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Cobalt-catalyzed branched selective hydro-
allylation of terminal alkynes

Jieping Chen1, Jiale Ying1 & Zhan Lu 1,2

Here, we reported a cobalt-hydride-catalyzed Markovnikov-type hydroallyla-
tion of terminal alkynes with allylic electrophile to access valuable and bran-
ched skipped dienes (1,4-dienes) with good regioselectivity. This operationally
simple protocol exhibits excellent functional group tolerance and exceptional
substrate scope. The reactions could be carried out in gram-scale with TON
(turn over number) up to 1160, and the products could be easily derivatized.
The preliminary mechanism of electrophilic allylation of α-selective cobalt
alkenyl intermediate was proposed based on deuterium labeling experiment
and kinetic studies.

Skipped dienes derivatives are important motifs in biologically
active natural products and medicines1–3. Traditionally, there are
several methods for the preparation of these useful compounds,
such as allylation of alkenyl metallic reagents4–7, allyl metalation of
alkynes8–12, and Alder ene reaction of alkynes13,14. However, these
methods are mainly restricted to using stoichiometric amounts of
metallic reagents or limited substrate scope. Compared to cur-
rently available methodologies for non-catalytic regioselective
allylation of alkynes (Fig. 1a)8–12,15,16, metal-catalyzed hydroallylation
of alkynes provides another step-economical approach to access
skipped dienes. In 1998, Trost and co-workers reported ruthenium-
catalyzed addition of alkenes with terminal alkynes to access
skipped dienes with excellent functional group tolerance under
mild conditions via ruthenacyclopentene intermediate17,18. This
methodology was developed to assemble complex building blocks
rapidly from simple alkenes and alkynes17–21. However, the aromatic
terminal alkynes were not explored. In 2007, Hilt and co-workers
reported cobalt-catalyzed addition of alkenes with internal alkynes
to deliver 1,4-dienes with high chemo- and regio-selectivity22.
However, the terminal alkynes were not suitable due to the pre-
ference to form polymerization products23,24.

Metal-hydride catalyzed selective electrophilic hydroallylation of
terminal alkyne could be considered as an alternative and step-
economic method for the synthesis of skipped dienes (Fig. 1b)25–31.
However, selective electrophilic hydroallylation of terminal alkyne
with allylic electrophile via metal hydride strategy is still challenging:
(1) Due to the higher reactivity and instability of in-situ generated

alkenyl-metal intermediate, its compatibility with other reagents, such
as ligand exchange with metal hydride, carbometallation of alkynes,
would affect the chemoselectivity of the reaction. (2) Compared to the
direct coupling of unactivated alkyl electrophiles with metal-alkenyl
intermediate32–34, activated allylic electrophiles were prone to process
substitution reaction with other nucleophiles, such as in-situ gener-
ated metal-hydride intermediate. (3) Due to the weak electronic and
steric effects of terminal alkynes, the metal hydride species would like
to undergo the anti-Markovnikov type insertion rather than Markov-
nikov type insertion25–31,35–38. In 2017, Lalic and co-workers reported an
elegant copper-hydride-catalyzed anti-Markovnikov type hydroallyla-
tion of terminal alkynes for the synthesis of skipped dienes with
moderate to excellent regioselectivity (Fig. 1c)35. Subsequently, Xiong
and Zhang reported one example of anti-Markovnikov hydroallylation
of terminal alkynes36. Recently, Lu and Y. Fu developed a cobalt cata-
lyzed regio- and enantioselective hydroalkylation of fluoroalkenes37.
To the best of our knowledge, highly branched selective electrophilic
hydroallylation of terminal alkyne with allylic electrophile via metal
hydride strategy has not been reported. With our continuous interests
on base-metal-catalyzed selective hydrofunctionalization reactions
(hydrogenation, hydroboration, and hydrosilylation) of unsaturated
bond39–46, we set out to explore base-metal-catalyzed selective
hydroallylation of terminal alkyne.

