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Abstract: Amphotericin B (AmB) is a potent antifungal successfully used intravenously to treat visceral
leishmaniasis but depending on the Leishmania infecting species, it is not always recommended
against cutaneous leishmaniasis (CL). To address the need for alternative topical treatments of
CL, the aim of this study was to elaborate and characterize an AmB gel. The physicochemical
properties, stability, rheology and in vivo tolerance were assayed. Release and permeation studies
were performed on nylon membranes and human skin, respectively. Toxicity was evaluated in
macrophage and keratinocyte cell lines, and the activity against promastigotes and intracellular
amastigotes of Leishmania infantum was studied. The AmB gel remained stable for a period of
two months, with optimal properties for topical use and no apparent toxic effect on the cell lines.
High amounts of AmB were found in damaged and non-damaged skin (1230.10 ± 331.52 and 2484.57
± 439.12 µg/g/cm2, respectively) and they were above the IC50 of AmB for amastigotes. Although
there were no differences in the in vitro anti-leishmanial activity between the AmB solution and gel,
the formulation resulted in a higher amount of AmB being retained in the skin, and is therefore
a candidate for further studies of in vivo efficacy.

Keywords: Amphotericin B; Sepigel 305®; Leishmania infantum; cutaneous leishmaniasis; topical
treatment

1. Introduction

Leishmaniasis are a group of diseases caused by species of Leishmania protozoan parasites and
transmitted by the bite of Phlebotomine sand flies. Nearly 12 million people are infected in 98 countries
worldwide [1]. There are three main forms of the disease and the manifestations depend on the
infecting species, the immunological system of the patient and the area of inoculation [2,3]. Cutaneous
leishmaniasis (CL), the most common form, can appear as single or multiple skin lesions, starting as
a papule and potentially evolving into an ulcer; mucocutaneous leishmaniasis involves the destruction
of mucous membranes; and visceral leishmaniasis (VL) is a fatal form affecting internal organs [4]. In the
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Mediterranean area, Leishmania infantum is the main causal agent of VL and CL [5], and particularly in
Spain, L. infantum is the responsible for the endemic CL cases [6,7].

Although there is no universal consensus on the treatment of CL [8], pentavalent antimonials
still remain the first-line therapy, frequently used in combination with pentoxifylline or paromomycin
to maximize treatment efficacy despite the toxic side effects and the development of resistances [9].
Pentavalent antimonials (meglumine antimoniate and sodium stibogluconate) are administered
intravenously or by painful intralesional injections which are frequently discontinued by patients,
which promotes resistances [10].

Amphotericin B (AmB) is a polyene macrolide antibiotic that opens ion channels and aqueous
pores in the Leishmania membrane by binding to ergosterol, making the bilayer thinner and increasing
the permeability and loss of intracellular compounds, thereby triggering lysis and parasite death [11].
AmB intravenous injections are used as a second-line treatment for CL, but they cause severe toxicity,
particularly nephrotoxocity in the case of conventional AmB. Liposomal AmB (Ambisome®) has been
demonstrated to be more effective and less toxic, but its high cost makes its use difficult in developing
countries [12,13].

In the last five years, research directed to improve delivery systems for the treatment of
leishmaniasis has focused considerable attention on AmB as an active component [14], mainly
using a parenteral administration approach. PLGA polymeric nanoparticles have been studied
for intralesional and intravenous administration of AmB [4,15], as well as diverse emulsions and
micelle formulations for intravenous use [16,17]. Considerable research is also being directed into
the development of oral or topical formulations, as they imply greater patient compliance and fewer
side effects. Chitosan has been investigated as a nanocarrier for oral administration [18], as well
as an ingredient in an emulsion of nanoparticles [19]. Dermal delivery has been achieved with
microneedles that generate micropores in the epidermis for the administration of an AmB solution [20].
For the topical treatment of CL, a combination of cyclodextrin plus AmB has been studied in a gel
formulation [21], and ultradeformable liposomes have also been postulated [22].

Pharmaceutical gels are semisolid dosage forms consisting of a solvent thickened by the addition
of colloidal substances. Colloids are polymers with gelling capacity and constitute a dispersed phase,
and the liquid solvent is the continuous phase. The most common solvents used in gel formulation are
water or hydroalcoholic solutions that form hydrogels.

