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gracilis tendon: a kinematic in‑vitro study
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Abstract 

Purpose:  The anterolateral ligament (ALL) has been defined as a key stabilizer of internal tibial rotation at 35° or 
more of knee flexion, with a minimal primary or secondary stabilizing role in the AP direction. This study aimed to 
demonstrate that anatomical reconstruction of the ALL confers rotational stability equal to that of the uninjured knee. 
Hypothesis: anteroposterior (AP) and rotatory laxity will significantly vary after ALL tenotomy and ALL reconstruction 
with the author’s previously described technique.

Methods:  After ultrasound (US) ALL identification, different kinematic measurements were performed with an 
image-less Computer-Assisted Navigation System with dedicated software for Laxity Analysis in 5 knee specimens. 
Anteroposterior (AP) translations and varus/valgus (VV) and Internal-External (IE) rotations were evaluated by two 
trained orthopedic surgeons before ALL section, after ALL section, and after ALL anatomical reconstruction with dou-
bled ipsilateral autologous gracilis tendon.

Results:  ALL resection significantly increased laxity in IE rotations with knee 90° flexed (IE90) and AP translation with 
tibia internally rotated and the knee 30° flexed (APlat) (p < 0.05). ALL reconstruction significantly reduced laxity in IE90 
and APlat (p < 0.05) and reduced VV rotations at 30° of flexion (VV30) (p < 0.05).

There were no statistically significant elongation differences between native ALL and reconstructed ALL (graft) during 
laxity tests. The inter-operator repeatability of the tests was excellent for each measurement.

Conclusions:  ALL acted as an important internal tibial rotation restrain at 90° and a significant (secondary) AP sta-
bilizer at 30° of knee flexion. The presented ALL reconstruction technique significantly restored the increase of knee 
laxity produced by the ALL section.

Scientific level:  Case-Controlled Laboratory Study, Level III.
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Introduction
The anterior lateral complex (ALC) of the knee consists 
of the anterolateral ligament (ALL), the Kaplan fibers, 
and the iliotibial band [12, 27].

Untreated anterolateral injuries, in the presence of an 
Anterior Cruciate Ligament (ACL) deficiency, result in 
abnormal knee laxity when only treated with intra-articu-
lar ACL reconstruction [22, 35]. In addition, recent stud-
ies have pointed out that ALL reconstruction associated 
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with ACL reconstruction improves knee stability and 
patients satisfaction [3, 21].

As a matter of fact, the ALL has been reported to be a 
key stabilizer of internal tibial rotation at 35°or more of 
knee flexion, with a minimal primary or secondary sta-
bilizing role in the AP direction [20, 30], showing Mag-
netic Resonance Imaging (MRI) abnormalities from 40% 
to 88% in ACL-injured knee according to Helito et  al. 
[19] and Ferretti et al. [14], respectively. Due to its impor-
tance in knee rotatory stabilization, ALL reconstruction 
became a crucial topic and source of controversy.

Many authors have recently debated the best imaging 
method to visualize the ALL and its potential lesions [4, 
15, 25, 33].

Several studies have evaluated the ability of MRI to 
identify the ALL in the injured knee. In particular, Claes 
et  al. reported that MRI could identify the ALL in only 
76% of selected patients [10]. In comparison, Helito et al. 
reported a percentage of only 71.7% identification of the 
ALL with a 1.5 T MRI unit [18].

In recent years, assessment of ALL by ultrasound has 
been gaining popularity with excellent results [4, 5, 7, 25].

In particular, in recent articles published in the litera-
ture Cavaignac et al. [6, 7], and Cianca et al. [9] reported 
that via ultrasonography it is possible to identify ALL 
with absolute accuracy in 100% of cases.

Moreover, Oshima et  al. [29] reported that almost all 
the ALL segments could be identified through ultra-
sonography, making it a practical examination for diag-
nosing ALL injuries.

