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a b s t r a c t

Recent breakthroughs in protein structure prediction demarcate the start of a new era in structural 
bioinformatics. Combined with various advances in experimental structure determination and the unin
terrupted pace at which new structures are published, this promises an age in which protein structure 
information is as prevalent and ubiquitous as sequence. Machine learning in protein bioinformatics has 
been dominated by sequence-based methods, but this is now changing to make use of the deluge of rich 
structural information as input. Machine learning methods making use of structures are scattered across 
literature and cover a number of different applications and scopes; while some try to address questions and 
tasks within a single protein family, others aim to capture characteristics across all available proteins. In this 
review, we look at the variety of structure-based machine learning approaches, how structures can be used 
as input, and typical applications of these approaches in protein biology. We also discuss current challenges 
and opportunities in this all-important and increasingly popular field.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license (http://creative

commons.org/licenses/by/4.0/).
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1. Introduction

Protein bioinformatics is a thriving and fast-growing field dealing 
with algorithms and data structures to explore, analyse and compare 
(groups of) proteins in order to better understand their various 
biological, physicochemical and molecular properties and functions. 
With the increase in protein sequence data obtained from large-scale 
high-throughput sequencing technology, machine learning (ML) has 
become a key methodology in protein bioinformatics. In protein 
structure prediction, be it secondary structure, backbone angles, 
contacts, folds, or full-atom structure, ML has become indispensable 
and forms the basis of a number of popular tools and algorithms. ML 
has also successfully been applied to predict protein function, pro
tein-protein interactions, drug-target binding, enzyme substrate 
specificity, thermostability, catalytic rates, binding affinity, variant 
and mutant effects and more. ML is data-driven and attempts to 
identify patterns in existing data to predict properties of new, un
seen data. Given ML’s requirement of large amounts of diverse data, 
the overwhelming majority of ML applications on proteins use se
quences as input, some of which are powering different aspects of 
popular resources such as Ensembl [1], Pfam [2] and UniProt [3]. 
However, numerous protein families have divergent protein se
quences yet share highly similar three-dimensional structures, 
topologies and folds, since structure tends to evolve slower than 
sequence [4]. Furthermore, protein tertiary structure typically pro
vides a wealth of information not found in sequence - spatial to
pology, residue interactions, solvent accessibility, residue dynamics 
and electrostatics, and more.

Historically, structural biology depends primarily on experi
mental structure determination methods including X-ray crystal
lography, nuclear magnetic resonance (NMR), small-angle scattering, 
and cryo-electron microscopy (cryo-EM). The Protein Data Bank 
(PDB) [5], established in 1971, stores these experimentally de
termined structures and its size has been steadily increasing over the 
years. At the time of writing the PDB consists of 195,325 structures 
and grows by an average of 13,723 structures a year (calculated over 
2017–2021). However, these numbers pale in comparison to the 
growing deluge of protein sequence data, with the UniProt protein 
database containing 226,771,949 sequence entries at the time of 
writing, over 771,752 more than the previous release with a release 
cycle of 8 weeks. This phenomenon is often referred to as the se
quence-structure knowledge gap [6]. Fortunately, experimental ap
proaches are not the only way to obtain structural information, and 
computational structure prediction techniques are fast closing this 
gap. A protein’s structure can be modelled from its sequence either 
using the experimental structures of one or more homologous pro
teins (template-based, comparative or homology modelling), or 
using de novo prediction techniques (template-free or de novo 
modelling). Given that homology modelling performs well when 
using templates with >  30% sequence identity to the protein of in
terest, accurate structural models can be obtained for over 60% of the 
genes in the top 12 most accessed genomes on UniProt [7,8]. Tem
plate-free modelling, on the other hand, does not rely on global si
milarity to a known structure and hence can be applied to proteins 
with rarer folds. A recent breakthrough, the highly accurate deep- 
learning based AlphaFold2 model from DeepMind [9] trained on 
experimental structures to predict the structure for an input se
quence, has allowed structural modelling to realise as high accuracy 
and resolution as the best experimentally resolved structures in 
many cases. In collaboration with EBI, DeepMind has released the 
AlphaFold Protein Structure Database [10], currently containing over 
200 million structural models. This increases high quality structural 
coverage by an average of 25% compared to homology modelling 
across 11 proteomes [11], reaching over 76% for the human genome 
and reducing the fraction of the human “dark proteome” from 26% to 
10% [12]. Thus, we can theoretically obtain high resolution protein 

structural information for a large number of available protein se
quences. In addition, computationally predicted models can help 
better resolve experimental structures [13–15].

With these advances, we are at the brink of a structural revolution 
with millions of newly modelled structures at our disposal. Thus ML 
applications in protein bioinformatics, already shown to be very 
powerful in shedding light on biological problems, now have a wealth 
of structural information to exploit as input instead of, or along with, 
the typically used protein sequences. These sequence- and structure- 
based ML methods (hereafter referred to as “structure-based”) can 
greatly outperform purely sequence-based approaches, as demon
strated in studies where the same ML architecture is validated using 
only sequence and both sequence and structure information [16–19], 
though sometimes data biases have prevented useful training of 
structure-based methods [20]. The past years have already seen 
movement in the direction of protein structure-based ML and its role 
is sure to increase drastically in future research. In this review, we 
describe the space of machine learning on protein structures in terms 
of the kinds of tasks that structures can help solve and the kinds of 
algorithms applicable to these tasks. We outline the various structural 
features and representations currently obtainable. Finally, we look at 
open problems and challenges, as well as promising opportunities in 
this exciting field.