Hydrogels form cross-linked polymer chain networks able to capture large quantities of water in
the spaces between chains and are widely used as vehicles in topical drug delivery [23]. They provide
a refreshing sensation on the skin, are not sticky and have an optimal appearance. Sepigel 305®,
which is composed of the fatty oil isoparaffin, the gelation-promoting polymer polyacrylamide and
the non-ionic emulsifier laureth-7, forms hydrogels that permit the addition of hydrophilic and
lipophilic substances.

The objective of this work was to develop a topical formulation incorporating AmB for CL
therapy. AmB is a very hydrophobic molecule and is poorly soluble in water and most organic
solvents. Using the capacity of Sepigel 305® to include hydrophobic substances, we developed an AmB
hydrogel-based formulation with optimal organoleptic characteristics. The stability was assessed by
examining the physicochemical properties of the gel for two months. Permeation and retention studies
were performed ex vivo in human skin, tolerance was checked in healthy volunteers, and toxicity
and leishmanicidal activity were examined in vitro in promastigotes and intracellular amastigotes of
Leishmania infantum.

2. Materials and Methods

2.1. Reagents

Amphotericin B and Sepigel 305® were purchased from Acofarma (Barcelona, Spain). Dimethyl
sulfoxide (DMSO) and NaOH were obtained from Sigma-Aldrich (Darmstadt, Germany). TranscutolP®
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was provided by Gattefossé (Barcelona, Spain). The distilled water used to perform the assays was
acquired from a Mili-Q® Plus System (Millipore Co., Burlington, MA, USA).

2.2. Parasite Strains and Cultures

For the parasitology experiments, the Leishmania infantum strain (MHOM/ES/2016/CATB101) was
isolated from a patient with CL in Spain, and promastigotes were maintained at 26 ◦C in supplemented
Schneider complete medium at pH 7.0 with 20% heat-inactivated fetal calf serum, 25 µg/mL gentamicin
solution (Sigma, St. Louis, MO, USA), and 1% penicillin (100 U/mL)–streptomycin (100 mg/mL)
solution (Sigma, St. Louis, MO, USA).

2.3. Gel Preparation

Briefly, the gel-based 1% Sepigel 305® formulation was prepared with constant mechanical stirring
(solution A). Subsequently, 150 mg of AmB was dissolved in 5 mL of DMSO, of which 1 mL was slowly
added under agitation to 30 mL of solution A. The resulting solution was adjusted to pH 6 with NaOH
2N solution, thus obtaining AmB gel at a final concentration of 1000 µg/mL.

2.4. Physicochemical Characterization of the AmB gel

2.4.1. Morphological Analysis

The internal morphological structure was observed under scanning electron microscopy (SEM)
using a FEI Quanta 200 (Hillsboro, OR, USA) in high-vacuum conditions. AmB gel was dried off for 14
days under a vacuum desiccator and a sample of 0.1 g was covered with carbon.

2.4.2. Swelling and Degradation Tests

Dried and fresh AmB gel were utilized to perform the swelling and degradation tests. In both
studies, the AmB gel was kept in PBS (pH = 5.5) for 21 min at 32 ◦C. Samples (n = 5) were weighed
after wiping the superficial water at determined timeslots every 3 min. The swelling ratio (SR) was
calculated using the following equation:

SR =
Ws−Wd

Wd

where Ws is the weight of the swollen AmB gel at 3 min intervals and Wd is the weight of dried gel.
The degradation was expressed as the weight loss percentage (WL) and was calculated following

the equation:

WL (%) =
Wi − Wd

Wi
× 100

where Wi is the weight of the AmB gel at the initial point of the experiment and Wd is the gel weight
every 3 min at preselected time points.

2.4.3. Porosity Study

The porosity percentage is based on the sinking of the AmB gel previously dried in absolute
ethanol for 20 min and weighing it every 2 min when the excess of ethanol is blotted.

