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Abstract

Accurate and reproducible quantification of the accumulation of proteins into foci in

cells is essential for data interpretation and for biological inferences. To improve

reproducibility, much emphasis has been placed on the preparation of samples, but

less attention has been given to reporting and standardizing the quantification of

foci. The current standard to quantitate foci in open-source software is to manually

determine a range of parameters based on the outcome of one or a few

representative images and then apply the parameter combination to the analysis of

a larger dataset. Here, we demonstrate the power and utility of using machine

learning to train a new algorithm (FindFoci) to determine optimal parameters.

FindFoci closely matches human assignments and allows rapid automated

exploration of parameter space. Thus, individuals can train the algorithm to mirror

their own assignments and then automate focus counting using the same

parameters across a large number of images. Using the training algorithm to match

human assignments of foci, we demonstrate that applying an optimal parameter

combination from a single image is not broadly applicable to analysis of other

images scored by the same experimenter or by other experimenters. Our analysis

thus reveals wide variation in human assignment of foci and their quantification. To

overcome this, we developed training on multiple images, which reduces the

inconsistency of using a single or a few images to set parameters for focus

detection. FindFoci is provided as an open-source plugin for ImageJ.
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Introduction

The accumulation of proteins into cytologically-detectable foci is used as a

phenotypic measurement in a wide range of biological applications. For example,

the accumulation of the phosphorylated form of cH2AX is widely used as a

biomarker for genotoxic insult, since it accumulates into distinct foci in the

nucleus in response to DNA damage [1, 2, 3, 4, 5, 6]. The quantification of foci is

often done manually, leaving the method open to inconsistencies and human

error (e.g. [7]). Quantification and detection of foci may lead to different

biological interpretations as well as a lack of reproducibility of biological results

that is not due to true biological differences, but rather attributable to human

error in focus detection. One particular concern with manual detection of foci is

high variability between experimenters [7]. Often, the first image published and

the quantification of foci of a particular protein becomes the ‘ground truth’ to

which all subsequent studies are expected to adhere.

Improvement of consistency in focus detection can, in theory, be achieved by

automated computational tools with parameterized algorithms. As a starting

point, each pixel with higher values than all the surrounding pixels are candidate

foci. This is, however, non-selective leading to undesired false foci that are not

large enough, not of the correct shape or are artefacts of noisy data. To reduce the

selection of false foci, parameters can be introduced that select characteristics such

as height, size, shape and distance from other foci [8, 9, 10]. Such optimization of

parameter settings is usually carried out manually for individual proteins in a

labour-intensive fashion. Standardization of parameter settings is therefore only

commonly employed to set up analysis pipelines, when a large number of samples

will be analysed [10, 11]. Reproducibility of such analyses are also limited by the

availability of commercial software [7]. With each additional parameter the

software can be more specific at the expense of being less intuitive for the user (e.g.

[12]). Ideally the algorithm should: (1) allow extensive sampling of all possible

parameter combinations in an intuitive manner; (2) be fast enough to provide

real-time results so that changes to parameters can be visualised [9]; and (3)

support automated pipelines for batch analysis [10].

One important missing component of open-source focus identification

software in biology is the possibility for users to train the detection algorithm to

match or predict their assignments (machine learning). This would likely improve

consistency of analysis in different images. Machine learning is used in a range of

biomedical applications and can be used as predictive or detective tools that

greatly enhance accuracy and reproducibility in a time-efficient manner

[13, 14]. In microscopy, machine learning has been used to analyse a

range of biological processes ranging from the detection of subcellular

protein localization to the prediction of mitochondrial fission/fusion events

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Generic

focus detection using machine learning has, however, not been developed yet.

Being able to employ a training algorithm that experimenters can ‘train’ to match

or predict their assignments without having to manually select or measure a vast
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list of poorly-understood parameters would allow users an intuitive approach to

focus identification. Employing a training algorithm would also have the

advantage of fast, repeatable focus detection.