2. Machine learning in the protein field

Machine learning (ML) is defined as “the study of computer al
gorithms that improve automatically through experience and by the 
use of data” [21]. Typically, these algorithms find patterns in datasets 
and link such patterns to specific outcomes or groupings. Deep 
learning (DL) is a sub-field of ML which uses artificial neural net
works with multiple stacked layers of network connections enabling 
learning of increasingly complex information through huge amounts 
of data compared to the more “classical” ML approaches. In this 
work, we use ML to refer to both DL and classical ML.

Supervised ML attempts to predict a certain response by learning 
patterns from labelled data. In the case of classification, this re
sponse is the membership of the data point in a particular grouping 
or class. Regression, on the other hand, predicts a real-valued nu
meric outcome. Unsupervised ML attempts to find clusters or learn 
reduced representations from data without any labels. See [22] for 
an in-depth introduction to these topics.

ML has been used widely across biology for decades, with re
views outlining its usage in the fields of omics [23], synthetic biology 
[24], biomedicine [25], and drug discovery [26]. In the context of 
proteins, ML approaches, both supervised and unsupervised, can 
broadly be divided into protein family based and protein universe 
based techniques. These two categories differ in the kinds of pre
diction problems they are applied to, the kinds of algorithms used, 
and the kinds of representations used as input.

2.1. Protein family based ML

Protein family based ML is used to predict properties of the 
members of individual protein families or sub-families, usually 
consisting of hundreds to thousands of experimentally characterised 
training proteins. Some of the questions in protein family supervised 
ML include specificity prediction of substrates, intermediates, pro
ducts, and inhibitors; state prediction in the context of engineering 
thermostability, binding affinity and activity; and prediction of the 
effects of mutations. In many cases, such as the immensely diverse 
lipocalins [27] and the fast-evolving enzyme families involved in 
specialised metabolism [28], the sequence diversity within a family 
make it impossible for sequence-based techniques to predict family 
properties. Even very similar sequences can have mutations in key 
structural regions resulting in completely different activities, which 

J. Durairaj, D. de Ridder and A.D.J. van Dijk Computational and Structural Biotechnology Journal 21 (2023) 630–643

631



is easier to ascertain from structure than from sequence alone. In 
addition, insights from computational prediction methods which 
also use structure as input can better drive experimental studies due 
to the generally higher accuracy of structure-based prediction, and 
better enable exploration of the protein family space with structural 
stability and activity taken into account. We give examples of su
pervised ML tasks for some well known protein families below.

The superfamily of G protein-coupled receptors (GPCRs) is the 
largest family of targets for approved drugs in modern drug dis
covery, and hence also a popular target for ML approaches to drive 
exploration and understanding. GPCRs play an essential role in 
physiological processes such as vision, olfaction, neuronal signal 
transmission, cell differentiation, pain, muscle contraction, and 
hormone secretion [29]. Recent ML studies on GPCRs have started 
incorporating structural information to improve prediction perfor
mance, and to derive biological insight into the residues and me
chanisms involved. As commonly used ML models for structure, 
interaction and interface prediction are trained on soluble proteins, 
specialised GPCR-specific oligomerization and interface predictors 
were developed [30,31], able to handle their long transmembrane 
regions. Recent work even modified the existing AlphaFold2 algo
rithm to generate rarer GPCR conformations [32]. GPCRs often dis
play high conformational flexibility and low thermostability, making 
their structural, biophysical, and biochemical characterisation in the 
laboratory challenging. Given that experimental identification of 
thermostabilizing mutations is very resource intensive and must be 
repeated for each individual receptor, computational prediction of 
GPCR mutant stability is a crucial task in this field [33]. Finally, 
GPCRs bind to a very diverse range of ligands and ML is used to 
identify biologically active ligands and binding inhibitors, estimating 
affinity and other binding properties, and probe ligand-specific 
binding mechanisms [34].

Another important class of drug targets are the kinases [35], with 
over 500,000 publications, 20,000 patents, inhibition assays for the 
majority of the human kinome and 115,000 kinase inhibitors cov
ering 20% of the kinome [36]. With over 7000 structures solved 
covering 308 kinases across 8 groups and complexed with over 3000 
unique ligands and inhibitors, structure-based ML approaches are 
widely used for addressing challenges within this superfamily. These 
include methods to predict inhibition [37] and binding affinity [38]
in specific kinase families. Another common kinase challenge is 
predicting conformational change between the so-called active and 
inactive conformations [39,40]. For drug targets, predicting the ef
fects of mutation of a single protein could also be considered a 
protein family ML task, as the inputs are still proteins sharing the 
same structural fold with key differences caused by changes in the 
sequence. PremPLI [41] uses features from modelled protein-ligand 
complexes to predict the effect of mutation on binding affinity to a 
number of inhibitors for a kinase cancer target.

In the field of natural products and specialised metabolism in 
plants, bacteria, and fungi, ML has slowly been gaining popularity 
over more traditional approaches involving similarity search or 
analysis of a few, closely related proteins. ML has been used for 
successful prediction of substrate [42,43] and product [44] specifi
city in various natural product enzyme families. In 2013, a structure- 
informed approach was used to engineer highly thermostable cy
tochrome p450s [19].