This study aimed to study the effect of anatomical 
reconstruction of the ALL to confer rotational stability 
equal to that of the uninjured knee.

All the ALL reconstructions were performed using an 
innovative, minimally invasive anatomic technique using 
the ipsilateral autologous gracilis tendon, previously 
described by the Authors [39].

We hypothesized that ALL reconstruction with the 
described  technique will significantly reduce the anter-
oposterior and rotatory knee laxity.

Materials and methods
Study design
Five fresh-frozen knee specimens were provided for 
this study by the ICLO Teaching and Research Center 
(Arezzo, Italy), and all the specimens were thawed at 
room temperature for 24 hours before preparation.

The study was conducted following approval from the 
Ethics Committee at our institution.

Each knee underwent an initial ultrasound (US) analy-
sis performed by the same expert trained musculoskeletal 
radiologist to identify the ALL, followed by kinematic 
analysis of the knee.

First, the knee laxity was evaluated using an image-less 
Computer-Assisted Navigation System. Once the ana-
tomical dissection was carried out, the kinematic analy-
sis was performed after the ALL section and finally with 
anatomically reconstructed ALL.

Ultrasound ALL identification
Before the anatomical dissection, an ultrasound (US) 
examination was performed on each knee by a muscu-
loskeletal radiologist with more than 15 years of profes-
sional background (M.Z.). Sonography examinations 
were performed using an HM70 machine (Samsung 
Healthcare, Seoul, Republic of Korea) using a linear 
probe 3-16Mhz. All US examinations were performed to 
detect the anatomical landmarks (Gerdy’s tubercle, Lat-
eral collateral ligament (LCL), iliotibial band, popliteus 
tendon, and ALL) with the knee flexed at 10° and 10° of 
internal rotation to give some tension to the ALL. Thus, 
the ALL was first assessed distally by identifying Gerdy’s 
tubercle and looking for a ligamentous structure begin-
ning posterior to the tubercle with directionality point-
ing toward the footprint of the LCL on the lateral femoral 
condyle, as described in literature [41].

Once the probe was positioned to obtain a correct long 
axis scan of the ALL, the radiologist drew its structure 
with a permanent marker on the skin of the knee, follow-
ing the ligament course.

After performing a percutaneous dissection of the 
ALL at the level of the middle third using a lance-shaped 
scalpel, US was repeated to ensure that the ligament had 
been dissected to the total thickness and that the collat-
eral ligament and iliotibial band had not been injured.

Computer‑assisted laxity analysis and anatomic 
reconstruction
After ultrasound (US) ALL identification, different kin-
ematic measurements (see below) were evaluated by two 
trained orthopedic surgeons (GMMM, GFT) with an 
image-less Computer-Assisted Navigation System with 
dedicated software for Laxity Analysis (CAS-LA). A navi-
gation system (BLU-IGS, Orthokey, Lewes, Delaware, 
DE, USA) equipped with dedicated software (KLEE, 
Orthokey, Florence, Italy), commonly used for intra-
operative kinematic analysis, was here adopted. This 
methodology and software have been previously vali-
dated with reported accuracy lower than 1 mm\1° [4].

The data were processed offline using a MATLAB 
interface specifically developed (The Mathworks Inc., 
Natick, Massachusetts, MA, USA).

To quantify the ALL’s contribution to knee stabil-
ity, all these measurements were repeated firstly with 
intact limb, then after ultrasound detection and resec-
tion of the ALL ligament, and finally after anatomic ALL 
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reconstruction, using the previously described authors’ 
technique [39].