The porosity percentage (P) was calculated with the equation:

P (%) =
W2 − W1
ρ×V

× 100

where W1 stands for the weight of the dried AmB gel, W2 is the weight of the AmB gel after each
immersion every 2 min, ρ is the density of ethanol and V is the volume of the AmB gel.
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2.5. Stability Studies

Samples of the AmB gel were stored at different temperatures (room temperature (RT), 4 ◦C and
37 ◦C) to determine the stability of the formulation.

The pH values were registered with universal test paper (Ahlstrom-Munksjö, Helsinki, Finland)
by directly spreading the samples (n = 3) and checking the visual appearance and drug loading after 1,
30 and 60 days.

The AmB content was analyzed using a previously validated High-Performance Liquid
Chromatography (HPLC) methodaccording to international guidelines, with linearity, sensitivity,
accuracy, precision and selectivity as described by Sosa et al. (2017) [24]. The calibration curves were
prepared with freshly prepared stock solutions of AmB ranging from 0.39 to 200 µg/mL. The analytical
method was precise, with coefficient of variation between 0.02% and 8.79%, a relative percent error
between−1.16% and 3.46%, and linear within the range of concentrations used (0.39–200µg/mL), with a p
value corresponding to the ANOVA applied to the mean values of 0.05. AmB was determined using
a Waters® 515 HPLC Pump, a 717 Plus Autosampler and a 2487 Dual λ Absorbance Detector (Waters®,
Milford, MA, USA). The assay was carried out using a Kromasil® Eternity C18 (250 mm × 4.6 mm ×
5 µm, Teknokroma, Barcelona, Spain). The mobile phase was a mixture of acetonitrile:acetic acid:water
(52:4.3:43.7 v/v/v) and was pumped through the C18 column at a flow rate of 0.5 mL/min. A volume of
10 µL was injected per sample and finally the elute was analyzed at 406 nm. All measurements were
performed at RT and at isocratic conditions of elution.

Destabilization phenomena were inspected by multiple light scattering and analysis of
backscattering and transmission profiles using a TurbiScanLab® (Formulaction Co., L’Union, France)
with a pulsed near-infrared light source (γ = 880 nm) at 25 ◦C, 1, 30 and 60 days after the preparation
of the AmB gel.

2.6. Rheological Studies

A rotational rheometer (Thermo Scientific HaakeRheostress 1, Thermo Fischer Scientific, Karlsruhe,
Germany) with a cone plate set-up, a fixed lower plate and a mobile upper cone Haake C60/2◦ Ti was
used to carry out the rheological assay. Measurements were taken in duplicate at 25 ◦C and 4 ◦C
24 h after gel preparation, as the rheometer is equipped with a ThermoHaake Phoenix II + Haake
C25P (Thermo Fischer Scientific, Waltham, MA, USA) to control the temperature. The shear rate ramp
program encompassed a ramp-up period from 0 to 50 s−1 for 3 min, a constant shear rate period of
50 s−1 for 1 min and a ramp-down period from 50 to 0 s−1 for 3 min. The data acquired from flow
curves (τ = f(

.
γ) were fitted to different mathematical models (Newton, Bingham, Ostwald-de-Waele,

Herschel-Bulkley, Casson and Cross) and the best fit was selected according to the correlation coefficient
value (r). Mean viscosity curve (η = f(

.
γ)) values were determined from the constant share section at

50 s−1 [25].

2.7. Spreadability Test

The spreadability (n = 3) of AmB gel was determined by placing 0.5 g of the formulation between
a plate and a millimeter glass plate cover. Different weights (2, 5, 10, 20, 50, 100, 200 and 300 g)
were successively placed on top for 2 min each at RT. Spread diameters were measured and fitted
into mathematical models using GraphPad Prism® version 6.0 (GraphPad Software Inc., San Diego,
CA, USA).

2.8. In Vitro Release Studies

AmB release was assessed in an 0.64 cm2 area of Franz diffusion cells (FDC 400; Crown Glass,
Somerville, NJ, USA) on nylon membranes (0.45 µm) (Sterlitech Corporation, Kent, WA, USA).
Pure DMSO solution continuously stirred at 600 rpm and 32 ± 0.5 ◦C was used as the receptor medium
to accomplish sink conditions. Then, 0.75 g of AmB gel and 0.75 mL of AmB solution were deposited
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in the donor compartment. The study was performed in three replicates for a period of 48 h and the
AmB was determined by HPLC-UV at preselected time points.

