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Purpose: To propose a methodology for assessment of algorithms that correct distor-
tions due to motion, eddy‐currents, and echo planar imaging in diffusion weighted 
images (DWIs).
Methods: The proposed method evaluates correction performance by measuring varia-
bility across datasets of the same object acquired with images having distortions in differ-
ent directions, thereby overcoming the unavailability of ground‐truth, undistorted DWIs. 
A comprehensive diffusion MRI dataset, collected using a suitable experimental design, 
is made available to the scientific community, consisting of three DWI shells 
(Bmax = 5000 s/mm2), 30 gradient directions, a replicate set of antipodal gradient direc-
tions, four phase‐encoding directions, and three different head orientations. The proposed 
methodology was tested using the TORTOISE diffusion MRI processing pipeline.
Results: The median variability of the original distorted data was 123% higher for 
DWIs, 100–168% higher for tensor‐derived metrics and 28–111% higher for 
MAPMRI metrics, than in the corrected versions. EPI distortions induced substantial 
variability, nearly comparable to the contribution of eddy‐current distortions.
Conclusions: The dataset and the evaluation strategy proposed herein enable quanti-
tative comparison of different methods for correction of distortions due to motion, 
eddy‐currents, and other EPI distortions, and can be useful in benchmarking newly 
developed algorithms.

K E Y W O R D S
diffusion MRI, distortion correction, eddy‐currents, EPI

1 |  INTRODUCTION

In the past couple of decades, Diffusion Tensor Imaging 
(DTI)1 and high angular resolution diffusion imaging 

(HARDI)2–7 have been extensively used to investigate the ar-
chitectural, microstructural and compositional features of the 
human brain.8 It is well known that obtaining reproducible 
and accurate diffusion MRI results is challenging given that 
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diffusion weighted images (DWIs) are susceptible to artifacts, 
including image misregistration due to motion, that need to 
be corrected in preprocessing (See9 for a review). DWIs are 
typically acquired with echo‐planar imaging (EPI) and suffer 
from geometric distortions along the phase‐encoding direc-
tion caused by the low bandwidth‐per‐pixel.10 The most thor-
oughly analyzed EPI distortions in the field of diffusion MRI 
are those induced by eddy‐currents and cause misalignments 
among different DWI volumes.11 Eddy‐current‐induced dis-
tortions, which occur due to the rapid switching of diffusion 
gradients, are functions of the magnitude and direction of 
the applied diffusion gradients and mostly affect the DWIs, 
but not significantly the so‐called b = 0 s/mm2 images. It is 
widely accepted that, in addition to accounting for subject 
motion, these distortions must be corrected to perform a re-
liable analysis, and numerous methodologies have been pro-
posed to remedy these distortions. It is now recognized that 
eddy‐current‐distortion correction using affine transforma-
tions11,12 is inadequate,13,14 but methods that employ higher 
order deformation models14,15 are capable of achieving near‐
excellent correction performance.

Other EPI‐related distortions include those originating 
from static B0 field inhomogeneities due to magnetic suscep-
tibility variations within the object, imperfect shimming,10 
and concomitant fields.16 These distortions differ from 

eddy‐currents‐induced distortions, as they affect all DWIs, 
including the b = 0 s/mm2 images in the same manner in 
the absence of motion. Such distortions, which we will col-
lectively refer to as “EPI distortions,” have been shown to 
have a significant impact on the accuracy and reproducibil-
ity of tensor‐derived scalar maps17 and fiber tractography.18 
Correction of EPI distortions generally requires acquisition 
of additional data, and several methodologies to correct for  
these distortions, including field‐mapping22 elastic regis-
tration17,19,20 and reversed phase‐encoding (or blip‐up blip‐
down phase‐encoding),21–24 have been proposed.

Optimization of diffusion MRI processing pipelines is 
still an active area of research, with novel strategies for 
artifact removal, denoising, and distortion correction still 
being proposed. Evaluating the performances of these cor-
rection strategies is a challenging task for eddy‐currents 
and EPI distortions. One approach for validation is to use 
simulated data with known ground‐truth generated with 
MRI simulators such as POSSUM from the FSL pack-
age.25 However, with real acquisitions, ground truth im-
ages are rarely available. Therefore, a typical approach is 
to compare corrected EPI images to an undistorted struc-
tural image, such as a T1‐weighted or T2‐weighted image, 
with different quality measures such as outlines, similar-
ity metrics, or segmentation overlaps. Even though sev-
eral of these measures are quantitative, large variations in 
validation procedures complicate a direct and meaningful 
comparison of these techniques. Moreover, evaluations 
are often performed on images that are not available to 
other researchers. Data repositories containing sets of im-
ages suitable for these tasks would also be very valuable, 
but few exist. The repository most relevant to this work 
is the recently published MASSIVE database,26 which is 
intended to facilitate diffusion MRI signal modeling. Most 
other image repositories, such as the Human Connectome 
Project (HCP),27 are not designed to perform quality con-
trol or reproducibility analysis.