Here, we identify four factors that influence consistency in focus selection

between experimenters and provide open-source, freely available software that can

be trained to closely match experimenters’ patterns of focus detection. FindFoci

allows individuals to train the algorithm to closely match their focus assignment

using a small number of images and then apply the parameters across a large

number of images. FindFoci facilitates transparency in the parameters used by

different experimenters to detect foci and provides visual tools that can be used to

compare experimenters’ detection of foci. Parameters can be stored with images

for future use, thereby facilitating best-practise for subsequent re-analysis by the

same or different experimenters. The pipeline is fast, which allows a

comprehensive parameter space to be searched and makes it time efficient

compared to manual detection. Training on single images very closely matches

manual assignment for that image, but application of the parameters across the

dataset shows a large variation in the success rate of focus detection. We show that

training the algorithm on multiple images significantly improves concordance

between experimenters and is therefore preferable to manual focus detection or

training on selected single images. Subsequent batch-analysis using the parameters

derived from multiple images significantly improves consistency in image analysis

compared to software where a range of parameters are selected manually by users

without training the detection algorithm (e.g. CellProfiler [10]).

Results

Experimental set-up

Consistency in the identification of homogenous foci with high intensity and low

background is straightforward. One way of achieving this is during the front-end

processing of the biological samples, for example by treating with detergents. This,

however, causes data loss of potentially significant biological importance. In this

programme of work, we wanted to (1) explore the consistency of focus detection

when foci are of heterogenous intensities, shapes, and sizes and when background

noise is significant; (2) determine whether current standards of manually

determining a range of parameters gives consistent focus quantification; and (3)

assess whether machine learning can be used to mimic human assignments,

thereby making focus quantification transparent, fast, and consistent.

To explore human variation in focus assignment and the sources thereof we

used spread, meiotic nuclei from budding yeast stained with antibodies against

two different DNA repair proteins, Zip3-GFP and Msh4-GFP. We chose Zip3 and

Msh4 because both proteins have been quantified manually in several publications

and varied numbers of foci have been reported [36, 37, 38]. 21 images of spread

meiotic nuclei from budding yeast were imaged using fluorescently labelled

antibodies staining for Zip3-GFP (images 1–14) or Msh4-GFP (15–21; all 21
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Figure 1. Example image and manual focus identification. (A) Spread nuclear DNA from budding yeast
meiosis stained with DAPI (DNA, left) and antibodies against Zip3-GFP (middle). The merged image is shown
in false colour on the right. Scale bar 5 2 mm. (B) Experimenter-labelled maxima (foci) of Zip3-GFP within the
DNA region (determined by the experimenter). (C) Quantification of foci from the same 21 images by three
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images are available in Dataset S1). A representative example image is shown in

Figure 1A, where the foci vary in intensity and size and the DNA region does not

have a visually distinct boundary. Each image was analysed manually by three

independent experimenters (P1–P3) using ImageJ to identify foci within the DNA

region. Experimenters were asked to manually count the foci on the DNA,

without being provided with prior knowledge of a DNA mask. No restrictions on

how to determine background, brightness/contrast or other image parameters

were set and experimenters were free to use any image visualization tools such as

heatmaps and 3D relief maps to detect foci. Two experimenters had substantial

knowledge of previously published data on the quantification of Zip3 and Msh4

foci (‘experts’). The third experimenter was a person without prior knowledge of

Zip3 and Msh4 focus counts (‘lay’ person). The two experts were given the brief to

count foci as part of their research. This allowed us to compare how researchers

within the field count foci. The ‘lay’ person, without pre-conceived knowledge of

Zip3 and Msh4 foci, was briefed to identify foci with a ‘significant’ (self-selected)

intensity above background. All three participants were informed that two other

experimenters were analysing the same image. This ensured that all participants

counted as carefully as possible. An example of manual assignment of foci is

shown in Figure 1B. In this example, there are several foci that were picked that

may appear to be outside of the region of the DNA (Figure 1A, DNA). This is due

to the fact that experimenters were free to assign where they considered the DNA

to stop. In this case, all foci were indeed within the DNA mask, as determined

using an Otsu thresholding algorithm (data not shown). This emphasizes the

subjectiveness of the manual assignment task.

Human variation in spot assignment

The manual assignments of foci in 21 images by the three experimenters resulted

in an average number of spots per cell of 65, 66 and 46 (Figure 1C). Despite two

experimenters being ‘experts’ in the field their quantification were significantly

different from each other (p ,0.001, Kruskall-Wallace). The ‘lay’ person and one

of the experts appeared to detect similar numbers of foci (P1 versus P2,

Figure 1C). These observations show that despite previous knowledge of the field,

experts differ in their judgement of which foci to include in their quantification.

Similar findings were reported for cH2AX [7].