2.9. Ex Vivo Permeation Studies

Human skin from a donor undergoing plastic surgery at Barcelona-SCIAS Hospital (experimental
protocol reference number: BEC/001/16, Barcelona, Spain) was used to perform the permeation assays in
Franz diffusion cells, as described in the previous section. Skin was sliced into 400 µm thick specimens
and the integrity was checked by measuring the transepidermal water loss (TEWL) parameters [26].
To damage the tissue, the stratum corneum of healthy skin was partially removed 7 times with the tape
stripping technique. Then, both healthy and damaged skin were used in the experiments. After this,
0.75 g AmB gel was deposited on the upper side of the skin, facing the stratum corneum. Transcutol P®

was used as the receptor medium and was kept at 32 ± 0.5 ◦C in the receptor compartment. After 24 h,
the amount of AmB in the receptor compartment as well as inside the skin was quantified by HPLC in
three replicates. The drug retained in the skin was extracted after washing and cutting the permeation
area with an ultrasound bath and cooling for 15 min.

2.10. In Vivo Tolerance Studies

Ten volunteers with healthy skin took part in the study, which was approved by the Ethics
Committee of the University of Barcelona (reference number: IRB00003099; date: 20 March 2018),
following the Declaration of Helsinki guidelines [27]. Participants were asked not to use any kind of
cosmetics on the flexor side of the left forearm in the days before the test. Measurements were carried
out at baseline, 30 min after the volunteers arrived in the test room, and then at 15 min, 1 h and 2 h
after the application of 0.5 g of AmB gel. TEWL and the stratum corneum hydration (SCH) values were
measured by a Tewameter® TM 300 (Courage-Khazaka electronic GmbH) and a Corneometer® CM 825
(Courage-Khazaka electronic GmbH), respectively, in accordance with international guidelines [28].

2.11. In Vitro Cytotoxicity Assay

Three different cell lines were used to establish the cytotoxic effect of the AmB gel—two macrophage
cell lines (RAW 264.7 and J774A.1) and a keratinocyte cell line (HaCat). A suspension of 5 × 104

cells/mL of each cell line was seeded in 96-well plates (Costar 3596, Corning Incorporated, NY, USA)
and cultured at 37 ◦C and 5% CO2 atmosphere in RPMI-1640 complete medium [10% heat-inactivated
fetal calf serum and 1% penicillin (100 U/mL)–streptomycin (100 mg/mL)] for 24 h. After that, serial
dilutions of the AmB gel and AmB solution were added and the conditions were maintained for
another 24 h. Finally, the reagent WST-1 (Roche Diagnostics GmbH) was added at a concentration of
10% to all wells and the plate was incubated for 4 h in the same conditions regarding temperature and
CO2 atmosphere. Absorbances were read at 450 nm (Multiskan EX, Thermo Electron Corporation,
Shanghai, China). To determine the concentration that inhibits 50% of cell viability (CC50), a linear
regression analysis was performed, and the experiments were performed in triplicate [29].

2.12. In Vitro Leishmanicidal Activity against Promastigotes

Promastigotes were cultured in cell culture flasks. To assess their activity, serial dilutions of AmB
gel and AmB solution were prepared in Schneider medium and placed in a 96-well plate (Costar 3596,
Corning Incorporated, NY, USA). A suspension of 106 promastigotes/mL in a logarithmic phase were
added to the previous dilutions and incubated at 26 ◦C for 48 h. Parasitic growth was evaluated using
the phosphatase acid method described by Carrió et al. (2000). Briefly, the samples were lysed, and the
enzymatic reaction was revealed with p-nitrophenyl phosphate by alkalization. The optical density
was read at 405 nm (Multiskan EX, Thermo Electron Corporation, Shanghai, China). The IC50 (the
concentration that inhibits 50% of parasite growth) was calculated by variable transformation and
linear regression analysis, and the experiments were performed in triplicate [30].
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2.13. In Vitro Leishmanicidal Activity against Amastigotes