In this work, we propose an analysis method for quan-
titative validation of eddy‐currents and EPI distortion cor-
rection strategies and provide a new dMRI dataset that is 
specifically designed for the proposed methodology. The 
design of the dataset enables quantitative validation of dis-
tortion correction performance without the need for ground 
truth images.

In Table 1, we summarize important features of this com-
prehensive dataset and compare and contrast it to MASSIVE: 
These two datasets serve two different purposes. While 
MASSIVE has features ideal for signal modeling, such as 
dense q‐space sampling or Cartesian grid‐based sampling, 
the proposed dataset offers other features, such as the ac-
quisition of data with four phase‐encoding directions, which 
enables the assessment of EPI distortion correction quality. 
Additionally, it contains data with large differences in head 

T A B L E  1  Features a comprehensive dMRI dataset should have 
and a comparison between the proposed and the MASSIVE datasets

Features Proposed Dataset MASSIVE

High SNR ✓ ✓

High Resolution

Multiple spherical 
shells

✓ ✓

Dense q‐space 
distribution

✓

Cartesian q‐space 
sampling

✓

North & south 
hemisphere q‐space 
sampling

✓ ✓

Two phase‐encoding 
direction acquisition

✓ ✓

Four phase‐encoding 
direction acquisition

✓

Multiple head 
orientations

✓

Axial, sagittal coronal 
acquisitions

High quality T1W and 
T2W images

✓ ✓

Fat‐suppressed T1W or 
T2W images

✓



2776 |   OKAN IRFANOGLU et al.

position and orientation, which are absent in the MASSIVE 
data, to enable investigation of motion correction strategies 
and the secondary effects of motion on susceptibility.

2 |  METHODS

2.1 | Distortion correction quality 
assessment
Obtaining undistorted ground truth DWIs for assessing the 
performances of distortion correction algorithms would re-
quire acquiring multi‐shot non‐EPI spin‐echo images, which 
would be very time consuming and the resulting images 
would likely suffer from ghosting. The main motivation that 
led to the development of the proposed distortion correction 
assessment methodology was that ground‐truth images are 
rarely available for dMRI. Therefore, one needs to rely on 
the DWI data itself to derive measures of correction qual-
ity. The philosophy behind the proposed framework is that 
if two datasets are acquired in a noise‐free environment with 
identical diffusion experimental designs, but with different 
acquisition parameters that only affect distortions, the ac-
quired images would have identical contrast but differ only 
in distortions. Therefore, if a perfect distortion correction 
method existed, its application to these two datasets would 
produce identical images. An imperfect correction method, 
however, would not produce identical images and the differ-
ence between the two corrected images would be attributable 
to residual distortions. Therefore, variability metrics detect-
ing remaining differences between corrected images can be 
used for a quantitative evaluation of correction quality.

2.1.1 | Eddy‐currents distortions
In the absence of motion, and if diffusion effects of imaging gra-
dients are negligible, displacement fields due to eddy‐current  
distortions would be similar in magnitude but in opposite di-
rection when the diffusion gradients are played out with the 
same orientation but different polarities. To formalize, let i 
be the volume index, gi be the ith diffusion gradient, Ii be the 
corresponding distorted (raw) DWI, I′

i
 be the corresponding 

distortion‐free image, ϕi be the displacement field and   be 
the determinant of the Jacobian operator to account for signal 
compression and expansion due to these distortions. Then,

For the opposite gradient direction, −gi, disregarding the 
effects of imaging gradients, the diffusion contrast would 
be identical to gi but the displacements would be different 
as described in.15 In the remainder of this manuscript, IN (N 
standing for north) will refer to images acquired with diffu-
sion gradients with positive z components and IS (S for south) 

will refer to images corresponding to the antipodal direction 
with negative z components. In the absence of other artifacts, 
for the same phase‐encoding direction, IN and IS will have the 
same diffusion contrast but different distortions. Therefore, 
with a perfect eddy‐currents distortion correction method, 
the corrected images I′N

i
 and I′S

i
 would be identical.

For diffusion MRI acquisitions, it is uncommon to acquire 
images with diffusion gradients spanning the full diffusion 
sphere, especially with exact hemisphere replicates, as this 
design does not provide any additional q‐space sampling. 
However, if such a dataset existed, it would be possible to 
quantitatively assess the quality of the correction by comput-
ing a voxelwise map of the differences of the corresponding 
corrected images from the two hemispheres using, for exam-
ple, a Mean‐Squared‐Error (MSE) metric:

2.1.2 | Other EPI distortions
The displacements due to EPI distortions occur along the 
phase‐encoding direction: a dataset acquired with Anterior‐
Posterior (AP) phase‐encoding theoretically has distortions 
opposite to those acquired with Posterior‐Anterior (PA) di-
rection. Similarly, data acquired with Right‐Left (RL) and 
Left‐Right (LR) phase‐encoding have opposite distortions, 
which occur along the x‐axis for axial acquisitions. This con-
cept gave rise to a relatively new family of EPI distortion 
correction methods, referred in this manuscript as blip‐up 
blip‐down correction.21,22,24,28

For EPI distortion correction quality assessment, we 
build on principles we started developing in our previous 
works.17,24 Let APcorr, PAcorr, RLcorr and LRcorr be the images 
acquired with different phase‐encoding and corrected for EPI 
distortions with traditional techniques, such as field‐mapping 
or elastic image registration. A perfect distortion correction 
algorithm, with both geometric distortion correction and 
proper signal redistribution, would be able to produce mor-
phologically identical corrected images. Therefore, a measure 
of voxelwise variance computed from these four corrected 
datasets would be informative of the correction performance 
of an algorithm. These variance maps can be computed from 
the b = 0 s/mm2 images, DWIs, or tensor/HARDI‐derived 
scalar maps, such as the trace (TR), fractional anisotropy 
(FA), propagator anisotropy (PA), or non‐gaussianity (NG). 
Blip‐up blip‐down correction algorithms might combine 
data with the same phase‐encoding orientation, producing 
APPAcorr or RLLRcorr images. Therefore, to benchmark the 
quality of a blip‐up blip‐down correction, one needs to have 
data acquired with all four phase‐encoding directions, and 
compute MSE maps between APPAcorr and RLLRcorr images.

(1)I�
i
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x+ϕi(x)
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For algorithms performing simultaneous correction of 
distortions due to motion, eddy‐currents, and other EPI dis-
tortions or for a complete distortion correction check, the two 
proposed correction‐quality assessment approaches can be 
combined and performed on the final corrected data.

2.2 | Dataset
The experimental design of the accompanying dataset was 
tailored toward enabling the assessments described in the 
previous section. DWIs were collected from a single healthy 
volunteer on a 3T Siemens Prisma scanner with a single‐shot 
spin‐echo EPI sequence (resolution = 2.5 mm isotropic, ma-
trix size = 96 × 96, 64 slices, TR/TE = 9300/89 ms). Twice‐
refocusing was disabled and a GRAPPA factor of two was 
used. A single acquisition session consisted of three volumes 
with b = 0 s/mm2 and 30 diffusion weighted volumes with 
gradients sampled uniformly from the northern hemisphere 
(33 volumes). This acquisition was repeated for three b‐ 
values: b = 1000, b = 2500, b = 5000 s/mm2, with identi-
cal diffusion gradients to generate the north dataset (99 vol-
umes). The b = 1000 s/mm2 and b = 5000 s/mm2 shells were 
reacquired with identical diffusion gradient orientations, but 
with opposite diffusion gradient polarity (south dataset, 165 
volumes). This set was subsequently repeated for four differ-
ent phase‐encodings: AP, PA, RL, and LR (660 volumes). 
Finally, to be able to test the effect of motion on EPI distor-
tions and data reproducibility, this acquisition scheme was 
repeated twice more on different days with different head 
orientations (once with 25∘ rotation along the z‐axis and 
once with 8∘ along the x, 19∘ along the z‐axes), yielding a 
total of 1980 volumes. These positions will be referred to 
as Pos1, Pos2 and Pos3 in the remainder of the manuscript. 
Additionally, T1‐weighted and fat‐suppressed T2‐weighted 
fast spin‐echo structural images were acquired for prospec-
tive users to test their nonlinear registration algorithms to 
generate field‐maps. The entire acquisition was performed 
in three sessions and took nearly 7 total hours of scan time. 
Informed consent was obtained from the subject with a re-
search protocol approved by the Institutional Review Board. 
The raw distorted images, the images that underwent correc-
tion with the TORTOISE dMRI processing pipeline,29 the 
structural images, and the brain masks used in the analysis 
are available to researchers upon request.

2.3 | Pre‐processing
For all tests, the DIFFPREP component of the TORTOISE 
was used to correct both motion and eddy‐currents distortions, 
and the DR‐BUDDI 24 component was used for blip‐up blip‐
down EPI distortion correction. DWIs were initially corrected 
for Gibbs‐ringing artifacts30 and motion and eddy‐currents 
distortions were corrected simultaneously as described in.14 

After distortion correction, the DWIs were rigidly aligned 
to the ACPC oriented T2‐weighted structural image, as typi-
cally done by the TORTOISE pipeline (www.tortoisedti.org). 
The final DWIs were output with this orientation at 1.5 mm 
isotropic resolution and the diffusion tensors were estimated 
using non‐linear fitting and the MAPMRI parameters were 
estimated using constrained quadratic‐programming.