In this work, we report cobalt-hydride-catalyzed branched selec-
tive hydroallylation of terminal alkynes with allylic bromides as elec-
trophiles to access branched terminal skipped dienes with good
regioselectivity and excellent functional group tolerance (Fig. 1d).
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Results
Reaction optimization
We performed the study by using 4-ethynylanisole 1a as a model
substrate, 2-methylallylbromide 2a as an allylic electrophile, and
PMHS as a hydride source (Table 1). The Co(OAc)2 was used as a
catalyst, N-(2-(4,5-dihydrooxazol-2-yl)phenyl)quinoline-2-carbox-
amide (L1) and LiOtBu were used as the ligand and base, respec-
tively. The reaction was performed in a solution of tetrahydrofuran
(THF) at 50 °C for 24 h to afford electrophilic hydroallylation pro-
duct in 42% yield with 83/17 b/l (entry 1). A significant increase in
the regioselectivity was observed when a larger gem-dimethyl
group was used on the oxazoline moiety, which gave rise to skip-
ped diene in 70% yield with >95/5 rr (ratio of regioselectivity;
entries 1-3). However, when the size of the substituent was further
increased, the regioselectivity slightly decreased (entries 4-6)
which implied that the steric hindrance of the substituents on the
oxazoline moiety might affect the yield and regioselectivity.
Changing the steric effect on pyridine moiety, the selectivity of the
reaction decreased slightly (entries 7-8). Using various hydro-
silane, such as PhSiH3, (EtO)3SiH, and Ph2MeSiH led to poor yield
and selectivity (entries 9-11). Using Ni(OAc)2 instead of Co(OAc)2, a
poor yield of hydroallylation was observed (entry 12). Additionally,
Cu(OAc)2 could not promote this transformation. However, the
Sonogashira coupling reaction of allyl bromides with terminal
alkynes could be promoted under mild conditions (entry 13) (We
should thank one of the reviewers for the suggestion of using

nickel or copper catalyst to performing the control experiments.).
Using CoBr2 instead of Co(OAc)2, this transformation could pro-
cess smoothly (entry 14). The model reaction could be completed
in 20min (entry 15). The (L3-H)•CoBr complex reported in our
previous studies46 could also be used as an efficient catalyst (entry
16). The standard conditions were identified as 1.0 mmol of term-
inal alkyne, 0.50mmol of allylic electrophile, 5 mol% of (L3-H)
•CoBr, 0.75 mmol of LiOtBu, and 0.75mmol of PMHS in a solution
of THF (1 mL) at 50 °C.

Substrate scope
Compared to other olefins, 2,4-disubstituted skipped dienes are
difficult to obtain through classic Wittig reaction, due to the keto-
enol tautomerism of 1,3-diketone. Thus, with the optimized con-
ditions in hand, we mainly examined the substrate scope of 2,4-
disubstituted skipped dienes (Fig. 2). However, due to the pre-
sence of Lewis acid metal catalysts and corresponding bases, the
inevitable side reaction of terminal alkynes self-polymerization
and dehalogenation of allylic bromides would reduce the yield of
allylation products. Respectively, 3b and 3c could be obtained on
gram scale. The volatile dienes (3d, 3af) could also be obtained via
distillation on gram-scale. Various allylic bromide (2d-2i) could be
tolerated in this transformation to deliver skipped diene with
moderate yield and excellent regioselectivity. Z−1,2-disubstituted
bromide (2j) was also investigated. Interestingly, SN2′-type skip-
ped alkene (3j) was obtained as a major product in this
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transformation. The significant regioselectivitity differences
between 3 f and 3j might owe to the different E/Z stereo-
configurations and steric hindrance of allyl bromides between 2 f
and 2j. Besides allylic bromides, different allylic electrophilic
reagents such as allyl iodide and allyl phosphate, could also be
tolerated in this transformation with slightly decreased yield and
regioselectivity (3b, 3d). Benzyl electrophiles, which exhibit
similar properties with allylic reagent, could also be transformed
smoothly on gram-scale with excellent regioselectivity47,48. The 1,4-
bis(bromomethyl)benzene (2 l) could also react with terminal
alkynes smoothly to obtained the 1,1-disubstituted alkenes with
excellent regioselectivity. For broader synthetic interests, a vari-
ety of functional groups on phenyl rings were investigated. Methyl,
trifluoromethyl, fluorine, bromine, chlorine, protected alcohol,
and ester could be well tolerated to afford the skipped dienes (3m-
3v) in moderate yields with good to excellent regioselectivity (55-
76% yield, 92/8 - >95/5 b/l). The alkynes containing heterocycles,
such as pyridine 1w and thiophene 1x, could also be tolerated to
deliver branched terminal skipped dienes in 48-50% yield. Con-
jugated enyne (1 y), silyl alkyne (1z), and cyclopropyl acetylene
(1aa) could undergo this hydroallylation reaction smoothly. Sim-
ple terminal alkynes (1ab-1ae) were also amenable to this trans-
formation to deliver the corresponding product in 55-67% yields
with 91/9 to >95/5 rr. Additionally, terminal alkynes contained in
bioactive molecules were investigated. Naproxen, menthol, and

geraniol derivative (1ag-1ai) could be employed to deliver corre-
sponding products in 45-69% yield.