The cell line J774A.1 was used to study the activity of the AmB gel against amastigotes.
A concentration of 5 × 104 cells/mL was seeded in an 8 LabTek chamber slide system (Nunc®,
Rochester, NY, USA) and incubated for 24 h at 37 ◦C in a 5% CO2 atmosphere. Late stationary phase
promastigotes from a 5-day growth culture were added in a ratio of 1:10 (macrophage:parasites) and
incubated for 24 h in the same conditions. After the elimination of free promastigotes by washing,
fresh RPMI-1640 complete medium with serial dilutions of gel or solution was added, and incubation
was carried out for 48 h in the same conditions. Untreated cultures were included as a positive control.
Slides were fixed and stained with Giemsa to evaluate the number of amastigotes in 300 macrophages
and the percentage of infected cells was determined in triplicate. The IC50 was expressed as the
percentage of growth inhibition with respect to the untreated controls [31].

2.14. Statistical Analysis

The data collected in the studies were analyzed by one-way parametric analysis of variance
(ANOVA), followed by a multiple comparison Tukey test (p < 0.05 = statistically significant differences)
using Prism® V. 5 (GraphPad Software Inc., CA).

3. Results

3.1. Physicochemical Characterization of the AmB gel

Figure 1 shows the homogeneous laminar disposition of undulating layers of AmB gel, with holes
or cavities between the layers.
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Figure 1. Images of amphotericin B (AmB) gel under SEM, (A) undulating layers (887×) and (B) detail
of cavities between layers (5092×).

The AmB gel described a hyperbolic model in the swelling experiment, with a kinetic constant
of k = 3.66 min (r2 = 0.9986). Gel degradation was completed in 10 min and was represented by
a one-phase exponential model, where the kinetic constant was k = 0.31 min−1 (r2 = 0.9992) and the
porosity percentage was ~85.47% ± 0.73%. The swelling and degradation graphs generated by the
AmB gel are shown in Figure 2.
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Figure 2. Swelling ratio (left) and degradation (right) of AmB gel during 21 min in PBS medium.

3.2. Stability Studies

The AmB gel presented a pH value of 5–6 throughout the experiment. The yellow colour of the
AmB formulation remained unchanged at all temperatures tested in the study period. No lumps or
precipitation were observed.

Figure 3 shows the backscattering profile of Amb gel at 25 ◦C over a period from 1 to 60 days.
No sedimentation, flocculation or coalescence phenomena were detected.
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Figure 3. Laser backscattering (BS) profile of AmB gel over 60 days at 25 ◦C. The left side corresponds
to the bottom of the vial containing the sample, whereas the right side corresponds to the sample
behavior at the top.

The initial AmB content revealed the gel formulation had 95.99% entrapment efficiency.
The concentration of AmB in the gel over time is summarized in Table 1. The AmB content of
the gel samples did not present statistical differences (p > 0.05) at the tested temperatures after 60 days
of storage at 4 ◦C, whereas a significant decrease in the AmB content of the gel was observed when it
was maintained at RT and 37 ◦C.

Table 1. Concentration of AmB and SD at the beginning of the experiment (t0 = initial time) and 60
days later (t60) at different storage temperatures.

AmB (µg/mL ± SD)

t0 t60 RT t60 37 ◦C t60 4 ◦C

AmB gel 959.90 ± 84.27 199.65 ± 27.99 70.95 ± 13.59 916.70 ± 99.78

3.3. Rheological Studies

The AmB gel presented rheo-thinning (pseudoplastic) behavior at 25 ◦C and 4 ◦C (Cross model;
r2 = 0.9996 and r2 = 0.9998, for the two temperatures, respectively). The viscosity at 50 s−1 was 1542.5
± 3.49 mPa·s, and there was ahysteresis loop with an area of 194.4 Pa/s at 25 ◦C. The viscosity at 50 s−1
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was 1457 ± 4.04 mPa·s, and there was also a hysteresis loop with an area of 160.1 Pa/s at 4 ◦C. Figure 4
shows the rheological graphs.
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3.4. Spreadability Test