Though computationally predicted structures are shown to be 
highly accurate at the backbone level, tasks such as the ones de
scribed above which involve small molecule binding may need fur
ther family-specific processing and ML-based approaches to harness 
the structural information specifically related to ligand interaction. 
For example, [45] show that AlphaFold-predicted GPCR structures 
differ in crucial features such as domain assembly, ligand-binding 
pockets, and interface conformation, thus impeding their direct use 
in functional studies.

Unsupervised ML in the protein family space hosts a new sub- 
field of structural bioinformatics, dubbed “comparative structuro
mics" by Mohammed AlQuraishi. This is concerned with tools, al
gorithms, and techniques to compare and contrast assorted datasets 
of protein structures to answer a variety of biological questions - the 
evolutionary relationships between structural orthologs, interaction 
networks and how they are affected by structural changes, folding 
and changes within different cellular contexts and organisms, and 
how structure and folding are coupled with different functional 
characteristics. Zebra3D [46] is an example of such a technique. It 
provides a systematic analysis of 3D protein structure alignments 
combined with the identification of subfamily-specific regions using 
unsupervised ML clustering algorithms - these regions represent 
patterns of local 3D structure similar within subfamilies, but dif
fering between them, thus likely to be associated with functional 
diversity and function-related conformational plasticity. The work of 
de Lima et al. [47] is another example of unsupervised protein family 
ML concerned with the detection of subfamilies and simultaneous 
identification of differentiating residues. Clustering and dimension
ality reduction techniques have been used to describe the con
formational landscape of proteins and identify binding-induced 
conformational change [48,49].

a small number of data points. A wide range of algorithms are at 
our disposal for these tasks, including but not limited to k-nearest 
neighbours algorithms (k-NNs) [50], support vector machines 
(SVMs) [51], Gaussian processes [52], and ensemble methods such as 
Random Forests [53] and gradient boosting trees [54]. In addition, 
many approaches in this field aim to interpret prediction results to 
derive insights about underlying mechanisms and residues which 
may be important for function. Such predictions and insights ob
tained from protein family ML are often used to drive experimental 
research to explore and characterise novel, interesting or relevant 
proteins.

2.2. Protein universe based ML

The larger-scale protein universe based ML typically uses tens of 
thousands of proteins from diverse superfamilies to learn global 
properties of proteins, such as secondary and tertiary structure and 
folding, interactions, disorder, broad function classes etc. DL is a 
common choice for such problems, as it is known to drastically 
outperform other techniques in the presence of large amounts of 
data. In fact, protein structure prediction is in itself a protein uni
verse task in which the use of DL has in many cases eclipsed other 
ML or statistical methods. This is true for prediction of secondary 
structure, solvent accessibility [55], backbone torsion angles [56,57], 
residue-residue contacts or distance matrices from co-evolution 
[58–62], and in de novo all atom structure modelling. In fact, all the 
top-performing Critical Assessment of Structure Prediction (CASP13 
[63], CASP14 [64]) methods for de novo modelling rely on deep 
convolutional neural networks for predicting residue contacts or 
distances, predicting backbone torsion angles and/or ranking the 
final models. For recent reviews on the underlying techniques used, 
including those in AlphaFold2 and related approaches, see [65,66].

With the availability of protein structures, a number of additional 
tasks can make use of structure-based ML instead of sequence. These 
are listed in Table 1, grouped by the kinds of inputs used. Recent 
examples as well as common datasets used to validate and bench
mark novel algorithms created for each task are also listed.

In the 2020 CASP14 competition, the breakthrough results of 
AlphaFold2 prompted a press release declaring the protein structure 
problem for single protein chains solved [64]. This emphasis on 
“single protein chains” revealed the new frontier for structural 
bioinformatics - complex structures are yet to be successfully pre
dicted at the same breakthrough levels. Thus the related yet distinct 
tasks of predicting whether two proteins interact, and predicting the 
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interface of two interacting proteins are common protein universe 
problems with a number of solutions, based on docking [87,104], 
templates [105], end-to-end learning [84] and, most recently, pro
tein complex prediction approaches building upon AlphaFold2 [128- 
130]. The latter generation combines the AlphaFold2 DL architecture 
with a modified paired MSA generation approach which en
capsulates co-evolutionary information across the subunits of the 
desired complex. This yielded success rates for complex prediction 
up to double that of previous template-based and docking methods, 
marking significant progress in the field. However, these success 
rates are still only around 50% and vary drastically across species, 
protein families, types of complexes, and stoichiometries considered 
[129,131]. Similarly, the popular de novo protein structure prediction 
algorithm RoseTTAFold, has been extended to the prediction of nu
cleic acid and protein-nucleic acid complexes [132], though again 
only around half of the tested complexes could be successfully 
modelled.

Structure-based drug discovery also hosts some significant ap
plications of protein universe ML [133], starting from the computa
tional modelling of putative receptor targets. Subsequently, binding 
sites in the target structure and putative drug candidates are iden
tified using cavity/pocket prediction techniques [76], prediction of 
“druggable” regions, and protein-ligand binding site [134] predic
tion. This is typically followed by molecular docking to evaluate 
protein-ligand interaction and affinity between the target and a 
variety of drug candidates. In the case of unknown target proteins or 
to identify off-target binding candidates, reverse/inverse docking 
[135–138] is used to create embeddings of drugs and search across 
protein structure databases for good docking solutions. In these 
contexts, ML approaches are used to improve scoring functions of 
binding affinity and plausible docking poses [81,116,121,138,139]. 
Indeed, [140] show that computationally predicted structures per
form on par with experimental structures at reverse docking tasks - 
although the docking and scoring methods themselves could use 
major improvements to further drug discovery and design.