Catalytic efficiency and synthetic applications
In order to verify the catalytic efficiency of the catalyst, the reaction
using 0.05mol% of catalyst was carried out to afford skipped dienes in
58% yield which indicated that the TON was up to 1160 (Fig. 3a). The
1,4-diene could undergo double hydrosilylation under different con-
ditions todeliver silyl heterocycle549 or 1,5-disilyl compound650 in 63%
and66% yield respectively (Fig. 3b). Double bondson skippeddiene 3d
could be selectively converted via hydrosilylation reaction to deliver
4-vinyl silane compound 751. The 3d could aslo proceed alkylation-
peroxidation with 1,3-dicarbonyl compounds and tert-butyl hydro-
peroxide to deliver functionalized carbonyl compound 8 (Fig. 3c)52.
The reaction of 1,4-bis(bromomethyl)benzene with alkyne under
standard conditions could deliver a disubstituted alkene which could
be further converted to conjugated trisubstituted alkene 9 via cobalt-
catalyzed alkene isomerization (Fig. 3d)53. The conjugated alkene dis-
played promising aggregation-induced emission (AIE) properties54–56.

Mechanistic studies
To elucidate the C(sp2)-C(sp3) bond forming process in this transfor-
mation, control experiments were conducted. 3(E)-deuterated allylic
bromide 10 was prepared to distinguish substitution at the 1- and
3-positions of the electrophile. This reactionwas performed to give the

Table 1 | Effect of reaction parameters

Entrya Variations from “standard conditions” Yield of 3/4 (%)b α/βb

1 L1 42 83/17

2 L2 40 89/11

3 L3 70 >95/5

4 L4 55 94/6

5 L5 45 91/9

6 L6 70 85/15

7 L7 83 91/9

8 L8 53 92/8

9 L3; PhSiH3 37 81/19

10 L3; (EtO)3SiH 14 76/24

11 L3; Ph2MeSiH 25 88/12

12 L3; Ni(OAc)2 < 5 –

13 L3; Cu(OAc)2 –c –

14 L3; CoBr2 66 >95/5

15 L3; 20min 72 >95/5

16 (L3-H)•CoBr; 1 h 75 (69)d >95/5
aThe reactionwFias conductedusing 1a (1mmol),2a (0.5mmol), PMHS (0.75mmol), LiOtBu (0.75mmol),Co(OAc)2 (5mol%), and ligand (6mol%) in a solutionof THF (1mL) at 50 °C for24hunderN2;
PMPp-methoxyphenyl,PMHS (CH3)3SiO[(CH3)HSiO]nSi(CH3)3, n = 1.55. bDetermined by 1HNMRusingMeNO2 ormesitylene as an internal standard. c41%NMRyield of by-productwas observed. dThe
isolated yield in the parentheses.
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deuterated skipped dienes 11 in 42% yield with 0.17 D at terminal car-
bon and 0.69 D at sp3 carbon (Fig. 4a). This result indicated that sub-
stitution occurred through the SN2′-like process accompaniedwith the
partial SN2process via attack of thepostulated cobalt species at the 1,3-
position of the allylic bromides. To elucidate the hydrometallation
process, the hydroallylation of deuterium labeling phenylacetylene 12
was performed in 30min to give the deuterated skipped alkene in 59%
NMR yield with 0.40 D at C(sp2) 1(E)-position and 0.40 D at C(sp2) 1(Z)-

position (Fig. 4b). Due to the presence of strong bases, deuterium
atoms might loss during this process. This result combined with our
previousmechanistic studies indicated that the E/Z ratio of deuterated
product might owe to the relatively fast Crabtree-Ojima-type
isomerization42,46. The reaction could undergo smoothly in the pre-
sence of 1,1-diphenylethylene or butylated hydroxytoluene (BHT),
which might rule out the radical reaction pathway (Fig. 4c). The
hydroallylation product (3 g, h, j, k) showed that the configuration of
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the allylic bromides would affect the SN2 and SN2′ selectivity of this
transformation. Additionally, the π-allyl pathway could not be exclu-
sively ruled out.