The spreadability of AmB gel followed a hyperbola kinetic model:

[S = Smax ×W/(Kd + W)]

where S represents the extended surface in cm2, Smax is the maximum extension surface in cm2,
W stands for the weight attached in g and Kd is the kinetic constant in g. Figure 5 shows the resulting
graph and equation.
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3.5. In Vitro Release Studies

The amount of AmB released from the solution and gel at 48 h of the experiment was 753.01 ±
83.43 µg/cm2 and 501.02 ± 58.17 µg/cm2, respectively (Figure 6), which represents an AmB release of
100.40 ± 11.13%from the solution and 66.80 ± 8.9% from the gel. The mathematical model with the best
fit was one-phase exponential association.
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3.6. Ex Vivo Permeation Studies

Table 2 summarizes the amount of AmB obtained in the permeation studies with damaged and
non-damaged skin. No AmB flux was observed across the skin barrier.

Table 2. Amounts of AmB found in the permeation studies after 24 h in damaged and non-damaged skin.

Assay
AmB gel

Non-Damaged Skin Damaged Skin

Permeation (µg/cm2) ± SD Not detected Not detected
Retention in skin (µg/g/cm2) ± SD 2484.57 ± 439.12 1230.10 ± 331.52

3.7. In Vivo Tolerance Studies

At 15 min of AmB gel application, decreased values of TEWL were observed, as well as an increased
hydration of the stratum corneum, with statistically significant differences compared with all the time
points in the experiment. The graph in Figure 7 shows the variations of biomechanical properties.
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hydration) values for 2 h after AmB gel application (* p < 0.05; ** p < 0.01; *** p < 0.001).

3.8. In Vitro Cytotoxicity Assay

As seen in Figure 8, the CC50 of Sepigel 305® in the cell lines assayed was higher than 75.0 µg/mL.
The CC50 of the AmB gel and solution was higher than 25.0 µg/mL (Figure 9).
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3.9. In Vitro Leishmanicidal Activity against Promastigotes and Amastigotes

Table 3 summarizes the activity on promastigotes and amastigotes. The IC50 of the AmB solution
and AmB gel was 0.35± 0.02 µg/mL and 0.56± 0.12 µg/mL against promastigotes, and 0.91± 0.07 µg/mL
and 0.87 ± 0.10 µg/mLagainst amastigotes, respectively. The selectivity index (SI) values of AmB
solution and AmB gel were higher than 25 for both macrophage cell lines.

Table 3. Activity in vitro against promastigotes and amastigotes, cytotoxicity of AmB solution and
AmB gel and selectivity index (SI).

Formulations (µg/mL)
IC50 (µg/mL ± SD) SI CC50 (µg/mL)

Promastigotes Amastigotes SIRAW SIJ774A.1 RAW 264.7 J774A.1

AmB solution 0.35 ± 0.02 0.91 ± 0.07 27.52 27.52 >25 >25
AmB gel 0.56 ± 0.12 0.87 ± 0.10 28.74 28.74 >25 >25

4. Discussion

Although AmBisome®, an AmB liposomal formulation for intravenous administration, isvery
effective for the treatment of visceral leishmaniasis, its high price limits its use in the routine treatment
of CL, despite an agreement with the World Health Organization and Gilead Sciences resulting in
a price reduction in developing countries [32]. A topical formulation that achieves dermal drug
delivery is a goal in CL treatment, as it will allow patients to administer their own treatment, avoid the
discomfort of painful injections and reduce costs.

Gels are colloidal systems used in drug delivery to the skin that may improve the distribution and
stability of compounds, as well as reduce undesirable systemic effects [33]. The self-emulsifying agent
Sepigel 305® allows a simple and cost-effective formulation of gels for topical use, as the emulsification
process does not require any heat energy [34]. In the current study, we formulated an AmB gel
made with multifunctional polymer formulation Sepigel 305® as a possible topical alternative in the
CL therapy.