First, the gracilis tendon was harvested in the stand-
ard fashion and was prepared with non-absorbable 
stitches (FiberWire N.2) and doubled to a length of at 
least 80 mm. Therefore, the tendon was assembled on 
a TightRope RT (Arthrex, Naples, FL, USA), which will 
fix the neo-ligament into the femur. Second, the ana-
tomic landmarks for the attachment and insertion of 
the ALL were identified. The femoral lateral epicon-
dyle, the fibular proximal head, the Gerdy’s tubercle, 
the joint line, and the tibial insertion of the ALL were 
marked (Figs.  1 and 2). Thus, a Kirschner wire was 
inserted through a small cutaneous incision from the 
lateral to medial femoral side at the anatomic attach-
ment of the ALL located posterior and proximal to 
the lateral epicondyle. A 4 mm tunnel was drilled with 
a cannulated drill: Consequently, a half tunnel wide 
enough for the duplicated gracilis (usually 5 mm) and 
25 mm deep was produced at the femoral attachment. 
A half tunnel (20 mm long; 5 mm wide) was made at the 
tibial insertion of the ALL. Thereafter, the neo ligament 
was fixed at the tibia with a 6.25 × 15 mm Bio-tenode-
sis screw (Arthrex, Naples, FL, USA) and then passed 

under the fascia lata with a shuttle suture. At this point, 
the TightRope RT (Arthrex, Naples, FL, USA) was 
inserted into the femoral tunnel, fixed on the femoral 
medial cortex, and then tensioned at 30° of knee flexion 
(Fig. 3).

The joints were manually tested at maximum force, 
measuring knee laxity with CAS-LA during 6 different 
classic passive laxity tests, namely varus/valgus (VV) 
rotation at 0° and 30° of flexion, anterior-posterior 
(AP) translation at 30° and 90° of flexion and internal/
external (IE) rotation at 30° and 90° flexion. Moreover, 
AP translation of lateral compartment with the tibia 
internally rotated and the knee 30° flexed (APlat) was 
measured. The anterior-posterior displacement of the 
tibial plateau, distinguishing the lateral from the medial 
compartment, was evaluated during AP30, AP90, IE30, 
and IE90 tests. In addition, the whole tibial rotation of 
the tibia was calculated during VV0, VV30, IE30, and 
IE90. The anterior-posterior displacement of the tibial 
plateau, distinguishing the lateral from the medial com-
partment, was evaluated during the AP30, AP90, IE30, 
and IE90 tests. Full rotation of the tibia was assessed 
during the VV0, VV30, IE30, and IE90 tests.

Three cycles were recorded per position by each 
examiner.

The value given by the differences between native, 
dissected and reconstructed ALL test results was 
defined as a reduction of laxity.

Native ALL and reconstructed ALL (graft) elongation 
analysis was also performed.Fig. 1  Assembled gracilis tendon and anatomic ALL landmarks 

marked with two needles

Fig. 2  Anatomic ALL insertions assessed by ultrasonography
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Statistical analysis
A nonparametric test was used to compare the three 
experimental phases because of the limited sample size. 
The Kruskal-Wallis test was used to evaluate the mean 
test difference across the three phases.

All statistical analyses were performed using Analysit 
(Analyse-it Software Ltd., Leeds, UK) plug-in for 
Excel(Microsoft, Redmond, Washington, USA).

Power analysis was based on the repeatability of this 
methodology for manual testing at maximum force, 
as reported by Bignozzi et  al. [4], and with the aim to 
detect at least 2 mm and 2° of difference between test-
ing conditions. Which was considered the minimum 
difference that could lead to some clinical significance.

Results
Knee laxity analysis
ALL resection significantly increased laxity in IE90 and 
APlat (p < 0.05).

ALL reconstruction significantly reduced laxity in 
IE90 and APlat (p < 0.05) and reduced VV30 (p < 0.05).

Figure  4 shows the mean values of knee laxity meas-
ured during testing.

Native ALL and reconstructed ALL (graft) elongation 
analysis
ALL appears to have an extension to flexion elonga-
tion, with a length ranging from 33 mm (in extension) to 
40 mm (at 100° of flexion). There were no statistically sig-
nificant elongation differences between native ALL and 
reconstructed ALL (graft) during laxity tests. Mean val-
ues are shown in Fig. 5.