Predicting the effects of variants and mutations, especially those 
involved in diseases, is another common task. Sen et al. [141] took 
advantage of the latest de novo structure prediction techniques to 
model human disease-associated proteins, many of which do not 
have existing structures or even close homologues. Afterwards, they 
compared disease-associated mutations to ligand binding sites, 
protein-protein interfaces and conserved regions predicted from the 
models, in order to provide some rationale for most of the muta
tions. However, the current DL-based structure predictors are not yet 
able to successfully predict mutations in protein structures as their 
training procedure is designed to be robust to small changes in se
quence. This has been practically demonstrated in studies aiming to 

predict stability effects of mutations using predicted structures 
[142,143], and it indicates an under-explored area of structure pre
diction.

Approaches building upon AlphaFold2 and its underlying archi
tectures have been used successfully in design tasks [144–147], in
dicating that the AlphaFold2 breakthrough may also cause a leap in 
protein design prediction. The process of constructing idealised folds 
during protein design can reveal new information about the physical 
and structural constraints that dictate which conformations a pro
tein can adopt [148,149]. Such insights could be of vital importance 
to solving fundamental biological questions behind the evolution of 
proteins, as well as for further improvement of protein engineering 
and design [150]. See [151] for a recent review of DL approaches in 
the protein design field.

Instrinsically disordered proteins (IDPs) lack a fixed or ordered 
three-dimensional structure. This widespread phenomenon, thought 
to occur in over 33% of eukaryotic proteins, has been linked with 
allosteric regulation, enzyme catalysis, and a variety of diseases 
[152]. While structure-based prediction of intrinsic disorder may 
seem contradictory, energy scores obtained from existing structures 
[100] as well as residue-level computational modelling scores 
[11,101] contain information correlating with disorder and are ef
fective for prediction. Structure-based ML has also been used to 
sample the very diverse conformational ensembles of IDPs [153].

Unsupervised techniques in the protein universe support tasks 
such as structure query and retrieval, clustering for motif and hot
spot discovery, and structure-based fold annotation. For the former 
task, an array of fast techniques that allows near-instant retrieval of 
structures matching an input structure [154–158]. Recent ap
proaches for structure-based clustering allow pinpointing novel or 
rare folds [11,159], as well as residues and structural regions asso
ciated with function [160]. Another common task is the generation 
of fixed-dimensional unsupervised embeddings which capture 
global and local protein characteristics. These can be used in 
downstream ML algorithms, as discussed in the next section.

3. Computational representations of protein structures

Protein structures contain interconnected high-dimensional in
formation about the amino acids involved, their positions and re
lative orientations, and the varying physicochemical and 
electrostatic effects they have on each other. Fig. 1 shows an over
view of the most common steps taken in structure-based ML. Once a 
set of structures with or without associated labels has been collected 
(Fig. 1A), the next step typically consists of choosing a format to 
represent this information that can be understood by computers 
(Fig. 1C). One way to do this is by explicitly extracting a set of 

Table 1 
Supervised protein universe tasks, inputs and examples. 

Prediction of Input Examples Datasets

Protein function Protein [67,68] SIFTS [69]
Mutant stability Protein + Mutation [70–73] ProThermDB [74], ATOM3D [75]
Cavity and pocket Protein, Residue [76,77] TOUGH-C1 [77], SOIPPA [78]
Model quality Protein, Residue [79–82] CASP [83]
PPI-Interface Residue [84–89] ProtCID [90], Docking benchmark v5 [91], DockGround [92], DIPS- 

Plus [93]
Ligand binding site Residue [94–96] sc-PDB [97], COACH420 [98], HOLO4K [99]
Intrinsic disorder Residue [11,100,101] DIBS [102], DisProt [103]
Interaction Protein-protein complex, Protein  

+ Protein
[104–106] DIP [107], STRING [108], HPRD [109], BioGRID [110], HPIDB [111]

Protein binding affinity Protein-protein complex, Protein  
+ Protein

[112–114] Affinity benchmark [91], SKEMPI2 [115]

Ligand screening and binding affinity Protein-ligand complex, Protein  
+ Ligand

[38,79,116–124] PDBBind [125], Binding MOAD [126], DUD-E [127]

The Input column describes the typical form of input given to the algorithms used. Multiple input format possibilities are comma-separated. All inputs refer to the structural 
context, i.e. “Protein” refers to the 3D protein structure, “Residue” to aspects associated with each individual residue - its physicochemical, electrostatic, geometric properties etc. 
(similarly for “Mutation”), “Ligand” to the 2D and/or 3D structure of a small molecule ligand.
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attributes or features from proteins to create a tabular feature matrix. 
Another approach is to generate reduced fixed-dimensional protein 
representations, referred to as embeddings. Both these approaches 
(Fig. 1B) are followed by the use of ML algorithms that take the 
feature matrix or embedding as input and return various results 
(Fig. 1D) and insights (Fig. 1E) for user interpretation.