Drug release is affected by the degradation of the gel in a physiological environment and
also the swelling ratio—the faster the swelling of the gel is accomplished, the greater its porosity.
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The degradation rate of the AmB gel was constant and completed in 10 min, indicating it was not
dependent on the remaining amount of polymer. The high porosity percentage of the AmB gel
was corroborated by SEM images, which revealed undulating layers uniformly arranged and spaces
between the layers, resembling holes or cavities. We reported similar levels of swelling, degradation
and porosity in a previously characterized meglumine antimoniate Sepigel 305® [35].

Near the isoelectric point, the pH of AmB gel was 5–6, which means it is biocompatible and suitable
for skin application [36]. The visual appearance of the formulation remained unchanged throughout
the experiment, which was in line with the backscattering profiles used to evaluate the physical stability
of the formulation over a long period of time. The superimposed graphs (Figure 3) showed variations
below 10%, which is indicative of stability [37,38]. The variability in the AmB concentration at t0 in
the analysis content could be explained because different batches of AmB gel were prepared in order
to dispose of fresh formulation to perform the experiments. Moreover, the AmB content in the gel
remained constant over a span of 60 days at 4 ◦C, indicating that the drug is chemically stable when
refrigerated. By contrast, at RT the stability analysis indicated that less than 20% of the main active
ingredient was detectable, and it was even lower when stored at 37 ◦C. This could represent a limitation
for the storage and clinical manipulation, as refrigeration is not always available. These stability
results differ from the marketed AmB liposome formulations (AmBisome®, Abelcet®), where the
stability is guaranteed for around 24–48 h at 2–8 ◦C once the reconstitution has been performed. Also,
Rizzo et al. (2018) found rapid AmB degradation within 2 days when analyzing its stability in different
combinations of AmB solutions [39]. Other studies support the use of excipients for semisolid dosage
forms to increase the stability of AmB [24,38,40].

Rheological analysis provides information about aspects of the product application. The AmB
gel exhibited rheo-thinning behavior (a term used by the Rheology Society to replace pseudoplastic
behavior) and high viscosity, and showed a hysteresis loop in the rheograms, indicating a probable
thixotropic comportment of the gel. Thixotropic behavior is an advantage in topical formulations,
favoring application, as the viscosity of the formulation varies with friction and retention on skin is
enhanced [41]. Friction reduces the viscosity of thixotropic fluids, which permits a good spreadability,
and the initial status of the gel is recovered once the friction stops. The high spreadability of the AmB
gel, as shown in Figure 5, can be explained by the dependence of the viscosity on the shear rate and
shear time. When the gel was submitted to deformation (added weights), the viscosity decreased and
spreadability was enhanced.

The AmB release profile was assessed to check that the gel was well formulated and permitted
the AmB liberation to monitor the kinetic behavior [42]. The data obtained demonstrated a constant
release for 48 h in a Fickian diffusion process. At 48 h, the amount of AmB released through the nylon
membranes was 100% for the AmB solution because there were no impediments, and it confirms the
suitability of the membrane, while AmB from the gel was 66.80% liberated. It is an expectable value
for a modified release formulation where the excipients play an important role in the liberation of the
drug. In a comparative study, Potúcková et al. (2008) reported that drug release was increased when
the excipient in the marketed formulation was replaced by Sepigel 305® [43].

Permeation was studied on both damaged and non-damaged skin, as CL lesions can manifest as
a nodule or a papule entirely covered with epidermis, or as an ulcer without this layer. No permeation
of AmB from the gel was detected in the receptor compartment in either skin type after 24 h. In contrast,
high amounts of AmB were retained in both types, with higher values in the non-damaged skin,
suggesting that the stratum corneum acts as a reservoir of the drug. The reservoir effect of skin is
helpful in the topical treatment of CL nodules or papules because the local depot effect potentiates the
treatment duration as this kind of lesion is covered by the epidermis layer [44]. In contrast, this depot
effect will not occur in ulcerated lesions. The high deposition of AmB in both kinds of skin observed
in this study could indicate a long availability, as commonly required. The achieved levels of AmB
retained in both kinds of skin resulted in a higher value than the IC50 of AmB for amastigotes, which is
considered a goal for successful treatment [45].
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Studies on other topical AmB formulations applied on human skin and porcine vaginal mucosa
have also reported the absence of AmB in the receptor compartment and high amounts retained inside
tissues [24,38]. This behavior can be explained by the high lipophilicity of AmB, which limits its ability
to pass through the aqueous dermal structure. Our studies in both kinds of skin reflect that AmB
is able to cross the stratum corneum to the epidermis and dermis. Our results with stripped skin
(“damaged skin”) are comparable to those obtained with porcine vaginal mucosa, which does not
present stratum corneum layer, and AmB can reach the dermis but is not distributed in the systemic
circulation. This suggests that after topical application, part of the drug would remain in the epidermis
and dermis, thus avoiding systemic side effects. As well as providing a high drug concentration in the
skin, an effective topical treatment of CL should target the amastigotes of Leishmania parasites in the
phagolysosome of infected macrophages in the papillary dermis, which is found immediately below
the epidermis [46].

