

To study the forecasting performance, we partition the data into two sets. As described earlier,
the training set containing the first 100 observations is used to fit the models, and the test set
with the remaining 13 observations, is used for finding the forecasting measure PRMSE for both
models. For this setup, the estimates of the regression parameters of our proposed model by
CLS method are𝜷1cls = (𝛼̂cls, 𝛽0cls, 𝛽1cls, 𝛽2cls) = (0.9700, 3.6842,−0.1638, 0.1342), and that of the
comparison model are (𝛼∗

cls, 𝛾0cls, 𝛾1cls) = (0.9930, 7.5369,−0.0123). For one-step ahead forecast-
ing (h = 1), PRMSEs for the proposed model and the comparison model are 1049.62 and 1903.99,
respectively. For two-step ahead forecasting (h = 2), PRMSEs for the proposed model and the
comparison model are 1994.67 and 3788.10, respectively. So for both the one-step and two-step
ahead forecasting results, our proposed model performs much better than the comparison model.

8.2 COVID-19 data of Kerala

8.2.1 Data fitting

Here we analyze the COVID-19 data of daily active cases of Kerala (see Section 2.2) through our
proposed method. We also fit the comparison model (described in Equation (11)) to this data
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F I G U R E 7 𝛿n versus root mean squared error (RMSE) (for Kerala)

set. In this data set of Kerala, we consider 90 data points from March 9 to June 6. Here n con-
sists of both the smooth time-varying covariates which have two change-points and the simple
time-varying covariates up to n time-points as described in Section 7.1. For this data set, n = 90.
From the daily time series plot, we notice that there are two change-points during that period and
hence we fit the proposed model with two change-points (given in Equation (3)).

For the proposed model with two change-points, the change-points tch1 and tch2 are estimated
using the method described in Section 3.4 and the estimated change-points are 19th and 54th
time-points. This mostly implicates that the number of cases increased up to March 27 (19 days
from March 9), then the number of daily new cases started decreasing gradually, but after May
1 (54 days from March 9) the cases again began to rise. In order to estimate the optimal 𝛿n for
this data, we follow the same process as mentioned for the COVID-19 data of Italy. We find that
𝛿n = 0.2 gives the minimum value of RMSE which is 12.88. Hence the estimated value of 𝛿n is 0.2.

For this data set, the estimates of the regression parameters of our proposed model by CLS
method are 𝜷2cls = (𝛼̂cls, 𝛽0cls, 𝛽1cls, 𝛽2cls, 𝛽3cls) = (0.8700, −0.1156, −0.2352, 0.1269, 0.1956),
and that of the comparison model are (𝛼∗

cls, 𝛾0cls, 𝛾1cls) = (0.9921, −2.8129, −0.0811). The
RMSE corresponding to our proposed model for the data set is 12.88, which is much lower com-
pared with that for the comparison model, which is 15.10. In Figure 7, we provide the plot of
RMSEs against each of 𝛿n’s in the set [0.1, 10]. And in Figure 8, we give the plot of the original
data along with the fitted data through both the comparison model and the proposed model.

If we study Figure 8 closely, we see that the fitted data through our proposed model overlaps
with major portions of the original data, whereas we can distinguish between the original data
and the fitted data by the comparison model in those major portions. Here also the RMSEs help
us to see the differences between the proposed method and the comparison method easily. So
overall, we can say that the fit through our proposed model is good.

8.2.2 Forecasting

To study the forecasting part, we partition the data into two sets. As described earlier, the train-
ing set, containing the first 78 observations, is used to fit the models, and the test set with the
remaining 12 observations, is used for finding the forecasting measure PRMSE for both models.
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F I G U R E 8 Fitted data (active cases) by both the comparison model and the proposed model of two
change-point study (for Kerala)

For this setup, the estimates of the regression parameters of our proposed model by CLS method
are 𝜷2cls = (𝛼̂cls, 𝛽0cls, 𝛽1cls, 𝛽2cls, 𝛽3cls) = (0.9021,−0.5960,−0.2897, 0.2164, 0.2171), and the esti-
mates for the comparison model are (𝛼∗

cls, 𝛾0cls, 𝛾1cls) = (0.9947,−9.7129, 0.1759). For one-step
ahead forecasting (h = 1), PRMSEs for the proposed model and the comparison model are 154.06
and 275.80, respectively. For two-step ahead forecasting (h = 2), PRMSEs for the proposed model
and the comparison model are 186.99 and 348.68, respectively. So for both one-step and two-step
ahead forecasting studies, our proposed model performs much better than the comparison model.