A number of studies have demonstrated that high-confidence 
predicted structural models (both homology-based and DL-based) 
have predictive power and can even perform as well as experimental 
structures on specific tasks [11,16,33,161]. However, this is unlikely to 
be a general statement as it is highly dependent on both the types of 
proteins and the task at hand. For example, membrane proteins, 

intrinsically disordered proteins, and proteins with high conforma
tional flexibility would still benefit from experimental structures 
solved in different conditions to increase the diversity of structures 
available and thus our knowledge of them. In addition, side-chain 
modelling accuracy, crucial for tasks involving side-chain interactions, 
tends to lag behind main chain accuracy. Finally, in a significant 
number of cases, AlphaFold2 and related approaches do not produce 
high-confidence structures. It was recently shown that while residues 
predicted by AlphaFold2 with high confidence (>  90 plDDT) have a 
very low prediction error (median 0.6 Å), this quickly increases to over 
3 Å error for low confidence residues (<  70 plDDT) [162]. For such 
cases with only low confidence structure information present, we 

Fig. 1. Common steps in structure-based machine learning. A) Starting from a set of protein sequences, structural models can either be retrieved from the PDB or constructed 
using computational approaches. B) A number of different feature extraction, feature engineering, or pre-trained embedding approaches can then be used C) to extract a matrix 
representation of the input, with the rows as data points and columns representing features or embedding values. D) This matrix forms the input for ML models resulting in 
predictions of classes, regression values, or unsupervised clustering and dimensionality reduction. E) Prediction results, combined with the trained model, can be used to inspect 
and interpret regions of the protein structure relevant for the task at hand.
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may still have to fall back on sequence-based approaches or utilise 
embedding techniques as described in Section 3.2.

3.1. Generating structure feature matrices

Broadly, protein structures are compared at the residue level, 
where features are extracted from each individual residue in the 
structure, or at a structural environment level, where features are 
extracted from well-defined portions of the structure (or the entire 
structure) containing relevant and localised properties. The former 
approach is commonly used in structurally conserved protein family 
ML tasks involving the entire protein, and the latter is used for more 
divergent proteins or for more specific tasks involving the corre
sponding structural environments. Both approaches use a range of 
techniques to align or arrange the extracted features into the fixed 
dimensional feature matrix format.

3.1.1. Residue level
Many different features can be extracted from each residue in a 

protein structure using a plethora of computational tools, as listed in 
Table 2.

When the proteins under consideration are evolutionarily closely 
related, multiple protein alignment is commonly used to generate 
the input feature matrix. While sequence alignment has generally 
been much more popular than structure alignment, the existence of 
protein families which share the same structural fold despite having 
little sequence similarity necessitates the use of structure-based 
alignment methods. This has driven the development of fast mul
tiple structure aligners capable of scaling to the numbers of proteins 
required to train ML algorithms [178–180].

An alternative to the tabular format is a (dis)similarity matrix, 
often used as input to kernel-based methods such as SVMs or in 
unsupervised dimensionality reduction. For instance, de Lima et al. 
[47] calculate protein-protein similarity by combining similarities 
calculated from, among other features, structural alignment, align
ment-free structural comparisons, putative active sites, and in
stability indices.

3.1.2. Structural environment level
Fig. 2 depicts some structural environments commonly used in 

computational representations. For tasks such as hotspot prediction 
or interface residue prediction, each input data point could be a 
single residue. In such situations, including aggregate features with 
weighted neighbour averages over the spatial nearest neighbouring 
residues, as shown in Fig. 2A, often improves the discriminatory 
power of predictors [181]. Some environment representations were 
borne out of ease of adaption of approaches from other fields to 
protein structures - for example, viewing the three-dimensional 

coordinates of atoms in a structure as a 3D image grid (Fig. 2B) al
lows the application of voxelization followed by the use of 3D con
volutional neural networks often applied in the field of computer 
vision. Whereas in the case of images the red, green and blue values 
are often encoded as different channels, for proteins these channels 
have been used to encode different atom types [77,95]. Another 
approach that can also take into account atomic density and radii is 
the use of geometric tessellations to define a set of polyhedra around 
atoms or residues in a structure [182–185] (Fig. 2C).

Representations of the molecular surface (Fig. 2D) are useful for 
tasks related to protein interactions and protein-solvent interactions. 
For example, MaSIF [86] depicts the surface as a series of overlapping 
radial patches with associated geometric features such as shape index 
and distance-dependent curvature, as well as chemical features such 
as hydropathy index, continuum electrostatics and the location of free 
electrons and proton donors. A geometric deep neural network is 
applied to these input features to spatially localise features and op
timise them towards particular tasks. Other approaches have used 3D 
Zernike or similar descriptors of surfaces which are invariant to ro
tation, thus allowing structures and surfaces of different proteins to 
be compared [186–188]. In fact, one of the main problems to solve 
when representing entire protein structures is this rotational and 
translational invariance. Fig. 2E depicts one way to address this, 
namely by using a 2D residue-residue distance or contact map 
[189,190]. Another approach gaining popularity is the representation 
of a protein structure as a graph (Fig. 2F) with rotation and translation 
invariant properties attached to the nodes and/or edges [17,191–194]. 
These graphs form the ideal input for geometric deep learning ap
proaches and have the capacity to encode most of the information 
contained in the protein structure [195,196].

Proteins often interact with other molecules - other proteins, 
peptides, nucleic acids and small molecule ligands - so computa
tional representations of these binding regions or interfaces are 
necessary for a number of tasks. Graph [122,197,198] and voxel- 
based [79,116,199] approaches can be used on experimentally solved 
or computationally docked protein-ligand complexes, usually by 
zooming in to the ligand binding pocket. In addition, there are 
specialised approaches to take into account explicit protein-ligand 
interactions within the ligand binding pocket in a complex 
[124,200]; see [201] for more examples of protein-ligand feature 
representations. In cases where data about the complex is absent but 
unbound structures are present, some approaches concatenate fea
tures of the individual entities as their representation [117,119,120].