2.4 | Distortion correction tests
Four distortion correction tests were performed and for each 
test, variability maps for various target quantities were com-
puted as described in the Appendix in order to asses the per-
formance of the correction. The first test addressed the effect 
of correcting for small motion, eddy‐currents, and EPI distor-
tions. It used only the Pos1 subset. For each phase‐encoding 
direction, and for the north and south data, the datasets were 
initially corrected for motion and eddy‐currents distortions 
and subsequently for EPI distortions. For this blip‐up blip‐
down correction, the north and south datasets were corrected 
separately, producing the four corrected sets: APPAnorth

corr ,

APPAsouth
corr ,RLLRnorth

corr  and RLLRsouth
corr . The modalities that 

we evaluated were: average DWI variability maps calculated 
separately for each diffusion shell; FA, TR and primary ei-
genvector variability maps from the DTI model; and PA, NG 
and return‐to‐origin‐probability (RTOP) variability maps 
computed from the MAPMRI model.31 The primary eigen-
vector variability maps were computed voxelwise using the 
dispersion measure described in.32 For the DTI model, DWIs 
with b‐values larger than 1000 s/mm2 were excluded from 
the fitting process. To compare the variability maps of the 
corrected and distorted data, the b = 0 s/mm2 image for each 
of the four subsets was rigidly registered to the T2‐weighted 
structural image and this transformation was applied to all of 
the DWIs, including the resampling step.

The second test was identical to the first one; however, 
it was performed on the entire dataset, including the three 
Pos components to evaluate the performance of the correc-
tion pipeline with respect to large motion. This was the most 
comprehensive test, because all possible distortion and mis-
registration effects were assessed simultaneously.

The third and fourth tests also used the entire dataset, but 
were aimed at assessing the specific effects of correcting EPI 
distortions. For these experiments, variability of FA and TR 
were tested.

The third test aimed to emulate the case where data can 
differ for both subject positioning and phase‐encoding di-
rection of the acquisition. This mimics the case in which 
historic data from different centers are pooled for analysis, 
similarly to what is performed by the ENIGMA initiative.33 
In this situation different sites may even have different 
phase‐encoding directions in their acquisitions. For this 
test, the 12 datasets from four phase‐encoding directions 
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and three head orientations were stacked together for vari-
ability computations.

The fourth test aimed to simulate a longitudinal scan 
by computing the variability over the head position subsets 

assuming the the phase encode direction would not change. 
Differences in head positions and shimming could cause 
non‐negligible differences in EPI distortions,10,34 even with 
acquisitions of the same subject on the same scanner. In this 

F I G U R E  1  Salient features of the provided dataset. (A) Different diffusion weighting (window level set separately for each image). (B) 
Different head orientations. The green arrows point to regions with different signal intensities due to coil sensitivity. (C) Illustration of the level of 
eddy‐currents distortions. Red arrows indicate regions with significant mismatch between a DWI and the b = 0 s/mm2 image. (D) Magnitude of EPI 
distortions for each phase encoding directions [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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case, the maps were computed separately for each phase‐ 
encoding direction, once for fully‐corrected datasets and once 
for the versions corrected for only motion and eddy‐currents 
distortions. The goal of this test was to uncover how much 
variability is introduced to the data due to EPI distortions.

An additional test was performed and provided in the 
Supporting Figures S1–S3 to demonstrate the use of the variabil-
ity concept from a series of repeated scans on the same subject 
in order to determine non‐distortion related sources of vari-
ability such as physiological noise and cardiac pulsation. This 

F I G U R E  2  Variability maps before and after eddy‐current and EPI distortion correction. The maps were computed from the raw, distorted 
dataset and fully corrected datasets to illustrate the quality assessment pipeline. The maps are visualized at two difference slice levels. The first two 
columns display the standard deviations of two shells of the diffusion weighted images, and the next three columns represent the tensor‐derived 
quantities, FA and TR, and primary eigenvectors respectively. W/L are identical column‐wise [Colour figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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additional dataset was collected on a Philips Achieva 3T system 
with 10 repetitions of AP, PA, LR and RL phase‐encoded data, 
each with a single b = 0 and eight b = 1100 s/mm2 images.

3 |  RESULTS

Figure 1 illustrates features of the provided dataset: the 
diffusion weighting levels, different head orientations, and 
the magnitude of eddy‐currents and EPI distortions are dis-
played in different rows of the figure. As can be seen from 
Figure 1A, the shell with the largest diffusion weighting, 
ie, b = 5000 s/mm2, still has sufficient signal for distor-
tion correction quality assessment. Additionally, both the 
eddy‐current distortions and EPI distortions are detectable 
at visual inspection (Figure 1C and D). The dataset also 
contains significant motion in the form of different head 
orientations (Figure 1B).