In contrast with these results, Jaafari et al. (2019) reported an AmB flux through mouse
full-thickness skin to the receptor compartment after the application of AmB liposomes and corroborated
the permeation in vivo when the same liposomes were administered in a mouse model [47]. Different
studies carried out with AmB nanoemulsions formulated with surfactants for topical delivery reported
a high retention of the drug in rat skin and flux to the receptor compartment [40,48,49]. The surfactants
in the nanoemulsions enhance AmB permeation by destabilizing the cellular bilayer lipids in the
stratum corneum, increasing deformation and enhancing the permeation [50]. It is also relevant that
rat skin may lead to a greater permeation of drugs [51], as observed in studies reporting the higher
permeability of rat skin compared with human skin [52,53].

The biomechanical parameters of transepidermal water loss and stratum corneum hydration
were monitored for 2 h after application to evaluate skin integrity. The values obtained revealed
a decrease in the TEWL immediately after AmB gel application, as well as an increased hydration
of the stratum corneum due to an occlusive effect of the formulation. This was probably caused by
the high lipophilicity of the drug. The TEWL and hydration of the stratum corneum basal values
were recovered over 1 h after application, indicating changes in the skin are reversible. Furthermore,
no discomfort after the gel application was reported by the volunteers, who did not experience any
burning sensation, irritation or itching.

Sepigel 305® and the AmB gel and solution did not show toxicity in the range of dilutions
assayed on the three cell lines tested in the experiments. The results corroborate previous reports of
safety of using Sepigel 305® in topical formulations, with the exception of one case of allergic contact
dermatitis [54].

No differences in the in vitro activity against Leishmania infantum promastigotes and amastigotes
were observed between the AmB solution and the formulation, indicating an absence of a synergistic
effect between the gel excipients and the AmB.

Due to the safe usage of other AmB formulations that has been previously reported in healthy
volunteers [55], and prompted by the study of López et al. (2018), who concluded that their 3%
AmB cream tested in patients with uncomplicated CL needed reformulation of either the vehicle or
concentration [56], we propose Sepigel 305® as a suitable vehicle for 0.1% AmB for topical treatment.
Allowing a good release of the AmB with high amounts of the drug retained in excised human
skin, the formulation could be a potential tool for CL treatment, as only a few doses of AmB are
required to kill the parasite. Further assays in an animal model should be performed to establish the
antileishmanial efficacy of the AmB gel.

5. Conclusions

The development of a topical treatment for CL is desirable, as painful intralesional treatments
are widely rejected by patients. In this context, we elaborated an AmB gel with optimal sensorial and
functional properties that was shown to be stable for 60 days at 4 ◦C. The organoleptic characteristics
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of the gel are compatible with usage on skin, as it has a suitable pH, good spreadability and drug
release, and did not produce irritation.

Damaged and non-damaged skin were exposed to amounts of AmB considered sufficiently high
to exert local action against CL. No AmB was detected in the receptor compartment due to its high
molecular weight and lipophilicity. This represents an advantage as the treatment would avoid
systemic toxicity.

No cytotoxic effects were observed in the macrophage or in the keratinocyte cell lines. Although
the antileishmanial activity of AmB was not affected by the gel formulation in vitro, the AmB gel
should undergo in vivo testing to further evaluate its activity and efficacy in the treatment of CL.
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