3.2. Learning protein embeddings

A complementary approach to generate the tabular input re
quired for ML is by using end-to-end or pre-trained embedding al
gorithms. These typically make use of unsupervised DL methods 
trained on a large dataset of proteins to produce a series of values 
representing a given protein in a fixed high-dimensional space, often 
without the need for explicitly handcrafted features. Due to the 
training process, these values place similar proteins closer together 
in this space thus capturing overall protein variation and relation
ships between individual proteins. For example, recent global se
quence embeddings have been shown to capture amino acid 
characteristics and other physiological properties of proteins as a 
whole [202–205]. These have recently been extended to include 
structural information as well [206,207]. Unlike protein family ML, 
alignment is generally not an option in such techniques since most 
proteins used for training are evolutionarily remote, thus most de
scribed embedding techniques depend on learning alignment-free 
patterns across diverse proteins or on generating on-the-fly align
ments of sub-groups of data during the learning process.

End-to-end learning is popular in this area, covering techniques 
which start from the raw protein structure with minimal processing 

Table 2 
Structural features and tools used to extract them. Apart from DISPORED, all tools use 
protein structures as input. 

Residue feature Tools

Accessible surface area NACCESS [163], PSAIA [164], FreeSASA [165], 
DSSP [166], ProtDCal [167]

Half sphere exposure BioPython (Bio.PDB.HSExposure) [168]
Residue depth MSMS [169], PSAIA [164]
Hydrogen bonding patterns DSSP [166]
Bond angles DSSP [166], MDAnalysis [170]
Secondary structure DSSP [166]
Energy FoldX [171], Rosetta [172]
Electrostatics APBS [173]
Disorder DISOPRED [174]
Residue flexibility and 

stiffness
ProDy [175], MechStiff [176]

Perturbation response PRS [177]
Thermodynamics ProtDCal [167]
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and automatically extract features based on optimising prediction 
accuracy in a given end task - thus the intermediate feature re
presentations or embeddings learned are more applicable to the task 
at hand and can be retrained to adapt better to different tasks. 
ContactLib-ATT [208] applies this concept to predict the SCOP 
(Structural Classification Of Proteins) classification of an input 
structure, using attention-based learning [209] on vectors of hy
drogen bond properties extracted from the structure. SASNet [84] is 
an example of such an approach applied to interface prediction. 
Local atomic environments of each surface residue are voxelized and 
a 3D convolutional neural network is applied to the resulting grids of 
each pair of residues to learn their interaction propensity. Interest
ingly, this method was trained based only on residues within bound 
structures of interacting partners and yet performs exceedingly well 
also on unbound counterparts, indicating that complex features 
beyond simple shape complementarity can be learned in this end- 
to-end fashion. dMaSIF [210], the successor to MaSIF (mentioned 
above), performs end-to-end learning of molecular surface re
presentations directly from 3D point cloud data, optimised to each 
prediction task. Removing the reliance on handcrafted features im
proved the running time of dMaSIF by many orders of magnitude 
compared to MaSIF while maintaining and even improving accuracy. 
Recent DL approaches use the concept of “equivariance” (i.e rotation 
and translation of coordinates does not affect the learning process) 
in sequence, graph-based, and diffusion architectures for end-to-end 
predictive and generative learning [211–213,213].

GeoPPI [113] is an unsupervised approach that operates on the 
graph of a protein complex and uses a message passing neural network 
to reconstruct the structure of a perturbed complex, i.e one in which a 
random residue is modified. This enables learning of intrinsic binding 
interactions, optimal for the prediction of protein-protein binding 

affinity. An advantage of such “self"-supervised approaches is that they 
are not specific to a single task while still encoding more global protein 
context; i.e GeoPPI embeddings could easily be used as input for any 
prediction task. This kind of repurposing of unsupervised or pretrained 
embeddings is quite popular in the sequence world [214,215], and 
likely the same will hold through for structure-based ML in the future. 
Pretrained embeddings can also be used in a transfer learning context, 
where they are further fine-tuned to a more specific case of a general 
protein problem, such as the prediction of antibody-antigen interfaces 
from an embedding trained across all protein-protein interfaces [17].

Another interesting and relevant approach is structure-guided 
sequence embeddings [203,216,217] - these make use of structural 
information only in the training stage while the input to the em
bedding algorithm from the perspective of the end user is just the 
sequence. This provides a compromise between the use of structure 
data, which may be computationally expensive to produce, and more 
easily accessible sequence data while still making use of implicit 
structural information. Some recent work [194,218] has even made 
use of the intermediate representations generated by AlphaFold2 
during the structure prediction process instead of, or along with, the 
predicted structure itself - these representations contain informa
tion about homologous sequences and structures, especially useful 
for predicting the effects of mutations or ligand binding, most of 
which is lost on generation of the final structure.

4. Challenges and future directions

Despite rapid progress in the direction of structure-based ML, 
there are challenges to address before it can become as ubiquitously 
used as sequence-based ML. Just as there exists a wide variety of 
tools for answering questions from a sequence perspective, there 

Fig. 2. Different approaches for computational representation of a protein structure which go beyond features of individual residues. For A-D features or representations 
calculated across individual blocks (respectively: spheres, grids, polyhedra, surface patches) are used as input to ML, while for E-F, the entire matrix or graph is often used in 
methods specifically designed for these kinds of inputs. A Overlapping spheres B 3D voxel grids C Geometric tesselations D Molecular surface representations E Distance/contact 
maps F Graph representations.
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need to be tools in structural bioinformatics that are as easy to use, 
as intuitive to interpret, as optimised, and as feature-rich.