3.1 | Assessment motion, Eddy‐
currents, and EPI distortion corrections

3.1.1 | Single head orientation
Figure 2 displays the variability maps for the dataset with the first 
head orientation at two different slice levels. The first column of 
the figure displays the standard deviations (computed according to 
Equation (A1) in the Appendix) of all b = 0 s/mm2 images in the 
four subsets. The variability in the distorted data can be attributed to 
positional differences among images and EPI distortions. The sec-
ond column displays the DWI variability (Equation (A2)), for the 
b = 5000 s/mm2 shell, which also includes the effects of the eddy‐ 
currents distortions. The other three columns display the  
variability of tensor‐derived quantities, FA and TR (Equation 
(A3)), and the primary eigenvector of the diffusion tensor 
(Equation (A6)).

It is evident from the figure that motion and distortion 
correction significantly reduces the overall variability, as in-
dicated by the larger (brighter) values in the maps for the un-
corrected data. The misalignments among the b = 0 images 
of the uncorrected data cause large variations near the periph-
ery of the brain and around the ventricle regions (red arrows). 
Correction significantly reduces this variability, however, 
residual misalignments due to EPI distortions can still be 

observed near the frontal edges of the brain (blue arrow). For 
the b = 5000 s/mm2 shell of the uncorrected data, there is 
significant variation within the brain stem/pons regions (light 
blue arrow). Additionally, in the second slice, misalignment 
of gyri/sulci is evident from the standard deviation map. 
Distortion correction successfully reduced this variability. 
The misalignments that could be observed in the uncorrected 
b = 5000 s/mm2 shell were reflected into the fractional an-
isotropy variability map, which showed a similar pattern in 
structures within the pons, high variability at the boundaries 
between white matter and CSF, and in white and gray matter. 
Similar to b = 0, the Trace variability was the largest near 
the periphery of the brain and around the ventricles, but was 
low inside the brain. The primary eigenvector variability map 
indicated large deviations even in directionally homogeneous 
regions, such as the genu of the corpus callosum (yellow 
arrow). After distortion correction, the variability of all the 
tensor‐derived quantities was substantially reduced.

Table 2 summarizes the median variability metric values 
for both the uncorrected and corrected data, for the same mo-
dalities. For all of the examined modalities, distortion cor-
rection significantly decreased the variability compared to 
the distorted version, hence increasing the agreement among 
DWIs and AP and RL encoded data.

The proposed quality assessment technique can also be 
used to assess the effect of correction on higher order diffu-
sion models. To illustrate this concept, the MAPMRI model31 
was fit to the same datasets, and several scalar maps were 
computed. Figure 3 displays these scalar maps. The variabil-
ity from these maps, displayed in Figure 4, was computed 
with Appendix Equation (A3), and the median values can be 
found in Table 2. MAPMRI‐derived variability maps exhibit 
a similar behavior to their DTI counterparts. However, one 
interesting aspect is the sensitivity of the RTOP measures 
to EPI distortions. This map contains very large values both 
near the orbito‐frontal cortex (red arrow) and around the ven-
tricles (blue arrow). The pattern near the orbito‐frontal cortex 
was not evident with other MAPMRI‐derived or tensor‐de-
rived measures. Similarly to DTI, distortion correction was 
able to reduce the variability and remove most structured pat-
terns from the maps, although for NG and PA, high variabil-
ity, remains in regions of partial volume between tissue and 
CSF, where even subvoxel misregistration can have a large 
impact on these metrics.

T A B L E  2  Median variability values for the modalities displayed in Figure 2 and 4. These values were computed from the whole brain, except 
for e1 that was computed only in regions with FA higher than 0.2

Medianσ b = 0 b = 5000 FA TR e1 PA RTOP NG

Distorted 14.45 4.25 0.045 129.61 0.132 0.074 0.032 0.047

Corrected 5.25 2.24 0.019 65.10 0.036 0.035 0.025 0.028

% increase in 
distorted

175% 90% 137% 99% 267% 111% 28% 68%
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3.1.2 | Multiple head orientations
The previous test used only a single head orientation from 
the entire dataset. Table 3 reports the variability values for 
the DTI and MAPRI‐derived quantities computed using all 
head orientation subsets. The TORTOISE pipeline was able 
to correct for the large orientational differences in the dataset, 
and the quantitative measures show similar behavior, with 
the values being significantly reduced for both the DTI and 
MAPMRI‐derived maps after correction. The figure corre-
sponding to this data subset is omitted as the images appear 
very similar to those in Figure 2.

3.2 | Reproducibility
Figure 5 displays the variability maps for the third test com-
puted with Equation (A7). We remind the reader that for this 
and the last tests, the "uncorrected" data were indeed cor-
rected for eddy‐current distortions and motion, therefore the 
observed variability pertains only to other EPI distortions. 
The uncorrected datasets have very large variability due to 
different EPI distortion directions. Correction significantly 
reduced variability.