Repeatability analysis
The inter-operator repeatability of the tests was excellent 
for each measurement. However, differences were noted 
between the 2 operators, especially for the internal and 
external rotation tests. Nevertheless, we can affirm that 
variations between pre, post, and graft within the same 
subject were comparable. The values of measured laxities 
are shown in Fig. 6.

Discussion
The most important finding of the present study was that 
ALL acted as an essential internal tibial rotation restrain 
at 90° and as a significant (secondary) AP stabilizer at 30° 
of knee flexion.

The presented ALL reconstruction technique signifi-
cantly restored the increase of knee laxity produced by 
the ALL section.

ALL resection and reconstruction showed the most 
significant effects on internal rotation, modifying the 
internal rotation at 90° of knee flexion (IE90) and the AP 
translation of lateral compartment with the tibia inter-
nally rotated at 30° of flexion (APlat). These previous 
confirmed findings from studies performing investiga-
tions on knee biomechanics reporting that the ALL has 
a role in controlling rotational stability [1, 8, 11, 13, 25, 
30, 36]. Sonnery-Cottet et al. [36], and Parsons et al. [30] 
reported that the ALL has a significant role in control-
ling internal rotation with a deficient ACL. Moreover, 
Nitri et  al. [28] reported that in a combined ACL and 
ALL injury, the only way to restore rotatory stability was 
to reconstruct both structures and not just the isolated 
ACL.

However, not all studies in the literature are in line with 
those findings. Kittl et al. [24] reported only a minor con-
tribution of the ALL on internal rotation stability with a 
deficient ACL. In an anatomic and biomechanical study 
by Rahnemai-Azar et  al. [31], the anterolateral capsule 
lacked any structural or biomechanical properties of a 

Fig. 3  Minimally invasive ALL reconstruction with gracilis tendon. 
The graft is fixed at the tibial insertion with a Bio-tenodesis screw, 
successively passed under the fascia lata, and locked into the femoral 
tunnel with an adjustable cortical fixation device
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ligament, raising doubts on the existence of the ALL as a 
distinct structure (vs. solely a capsular thickening).

Moreover, ALL reconstruction was revealed to signifi-
cantly reduce VV rotations at 30° of flexion (VV30). This 
could be a result of the experimental in-vitro setup or 

could be due to the absence of quadriceps, hamstrings, 
and iliotibial band forces [17, 26].

Nonetheless, sectioning of the ALL resulted in a sta-
tistically significant increase in anterior translation, 
apart from internal rotation, consequently to an ACL 

Fig. 4  Histogram representing the mean values of laxity measured during test sessions. ALL resection significantly increased laxity in IE90 and APlat 
(* = p < .05). Nevertheless, ALL reconstruction significantly reduced laxity in IE90 and APlat (* = p < .05) and reduced VV30 (* = p < .05)

Fig. 5  ALL elongation test shows distance modification of the ALL ligament insertion points during the various experimental phases. ALL appears 
to have an extension to flexion elongation length ranging from 33 mm (in extension) to 40 mm (at 100° of flexion). There were no statistically 
significant elongation differences between native ALL and reconstructed ALL (graft) during laxity tests
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sectioning during an early phase pivot shift [37]. Simi-
lar findings were also published in a related study [32], 
clearly highlighting an increase in internal rotation, 
consequent to ALL sectioning, using a 6-degree-of-
freedom robot. In addition, a recent systematic review 
showed that lateral extra-articular tenodesis (LET) 
procedures restricted internal tibial rotation in biome-
chanical and clinical studies. The latter supports the 
anterolateral structures’ role in controlling the tibial 
internal rotation [34].

Regarding the High-resolution real-time ultrasono-
graphic examination, we also found that, in experienced 
hands, it is adequate to verify the integrity of the ALL.

Previous literature concerning anatomical research 
has been focusing on the appearance of the ALL [14, 
18, 38]: However, only a few studies were performed 
with US examination.