4.1. Structure-based approaches are computationally expensive

The universal and widespread use of protein sequence data, 
combined with its one-dimensional nature, has resulted in a diverse 
landscape of highly optimised sequence-based tools and algorithms. 
Many of these, including clustering algorithms, aligners, feature 
extractors etc., scale to hundreds of thousands of sequences with 
ease. This cannot be said for structure-based approaches yet, both 
due to their relative newness and to structural data being much 
more complex than sequence data.

Often this resource intensiveness starts from the very first step - 
i.e. generating structural models. Template-based or homology 
modelling approaches take a matter of minutes to hours for gen
erating a single model, often exacerbated by the need to infer 
multiple models for better robustness and expensive additions such 
as loop modelling for special cases. Recent template-free methods 
such as AlphaFold2 and RosettaFold run in minutes, though scaling 
very poorly with the number of residues, and require GPUs and high 
amounts of memory and disk space. Memory and space require
ments for both are somewhat alleviated by the presence of servers 
such as SWISS-MODEL [219] for template-based modelling and the 
recently released ColabFold [220] for template-free modelling, both 
of which allow running these resource intensive modelling steps on 
shared external servers. In addition, the growth of the AlphaFold 
protein structure database [9] will eventually reduce the need for 
remodelling from scratch for a large number of sequenced proteins. 
Mutants, designed and novel proteins will still need computational 
modelling however, indicating that speeding up the modelling pro
cess is still a relevant problem in the field. Recent approaches that 
use protein language model embeddings as input instead of calcu
lating time-intensive multiple sequence alignments (MSAs) provide 
a step in this direction [221]. With the growth of exascale computing 
resources, modelling structural dynamics via molecular simulations 
is increasingly accessible, though there is a long way to go for this to 
become commonplace.

Once a dataset of structures is gathered or generated, the next 
steps often involve structural comparison and feature extraction. 
Alignment-free structural comparison techniques are relatively fast 
already, but structural aligners that scale to the sizes of datasets 
required for ML have only recently started to appear. These are still a 
far cry from the highly optimised sequence aligners, but many of 
these optimisation techniques can be transferred to structure-based 
approaches and represent a logical next step as ML on structures 
grows in popularity. Extraction of many of the features detailed in 
Table 2 is time consuming as well. While some improvements can be 
made with parallelisation and making better use of modern hard
ware, this is unlikely to scale to hundreds of thousands of proteins in 
a similar timescale as sequence feature extraction.

4.2. End-to-end learning on structures

End-to-end learning, where a DL model learns a mathematical 
function to map an input to a complex output [222], with minimal 
handcrafting of intermediate features and tasks, was seen to be 
highly successful for the extremely complex task of mapping an 
input sequence to a 3D structure [66]. This has been followed by a 
boom in end-to-end learning approaches on proteins sequences for 
function prediction, as well as on protein structures for generating 
designed protein sequences. See [223] for a recent review.

End-to-end learning is becoming popular for a number of tasks as 
large models trained once on huge datasets of structures can then be 
reused for smaller sets of proteins and adapted to similar tasks with 
much less resource consumption and, at the same time, a great 

increase in performance for even sparse amounts of data 
[16,212,213,224,225]. In addition, these approaches can learn to 
make use of relevant intermediate information from proteins that 
may not be required or prioritised for the structure prediction task 
but are crucial for other downstream tasks - for example, residue 
masking in the AlphaFold2 learning procedure increases its robust
ness and improves overall structure prediction but makes it im
possible to predict the structural changes caused by mutations, 
while much of this information is still present in the intermediate 
representations and useful for mutant effect prediction [218].

However, these learners do need huge initial training sets of di
verse data and careful architecture engineering to avoid overfitting 
as well as large amounts of computational resources for training and 
inference. In addition, results from such approaches are difficult to 
interpret in terms of which kinds of protein properties are being 
used to make certain decisions, which is a useful property of more 
handcrafted ML techniques to hypothesise about the underlying 
biology.

4.3. Dynamic representations of structure

Since proteins are inherently dynamic in nature, their true 
“structure” is much more than the rigid three-dimensional co
ordinates which serve as the basis for many of the approaches de
tailed in the previous sections. Instead, a protein is an ensemble of 
possible conformations, with some areas displaying more flexibility 
than others. This is further influenced by the constant interaction of 
proteins with the surrounding solvent, small molecules, nucleic 
acids, peptides and of course other proteins, all of which drive 
conformational changes within the protein. Protein biological ac
tivity often involves adopting specific conformations, contributions 
from local fluctuations, and even large-scale structural transitions 
between different conformations. In fact, the old paradigm that se
quence encodes structure, and structure determines function can 
now be rephrased as sequence encodes structure, structure de
termines dynamics, and dynamics encodes function [226].

Protein flexibility and conformational diversity can be modelled 
in multiple ways. One of the most common approaches is using 
molecular dynamics (MD) simulations, which calculates the force 
exerted on each atom by all other atoms as a function of time using a 
molecular mechanics force field [227]. However, MD simulations, 
which are already computationally extremely expensive, do not 
address covalent bond formation or breakage, both crucial in a 
number of enzyme families. This sometimes leads to the need for the 
even more expensive and challenging set up of Quantum mechanics/ 
molecular mechanics (QM/MM) simulations [228]. Coarse-grained 
modelling with Monte Carlo simulations (CG-MC) and elastic net
work models (ENM, a.k.a normal mode analysis) both provide sim
plified protein representations that still allow for understanding 
some aspects of protein flexibility while greatly reducing computa
tional time [226,229]. structures resolved by cryo-EM, a fast-growing 
number.