Quantitative kinetic studieswere alsoperformed to determine the
roles of alkyne, allylic bromide, hydrosilane, and (L3-H)•CoBr complex.
Kinetic studies on alkyne showed that with a zero-order rate depen-
dence on alkyne, however, as the concentrations of alkyne increased,
the initial rates (kin) of the reaction decreased (Fig. 5a). This result
demonstrated excessive alkyne might be a ligand to coordinate with
cobalt catalyst leading to the reduction of the rate of reaction. Mea-
surements of the initial rates (kin) of the reaction with different con-
centrations of allylic bromide and (L3-H)•CoBr complex showed a
corresponding rise in the rates of the reactions. Plots of kin versus the
concentrations of allylic bromide and (L3-H)•CoBr complex (Fig. 5b, c)
gave two linear curves (slope = 1.19 × 10−4 Ms−1; 6.79 × 10−3 Ms−1), which
suggested a first-order rate dependence on allylic bromide and (L3-H)
•CoBr complex. Similar kinetic studies on PMHS showed no change in
kin within a certain concentrations range (Fig. 5d), indicating a zero-
order rate dependence on hydrosilane. These quantitative kinetic

studies suggests that the nucleophilic substitution of cobalt(II) alkenyl
intermediate with allylic bromide could be the turnover-limiting step.

Based on the experimental studies and previously reported
literatures35,42,46,57–59, a possible mechanism is shown in Fig. 6. The
cobalt hydride species C was obtained from the reaction of active
intermediate (L3-H)•CoBr with LiOtBu and hydrosilane. The alkyne
coordination with species C followed by the insertion of terminal
alkyne into the cobalt hydride bond delivering majorly α-selective
cobalt-alkenyl intermediate E. The quick isomerization balance
between E and cobalt carbene zwitterion F led to the E/Z ratio variation
based on the deuterium labeling experiment. The following SN2′ and
SN2-like process of E with allylic electrophile generates species to
deliver the corresponding skipped dienes. The hydrosilane and alk-
oxide might be likely responsible for the observed regioselectivity
increase during the catalysis process.

Discussion
In summary, we reported an efficient cobalt-hydride catalyzed bran-
ched selective electrophilic hydroallylation of terminal alkynes with
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allylic electrophile to access terminal skipped dienes with good
regioselectivity and functional group tolerance undermild conditions.
The reaction could be carried out on gram scale, and the TON was up
to 1160. The primary mechanism of electrophilic allylation of α-selec-
tive cobalt alkenyl intermediate was proposed based on deuterium
labeling experiment and kinetic studies. Various metal-hydride-
catalyzed regioselective hydrofunctionalization of terminal alkynes
will be further explored in our laboratory.

Methods
Materials
ForNMRspectraof compounds in thismanuscript, see Supplementary
Information. For synthesis of ligands and substrates, see Supplemen-
tary Methods. For the optimization of reaction conditions, Supple-
mentary Table 1. For isotopic labeling experiment, radical trapping
experiment, and kinetic studies, see Supplementary Figs. 1–18 and
Tables 2–9.

General procedure for hydroallylation of terminal alkynes
A 25mL Schlenk flask equipped with a magnetic stirrer and a
flanging rubber plug was dried with flame under vacuum. When
cooled to ambient temperature, it was vacuumed and flushed with
N2. This degassed procedure was repeated for three times. Then
(L3-H)•CoBr (0.025 mmol, 5 mol%), THF (1.0 mL, 0.5 M), PMHS
(0.75 mmol, 1.5 equiv.), terminal alkynes (1.0 mmol, 2 equiv.),
allylic bromides (0.5 mmol, 1.0 equiv.), and LiOtBu (0.75mmol, 1.5
equiv.) were added sequentially. The reaction was run at 50 °C for
30min to 4 h. Then the resulting solution was quenched with
10mL of PE and filtered through a pad of silica gel, washed with PE/
EtOAc (5/1) (3 × 20mL). The combined filtrate was concentrated
under vacuum and the ratio of b/l was monitored by 1H NMR ana-
lysis. The mixture was purified by flash column chromatography to
give the corresponding product.

Data availability
The authors declare that the data Supplementary the findings of
this study are available within the paper and its Supplementary
Information file. The experimental procedures and characteriza-
tion of all new compounds are provided in the Supplementary
Information.
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