The goal of the last test was to emulate a longitudinal 
scan and determine the variability introduced by EPI distor-
tions due to different head orientations. Figure 6 displays 
the FA variability maps computed for each phase‐encoding 
direction using data from the three distinct head orienta-
tions. For all phase‐encoding directions, the variability of 
the derived tensor quantities, computed with Equation (A8), 
shows regional increases, likely resulting from inconsistent 

distortions across the data. The variability maps from the 
corrected datasets, which are displayed in the bottom row, 
have these variances significantly reduced. These findings 
suggest that EPI distortion correction should be performed 
in longitudinal studies to improve result reproducibility. 
Table 4 displays the median values over the brain region. 
Distortion correction reduced the variability and increased 
reproducibility in every case.

4 |  DISCUSSION

The goal of assessing the performances of different distor-
tion correction techniques for diffusion MRI applications has 
remained elusive. In light of the recent emphasis on the im-
portance of correcting EPI distortions to improve accuracy of 
diffusion MRI17,18 and the available choice of EPI distortion 
correction techniques,10,22–24,28,34–38 the goal of this work was 
the creation of a reliable, quantitative, unbiased methodol-
ogy to assess the performance of EPI correction methods 
in addition to eddy‐currents and motion related corrections 
for diffusion MRI applications. In addition to proposing the 
methodology we acquired a specially‐designed dataset that 
can be used for this purpose and show as an example how this 
can be used with an available distortion correction pipeline.29

We observed significantly higher variability in the uncor-
rected datasets than in their corrected counterparts with all 
image modalities. Within the brain parenchyma, the median 
value of the variability metric in the distorted b = 0 images 
was 175% higher, and in the heavily diffusion‐weighted 
images 90% higher than in their corrected versions. This 

F I G U R E  3  Scalar maps derived from the MAPMRI model. PA: Propagator anisotropy, describing the difference of the propagator from 
an isotropic one. RTOP: Return to origin probability, describing the probability that a water particle will return to its starting position, which is 
inversely proportional to pore size. NG: Non‐gaussianity
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difference in DWI variability propagated into tensor‐derived 
maps with 137%, 99% and 267% increases in FA, TR, and 
primary eigenvector variability in the distorted data, respec-
tively. The large reduction in the the primary eigenvector 
variability after distortion correction is especially inter-
esting for fiber tractography and “connectivity” analysis 
applications.18

Another set of experiments was designed to analyze the 
effect of DWI processing on the reproducibility of diffusion 
MRI, with implications for cross‐sectional and longitudinal 
studies. In multi‐center studies, the phase‐encoding direc-
tion of diffusion MRI data acquisition may be inconsistent 
across sites. Although it is unlikely that the data would be 
acquired with AP and RL phase‐encoding in the same study, 

F I G U R E  4  Variability maps using the MAPMRI diffusion model computed from the raw, distorted dataset and fully corrected datasets. 
Variability maps are visualized at two different slice levels. The columns visualize the variability of PA, RTOP and NG. Window and leveling are 
identical column‐wise
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the polarity of the blips of the typically‐used AP acquisi-
tions might vary across scanners leading to high variability 
of the derived diffusion metrics in regions of high suscepti-
bility gradients.39 The results of our study showed that this 
undesirable effect can be counteracted by using an effective 
method to perform EPI distortion correction. Therefore, the 
acquisition of blip‐up and down data should be considered an 
important feature in the protocol design of prospective dif-
fusion MRI studies. For studies in which blip‐up blip‐down 
data is not available, it is important to be weary of the effect 
of EPI distortions on reproducibility and across‐center vari-
ability. A particularly interesting finding was from test four, 
which mimicked a longitudinal scan of the same subject. 
With this data subset, differences in head orientations and po-
sitions caused significantly different EPI distortions among 
scans.34,39 This resulted in a high variance in the computed 
DTI metrics, even after motion and eddy‐current distortion 
correction. In longitudinal studies, the goal is often to detect 
very small changes in diffusion metrics that may be indica-
tive of subtle biological changes due to disease progression or 
therapeutic intervention. However, these small changes can 
go undetected if variability caused by uncorrected misregis-
tration is present. In our experiments, we observed that data 
corrected only for motion and eddy‐current distortion, but not 
for EPI distortions, as typically done in major studies, have 
a median variability higher by 32% for Trace, 15% for FA, 
and 34% for the primary eigenvector, compared to the EPI 
corrected data. These findings underscore the importance 
of including EPI distortion correction to increase the power 
of diffusion MRI studies, in particular when seeking subtle 
biological changes, for example those due to mild traumatic 
brain injury.40,41