Capo et al. [5] performed an ultrasonographic evalu-
ation on 10 fresh-frozen cadaveric knees with a 14 MHz 
linear transducer: in this study, the ultrasonographic 
examination did not always correctly locate the origin 
and insertion of the ALL, with the latter often being 
difficultly isolated from the surrounding structures, 
even at dissection. The primary imaging difficulty was 
identifying and assessing the proximal portion of the 
ALL correctly; even though the distal part was reliably 
identified with the US on each cadaver in a similar loca-
tion, it could be effectively isolated during dissection.

Literature has reported that the ALL originates pos-
terior and proximal to the lateral epicondyle, with slight 
variation regarding the exact origin site, carrying a mean 
footprint width of 8.3 mm [15, 16, 23].

The ALL has a fan-like blending of fibers at its femo-
ral origin, without a distinct area of direct attachment to 
the femur [13]: Therefore, it is controversial whether the 
proximal origin of ALL is anterior to or posterior to the 
LCL footprint [11, 13].

In the present study, the origin of the ALL appeared 
to be posterior and proximal to the LCL insertion site 
and to the lateral epicondyle in all cadavers under US 
investigation, as previously demonstrated by the ALC 
consensus meeting [16]. However, a precise distinction 
concerning the two ligaments’ fiber has proved to be 
complicated. The ALL then runs from the region of the 
lateral femoral epicondyle anteroinferiorly towards the 
proximal tibia, obliquely across the knee, passing under 
the fascia lata and above the LCL, with a thickness of 
approximately 2 mm, and a mean width at the lateral joint 
line of 6.7 mm. Van derWatt et  al. [40] also report that, 
during its course, the ALL runs deep to the ITB until its 
insertion and may be connected with the periphery of the 
body of the lateral meniscus through its meniscofemoral 
and meniscotibial components. Coherently, the US inves-
tigation performed in this study confirmed this anatomi-
cal description in all examined ALLs. The distal insertion 
site of the ALL is at the anterolateral proximal aspect of 

Fig. 6  Comparative Test of laxity between the 2 surgeons. The inter-operator repeatability of the tests was excellent for each measurement. 
However, differences were noted between the 2 operators, especially for the internal and external rotation tests. Nevertheless, within the same 
subject, the variations between pre, post, and graft were comparable within the same subject
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the tibia, just distal to the lateral joint margin: It is placed 
at a point midway between the head of the fibula and the 
Gerdy’s tubercle, with a mean insertion footprint width 
of 11.3 mm [2]. Again, the present findings confirmed 
previous claims.

The present study should be considered in light of the 
current limitations.

First, the setup did not simulate weight-bearing 
activity, with muscle contraction in the physiologic 
direction, which has been suggested to enhance knee 
stability [33] because the forces of this experiment may 
be larger in-vivo.

Although the forces in this experiment would likely 
be exceeded in vivo, the analysis compared one condi-
tion (ALL lesion) to another (ALL section); therefore, 
the nature of the changes is unlikely to alter, although it 
is acknowledged that they may be larger in-vivo.

Second, the use of cadaveric knees with normal anat-
omy and a mean specimen mean age of 59 years. This 
limited the direct extrapolation of results to a popula-
tion of patients with ALL lesions who may be younger.

Nevertheless, this study takes into consideration the 
knee with only ALL injury and intact anterior cruciate 
ligament so that we were able to evaluate the contribu-
tion of ALL to knee stability and the effectiveness of our 
reconstruction technique in restoring the native stability.

Further studies should investigate outcomes using 
alternative grafts and fixation methods.

Conclusions
ALL acts as an important internal tibial rotation restrain 
at 90°of knee flexion and as an effective (secondary) 
AP stabilizer at 30° of knee flexion. The presented ALL 
reconstruction technique significantly restored the 
increase of knee laxity produced by the ALL section.
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