Together, these computational techniques can provide informa
tion about globular protein flexibility and mutations [230,231], 
large-scale structural transitions (e.g.from active to inactive con
formations) [232–235], and conformations involved in the formation 
of protein complexes [236]. They have also been used to assess and 
refine 3D models [237–239], improve ligand positioning [240,241], 
and to create receptor ensembles for ensemble docking [242,243]. 
The faster and cruder CG-MC and ENM approaches can be combined 
with atomistic-level MD, providing efficient strategies and starting 
points for multiscale simulations of proteins and complexes [244]. 
While ML is becoming more prevalent in the MD and CG-MC fields, 
to construct force field models, model energy surfaces, and perform 
conformational sampling [245–247], future efforts will likely also 
utilise the flexibility information obtained from these techniques to 
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use as input in ML-based predictors of protein function, with a few 
early examples already doing this in unsupervised [248,249] and 
supervised settings [250,251]. There is some evidence that this can 
improve over static structure-based prediction [252].

4.4. Probing underlying protein mechanisms

A major limitation of DL-based structure prediction techniques, 
where prediction acts merely as an alternative to an experimental 
technique, is that they do not immediately provide us with a deeper 
understanding of the processes behind the folding of proteins as this 
is not their aim [253]. In contrast, many approaches using structural 
data to predict protein properties, especially those in protein family 
ML, have tried to make more explicit use of the rich feature sources 
provided to extract mechanistic insights and interpret the residues, 
causes and processes involved behind specific predictions, as well as 
guide experimental design in the most relevant directions.

Interpretable ML is a crucial concept in bioinformatics, as often 
we are as interested in the how and why of a prediction as we are in 
the what. Thus an important next step in structure-based ML is to 
couple predictions with an understanding of protein biology in 
terms of folding, interaction, function, and the interplay between the 
three. From a protein universe perspective, interpretation becomes 
dependent on the model inspection techniques specific to DL ap
proaches. While this is a nascent field, techniques such as integrated 
gradients, saliency and class activation maps exist for this purpose, 
though they are rarely used yet in structure-based ML tasks [254]. 
Large-scale unsupervised techniques exploring the protein struc
tural space can also be helpful to pinpoint folds, pockets, and in
terfaces upon which evolutionary and function-specific analyses can 
be conducted and for which ML representations and techniques that 
lend well to linking of prediction to cause can be used. Most im
portantly, a tight coupling of computational prediction with ex
perimental set up is required, creating a feedback loop that improves 
prediction and experimentally characterizes relevant functional 
space.

4.5. A unified approach to function

Biological function is only partly determined by an individual 
protein – its genomic and cellular contexts also play a big role. Each 
protein is determined by an underlying gene sequence, but the 
mapping from gene to protein is not so straightforward, complicated 
by the existence of alternatively spliced transcript variants [255], 
pre-protein sequences in need of further processing [256], and 
moonlighting pseudoenzymes [257]. In addition, post-translational 
modifications, the developmental stage of an organism’s life, their 
subcellular localisation and environment in the cell, and even the 
extra-cellular conditions all have an effect on protein expression and 
function [258]. More often than not, proteins also work in concert 
with a wide variety of other entities, ranging from metal ions and 
cofactors, water and other solvent molecules, small molecule li
gands, peptides, nucleic acids, and other proteins.

One area of study focused on integrating these different contexts 
of proteins and their complex interactions is network biology. This 
field is crucial for the accurate modelling of biological systems, and 
given the influx of data from high-throughput interaction assays and 
large-scale multi-omics studies, a great target for ML and DL 
methods. The future holds an increasing number of opportunities for 
this combination of network biology and ML [259] – in under
standing and fighting diseases by inspecting protein and gene in
teraction networks, in locating off-target effects of drugs and 
concocting valuable drug combination therapies based on chemical 
networks and multi-omics data from drug treatments [260], in un
derstanding microbial interactions through metabolic networks, in 
finding biosynthetic gene clusters through gene neighbourhoods, 

transcriptomics, and expression profiling, and in designing synthetic 
gene circuits combining interconnected genes, promoters, and ri
bosome binding sites. Apart from a few examples [261], structural 
data has rarely been used in such large scale integrative approaches 
due to its scarcity and complexity. With the former being solved, the 
future holds promise in finding and using algorithms and ap
proaches to link protein structures with all of their interlinked data 
in a unified approach to model function [262].

5. Conclusion

Protein structure is a central component to understanding bio
logical processes, and thus a great addition to ML approaches in the 
protein bioinformatics field. In this review we described the space of 
structure-based ML in terms of the tasks it can be applied to, and the 
kinds of input representations and algorithms used with a number of 
examples demonstrating the powerful predictions that can be ob
tained. Mainly due to the recent breakthroughs in computational 
structure prediction, the field of structure-based ML is expanding 
very rapidly, with a high number of actively cited preprints in this 
review attesting to this. At the moment, sequence-based features, 
aligners, representations, and ML approaches still far outnumber 
structure-based ones and they are generally much faster as well. 
However, the power of structural information to improve compu
tational prediction of protein biology is alluring, and the growth of 
structural databases, algorithms for alignment and representation, 
and increasing accessibility of relevant DL approaches and archi
tectures will foster a new generation of protein bioinformatics in 
which structure will play a starring role.
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