4.1 | Non‐distortion related sources of 
variability
The core idea behind the proposed method is to acquire rep-
licates of the same data with the same diffusion contrast, but 
different distortions. This is achieved by reversing the dif-
fusion gradient polarity for eddy‐current distortions, and by 
changing the phase‐encoding (PE) direction for EPI distor-
tions. However, changing the phase‐encoding direction can 

cause other non‐distortion‐related differences in the acquired 
images. For instance, ghosts, which appear along the PE di-
rection, can cause regional differences in the images acquired 
with different PE directions. In our acquisition protocol, we 
tried to minimize the impact of several of these other fac-
tors: The acquisition parameters for the proposed dataset 
were chosen in such a way that ghosts never overlapped with 
the brain region. In addition to ghosting, non‐square fields 
of view (FoV) can also create differences, due to changes 
in phase‐encoding bandwidth that alter distortions and echo‐
time, and hence SNR, and can prevent direct comparisons 
of datasets. For this reason, our acquisitions employed a 
square FoV. The third confound indirectly affected by phase‐ 
encoding are the Gibbs ringing artifacts. Even though Gibbs 
ringing is not related to PE, the differences in the location and 
orientation of large signal pile‐ups caused by EPI distortions 
also change the manifestation of the ringing artifacts. The 
dataset of this work used the Gibbs ringing removal strategy 
proposed by Kellner et al.30

While we took precautions to prevent the non‐distortion‐
related artifacts described above, they are not eliminated. 
The proposed acquisition scheme (four replicates of the same 
image acquired with different phase‐encoding directions) 
can be used for detecting and removing such artifacts, be-
cause one of the two phase encode directions will be locally 

T A B L E  3  Median variability values for the tensor and 
MAPMRI‐derived modalities. The values were computed only from 
the brain tissue region using a brain mask for both the distorted and 
distortion corrected data

Medianσ FA TR PA RTOP NG

Distorted 0.034 106.46 0.060 3.0E−05 0.040

Corrected 0.016 62.85 0.031 2.1E−05 0.029

% increase in 
distorted

113% 69% 94% 43% 38%

F I G U R E  5  The variabilities were computed over all the images 
with different phase‐encoding directions and head orientations. 
The uncorrected datasets result in very large variances due to the 
differences in distortion directions. However, distortion correction 
reduces these variances to the levels comparable to those displayed in 
Figure 6 . All images are displayed with identical window/levels
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artifact‐free while the other will be corrupted. Once detected, 
these artifacts can be cleaned by combining the datasets with 
locally‐varying weights, with smaller weights assigned to im-
ages/regions, during the diffusion model estimation process. 
An interesting example of non‐distortion‐related artifacts that 
our methodology could help identify can be seen by inspect-
ing the b = 5000 s/mm2 shell after overall distortion correc-
tion in Figure 2. In this shell, distortion correction performed 
very well, as can be inferred from the significantly reduced 
variability and the absence of any structured patterns in the 
variance map, compared to the distorted case. However, at 
the second slice level (bottom two rows), the variability map 
of this shell contained localized clusters of high variance 
(green arrows) that are consistent with effects of cardiac pul-
sation artifacts.9

4.2 | Caveats and limitations
An aspect to take into account when applying our methodol-
ogy to DWIs is the contribution of spatial signal variations 
due to coil sensitivity differences. This phenomenon can 
be observed in the Supporting Video S1, an animation dis-
playing the same slice from all b = 0 volumes including the 
different subject positions. The large variations in signal in-
tensity were preponderant over distortion effects in affecting 
variability; therefore, computing variances from a stacked set 
of b = 0 images was not ideal for assessing correction qual-
ity. Given that the presented data are not corrected for coil 
sensitivity variations, computing variance measures over ei-
ther the b = 0 s/mm2 images or DWIs should be done only 
within each positional set.

F I G U R E  6  The variability of FA was computed for each phase‐encoding direction using the three different head orientations. The images 
in the top row are from datasets not corrected for EPI distortions and the bottom row was corrected for EPI distortions. For all phase‐encoding 
directions, the head orientation differences among the acquisitions cause significant changes in the underlying susceptibility fields, which reduces 
the reproducibility of the scans, as indicated by the large variances. EPI distortion correction virtually eliminated the increase of variance in regions 
affected by susceptibility differences. All images are displayed with identical window/levels

T A B L E  4  Median standard deviation values were computed over the three positions before and after motion and eddy‐currents distortion 
correction for TR, FA and the Principal eigenvector orientation dispersion (PEOD)

Uncorrected AP PA RL LR Corrected APPA RLLR

TR 123.79 112.31 109.7 110.51 TR 83.93 89.63

FA 0.03 0.0275 0.028 0.0275 FA 0.02368 0.0255

PEOD 0.127 0.1178 0.117 0.115 PEOD 0.0865 0.0914

Notes:  EPI distortion correction reduces these variances in all cases, indicating increased reproducibility. The variability in the distorted data was 31% higher for Trace, 
15% higher for FA and 34% higher for PEOD on average, compared to the corrected data.
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Another point to be considered is that the quality mea-
sures proposed in this work were solely based on the similar-
ity of two or more corrected images. With these measures, a 
distortion correction algorithm that produces very similar but 
anatomically inaccurate images, such as blank images, would 
still get a good, albeit incorrect score. Another issue with our 
methodology involves the degree of smoothing of the cor-
rected images. An algorithm that performs successive multi-
ple interpolations or an algorithm that over‐smooths the data 
for denoising purposes would have an unfair advantage in the 
computed measures with respect to algorithms that preserve 
details. Prospective users of the dataset should consider these 
aspects when using the measures provided in this manuscript. 
The TORTOISE processing pipeline used in this work com-
bines the transformations generated by each distortion type 
and generates the final data through a single interpolation 
step, therefore producing sharp corrected images.