9 CONCLUDING REMARKS

PINAR(1) process (introduced by McKenzie, 1985 and Al-Osh & Alzaid 1987) has received sig-
nificant attention owing to its simplicity and is used widely in the field of count time series data.
But this process is unable to model the count time series data like the COVID-19 data containing
change-points and time-varying covariates. In this article, we have developed a new PINAR(1)
model based on binomial thinning operator to handle the problem of change-point analysis
through time-varying covariates. The development of our proposed model is inspired by Chan and
Tong (1986); Hansen (2000), and Fong et al. (2017) who mainly worked on continuous data. We
have used the concept of Smooth maximum (n.d.) in the proposed model to develop the smooth-
ing change-point function which enables the model to capture the changing curvatures in the
data. The key feature of our proposed model is its ability to accommodate both change-points and
time-varying covariates. As described earlier, we can see these features in the COVID-19 data sets
from which we have obtained the idea to develop our proposed model for both the studies of one
change-point and two change-points. We have studied the distributional forms of our proposed
model along with the h-step ahead forecasting distribution. Because of the difficulty in estimating
the regression parameters through the maximum likelihood method, we have employed the CLS
estimation method. We have performed an extensive simulation study to examine the CIs for true
change-points for varying sample sizes and seen that as sample sizes increase widths of the CIs
decrease. Regarding the estimation of parameters, the simulation results have shown consistency
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of the CLS estimation method. From the data applications, we can see that our proposed model
has led to much better performance over the comparison model with respect to standard statisti-
cal measure like RMSE. Our proposed model has also given a much better performance than the
comparison model in the forecasting area with respect to the accuracy measure PRMSE in both
the simulation study and the data analysis part. We can further extend our proposed model for
more than two change-points in the same way as the model for one change-point analysis has
been extended to that for two change-point analysis. Therefore we hope that our proposed model
could be a viable choice for modeling these kinds of count time series data sets.
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APPENDIX A. PROOF OF THEOREM 1

We have

Yn = 𝛼◦Yn−1 + 𝜖n =
Yn−1∑
i=1

N1i + 𝜖n,

where {N1i} is a sequence of iid Bernoulli(𝛼) random variables, independent of Yn−1, and we know
that given n, 𝛼◦Yn−1, and 𝜀n are independent. So we can write the PGF of Yn|n as

ΦYn|n(s) = E
[

s
(∑Yn−1

i=1 N1i+𝜖n

)||||n

]
= EYn−1|n E

[
s
(∑Yn−1

i=1 N1i

)||||Yn−1,n

]
Φ𝜀n|n(s)

= EYn−1|n(1 − 𝛼 + 𝛼s)Yn−1 Φ𝜀n|n(s)
= ΦYn−1|n(1 − 𝛼 + 𝛼s) Φ𝜀n|n(s).

So we have the recursive formula

ΦYn|n(s) = ΦYn−1|n(1 − 𝛼 + 𝛼s) Φ𝜀n|n(s). (A1)

Putting n = 2 in Equation (A1), we have

ΦY2|2(s) = ΦY1|2(1 − 𝛼 + 𝛼s) Φ𝜀2|2(s)
= exp[−𝜆1(1 − (1 − 𝛼 + 𝛼s)) − 𝜆2(1 − s)] [Since Y1|2 ∼ Poisson(𝜆1)]
= exp[−𝜆1𝛼(1 − s) − 𝜆2(1 − s)]
= exp[−(𝛼𝜆1 + 𝜆2)(1 − s)].

Therefore

Y2|2 ∼ Poisson(𝛼𝜆1 + 𝜆2).
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Now putting n = 3 in Equation (A1), we have

ΦY3|3(s) = ΦY2|3(1 − 𝛼 + 𝛼s) Φ𝜀3|3(s)
= exp[−(𝛼𝜆1 + 𝜆2)(1 − (1 − 𝛼 + 𝛼s)) − 𝜆3(1 − s)]
= exp[−(𝛼2𝜆1 + 𝛼𝜆2)(1 − s) − 𝜆3(1 − s)]
= exp[−(𝛼2𝜆1 + 𝛼𝜆2 + 𝜆3)(1 − s)].

Therefore

Y3|3 ∼ Poisson(𝛼2𝜆1 + 𝛼𝜆2 + 𝜆3).

Now for n = (k − 1), we assume that

Yk−1|k−1 ∼ Poisson
(
𝛼k−2𝜆1 + 𝛼k−3𝜆2 + … + 𝜆k−1

)
.

For n = k,

ΦYk|k (s) = ΦYk−1|k (1 − 𝛼 + 𝛼s) Φ𝜀k|k (s)
= exp[−

(
𝛼k−2𝜆1 + 𝛼k−3𝜆2 + … + 𝜆k−1

)
(1 − (1 − 𝛼 + 𝛼s)) − 𝜆k(1 − s)]

= exp[−
(
𝛼k−1𝜆1 + 𝛼k−2𝜆2 + … + 𝛼𝜆k−1

)
(1 − s) − 𝜆k(1 − s)]

= exp[−
(
𝛼k−1𝜆1 + 𝛼k−2𝜆2 + … + 𝜆k

)
(1 − s)].

So,

Yk|k ∼ Poisson
(
𝛼k−1𝜆1 + 𝛼k−2𝜆2 + … + 𝜆k

)
.

This completes the proof.

APPENDIX B. PROOF OF THEOREM 2

The ACVF is given by

𝛾y(h) = Cov(Yt,Yt+h|t+h) = E(Yt Yt+h|t+h) − E(Yt|t+h)E(Yt+h|t+h)
= E(Yt E(Yt+h|Yt,t+h)|t+h) − E(Yt|t+h)E(Yt+h|t+h)

= E

[
Yt

(
𝛼hYt +

h∑
i=1

𝛼h−i𝜆t+i

)||||t+h

]
− E(Yt|t+h)E(Yt+h|t+h)

= 𝛼hE
(

Y 2
t |t+h

)
− E(Yt|t+h)[

𝛼t+h−1𝜆1 + … + 𝜆t+h − 𝛼h−1𝜆t+1 − … − 𝜆t+h
]

= 𝛼h [V(Yt|t+h) + E2(Yt|t+h)
]
− E(Yt|t+h)

(
𝛼t+h−1𝜆1 + … + 𝛼h𝜆t

)
= 𝛼h [(𝛼t−1𝜆1 + … + 𝜆t)(1 + 𝛼t−1𝜆1 + … + 𝜆t)

]
− (𝛼t−1𝜆1 + … + 𝜆t)

(
𝛼t+h−1𝜆1 + … + 𝛼h𝜆t

)
= 𝛼h (𝛼t−1𝜆1 + 𝛼t−2𝜆2 + … + 𝜆t

)
.

This completes the proof.
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APPENDIX C. PROOF OF THEOREM 3

The conditional PGF is given by

ΦYn+h|Yn,n+h (s) = E
(

s𝛼h ◦Yn+
∑h

i=1𝛼
h−i ◦𝜀n+i |Yn,n+h

)
= E

(
s𝛼h ◦Yn |Yn,n+h

) h∏
i=1

E
(

s𝛼h−i ◦𝜀n+i |n+h

)
.

Since 𝛼h◦Yn|Yn,n+h ∼ Bin
(

Yn, 𝛼
h), we can write E

(
s𝛼h ◦Yn |Yn,n+h

)
=
(
1 − 𝛼h + 𝛼hs

)Yn .
Now,

h∏
i=1

E
(

s𝛼h−i ◦𝜀n+i |n+h

)
=

h∏
i=1

E𝜀n+i|n+h E
(

s𝛼h−i ◦𝜀n+i |𝜀n+i,n+h

)
=

h∏
i=1

E𝜀n+i|n+h

(
1 − 𝛼h−i + 𝛼h−is

)𝜀n+i

=
h∏

i=1
exp

[
−𝜆n+i (1 − (1 − 𝛼h−i + 𝛼h−is))

]
=

h∏
i=1

exp
[
−𝜆n+i 𝛼

h−i(1 − s)
]

= exp

[
−

h∑
i=1

𝜆n+i 𝛼
h−i(1 − s)

]
.

This completes the proof.

APPENDIX D. PROOF OF THEOREM 4

The h-step ahead forecasting distribution is given by

ph(j1|j2) = P

(
𝛼h◦Yn +

h∑
k=1

𝛼h−k◦𝜀n+k = j1|Yn = j2,n+h

)

=
min(j1,j2)∑

q=0
P
(
𝛼h◦Yn = q|Yn = j2,n+h

)
P

( h∑
k=1

𝛼h−k◦𝜀n+k = j1 − q|n+h

)

=
min(j1,j2)∑

q=0

(
j2
q

)
𝛼hq(1 − 𝛼h)j2−q exp

[
−

h∑
k=1

𝛼h−k𝜆n+k

]( h∑
k=1

𝛼h−k𝜆n+k

)j1−q

[(j1 − q)!]−1

I[(j1−q)=(0,1,…)]

=
min(j1,j2)∑

q=0

(
j2
q

)(
𝛼h)q(1 − 𝛼h)j2−q exp(−𝜆(h))𝜆(h)j1−q[(j1 − q)!]−1I[(j1−q)=(0,1,…)].

This completes the proof.