There are other sources of misregistration in diffusion 
MRI that this dataset does not address, such as the severe 
slice‐by‐slice misregistration within an acquired volume that 
can occur with very uncooperative patients or in fetal MRI 
scanning. If one needs to analyze intra‐volume motion, the 
dataset can be used along with MRI simulators25 to corrupt 
the dataset with such motion effects.

4.3 | Applicability to high angular 
resolution diffusion imaging
In this work, assessments of correction quality were per-
formed using the DWIs themselves, the tensor‐derived 
metrics and the mean apparent propagator (MAPMRI) 
derived quantities. MAPMRI was chosen to illustrate the 
use of the technique with a HARDI model, however, pro-
spective users of the dataset are not constrained to this 
model, as the technique and the dataset can be used with 
any model such as constrained spherical deconvolution,42 
Q‐ball,5 NODDI43 or other HARDI methods. It is also not 
restricted to scalar or vector images and can be used with 
propagators, orientation distribution functions or fiber ori-
entation distributions. The proposed dataset can also be 
used to better understand the susceptibility of these higher‐
order models and fiber tractography methods to distortions.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

VIDEO S1 The supporting video displays the same slice for 
all b = 0 s/mm2 images acquired with AP phase‐encoding 
direction after motion correction. The large differences in 
signal are due to the coil sensitivity differences in the native 
space of the images
FIGURE S1 Sample distorted and distortion‐corrected im-
ages for the AP and LR encoded images for the additional test 
FIGURE S2 Variability maps computed from the additional 
test and dataset 
FIGURE S3 Variance of AP and LR data from repeated 
scans of the additional test
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APPENDIX A:
The Appendix describes the details of each test. For all the 
equations, image I refers to the image in consideration, such 
as b = 0 s/mm2, FA, TR images. APPA and LRRL refer to 
combined data corrected with blip‐up blip‐down EPI correc-
tion. AP, LR refer to uncorrected raw data. The superscripts N 
and S refer to North and South diffusion gradients.

A1. TEST1

• Purpose: To assess the quality of correction for small mo-
tion, eddy‐currents distortions, and EPI distortions.

• Datasubset: Pos1
• b = 0 image variability: 9 b = 0 images per acquisition × 

four image types: {APPAN, APPAS, LRRLN, LRRLS} for 
corrected and {APN, APS, LRN, LRS} for uncorrected data.

• b = 1000, b = 5000 image variability: i for four image 
types: {APPAN, APPAS, LRRLN, LRRLS} for corrected 
and {APN, APS, LRN, LRS} for uncorrected data.

• FA, TR, NG and PA, RTOP variability: i for four image 
types: {APPAN, APPAS, LRRLN, LRRLS} for corrected 
and {APN, APS, LRN, LRS} for uncorrected data.

• PEOD: i for four image types: 
{APPAN, APPAS, LRRLN, LRRLS} for corrected and 
{APN, APS, LRN, LRS} for uncorrected data.

Let ei
1
 be the principal eigenvalues of the diffusion tensor 

corresponding to image Ii.

Let β1, β2, β3 be the eigenvalues of M. Then

A2. TEST2

• Purpose: To assess the quality of correction with large 
motion.

• Datasubset: Pos1, Pos2, Pos3
• FA, TR, NG and PA, RTOP variability: i for four image 

types: {APPAN, APPAS, LRRLN, LRRLS} for corrected 
and {APN, APS, LRN, LRS}, j for the 3 positions Pos1, Pos2 
and Pos3.

A3. TEST3

• Purpose: To assess the possibility of pooling historic data 
with head position or phase‐encoding direction differences.

• Datasubset: Pos1, Pos2, Pos3
• FA, TR variability: i for 12 image types: 

({APPAN, APPAS, LRRLN, LRRLS} or 
{APN, APS, LRN, LRS}) × (Pos1, Pos2 and Pos3).

A4. TEST4

• Purpose: To emulate a longitudinal study with differences 
in head positioning.

• Data subset: Pos1, Pos2, Pos3 independently using the 
North datasets.

• FA, TR variability: i ∈ {Pos1, Pos2 and Pos3}. The analy-
sis was repeated separately for each phase‐encoding direc-
tion: APN, PAN, LRN, RLN (for uncorrected) and APPAN, 
LRRLN (for corrected).
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