To understand the nature of the different quantification, we compared the

focus assignments between the experimenters by iteratively assigning the closest

pairs of foci, up to a radius of 8 pixels. We chose 8 pixels because the average focus

width was approximately 5 pixels, thus allowing experimenters to click on either

side of the focus’s maximum. Matched pairs and the remaining unmatched

different experimenters (P1 to P3). ‘Expert’ refers to scientists with previous knowledge of Zip3 or Msh4
quantification. Magenta bars represent the arithmetic mean, the black bar in the box-and-whisker plot shows
the median value and all individual data points are shown as dots. Whiskers extend 1.56 of the interquartile
range or to the minimum/maximum value, when these fall within 1.56 of the interquartile range.

doi:10.1371/journal.pone.0114749.g001
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assignments were counted and match statistics between experimenters were

computed as follows:

Jaccard~
matches

matcheszunmatched1zunmatched2

Recalli~
matches

matcheszunmatchedi
where i [ 1,2

F1~2:
Recall1:Recall2

Recall1zRecall2

The Jaccard score is a measure of the overlap between the two sets, where a

score of 0 indicates no overlap between the two datasets and a score of 1 indicates

complete overlap or concordance. In contrast, Recall is a measure of how much

one set overlaps with another. Recall1 measures the fraction of foci selected by one

experimenter that matched those of a different experimenter. For example,

experimenter P1 versus experimenter P2. Conversely, Recall2 measures what

fraction of foci selected by the second experimenter matched those of first

experimenter. In this case experimenter P2 versus experimenter P1. The two

Recall scores can be combined using an equal weighting to yield the F1 score. Both

the Jaccard score and the F1-score range from 0 to 1 and evaluate the agreement

between the two experimenters. A score of 0 indicates no similarity and a score of

1 demonstrates 100% similarity. The average Jaccard scores between pairwise

experimenters were 0.725 (P1 versus P2), 0.679 (P1 versus P3) and 0.680 (P2

versus P3). The average F1-scores were 0.834, 0.790 and 0.798, respectively

(Table 1).

Using an algorithm that aligns the selected position to the closest local

maximum (focus) only marginally improved the Jaccard and F1-scores (see

below). This suggests that setting the 8 pixel comparison distance between any

two experimenters adequately allows for variability in the position within a

specific focus that the experimenters click to select it (e.g. Figure 2, arrows).

Overall, the Jaccard values and F1-scores suggest that 20–30% of focus

assignments are unmatched between any given two experimenters.

Four identified sources due to human error and personal

interpretation cause variation in focus assignment

To understand the differences between experimenters in focus assignment, the

matched and unmatched foci were visualised by superimposing the assignments

from each experimenter on the same image (Figure 2). Matches were labelled in

green and unmatched points from each set in either blue or yellow. Visual
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inspection of the images revealed at least four sources of mismatches. First, we

observed a few cases of dual assignment (clicking the same spot twice; Figure 3A,

matches in green, assignment by a single experimenter in magenta); or

experimenters selecting a region without any local maxima (Figure 3B). The two

main factors influencing the focus quantification, however, were interpretation of

diffraction-limited foci as doublets (Figure 3C) and setting different background

levels (Figure 3D). Both of these were based on experimenters’ personal

interpretation. For example, experimenter P2 selected many incidences of

‘doublets’ compared to P1 and P3. In contrast, P1 set a low background level

compared to P2. Thus, although P1 and P2 had similar overall focus counts

Table 1. Comparison of manual focus selection by two different experimenters across 21 imagesa.

Comparison Jaccard F1-score

Experimenter 1 Experimenter 2 Raw Aligned Change (%) Raw Aligned Change (%)

P1 P2 0.725 0.734 1.27 0.834 0.839 0.54

P1 P3 0.679 0.679 0.03 0.790 0.789 20.13

P2 P3 0.680 0.687 0.98 0.798 0.804 0.68

aMatches were iteratively assigned using the closest pairs within 8 pixels. The table shows the comparison of the raw spot assignments and the aligned spot
assignments where points are moved to their closest local maximum (see methods for details). Scores are averaged over 21 images.

doi:10.1371/journal.pone.0114749.t001

Figure 2. Comparison of focus assignments between experimenters. An example image shows matches
(within 8 pixels) of two experimenters in green using the position of experimenter P1. Unmatched foci that
were selected only by experimenter P1 are shown in yellow and unmatched foci selected only by
experimenter P2 are indicated in blue. The Jaccard score for this comparison was 0.81. Only spots within the
DAPI stained region were extracted for analysis. Arrows indicate examples where experimenters have clicked
a short distance from a maximum.

doi:10.1371/journal.pone.0114749.g002
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(Figure 1C), they arose from very different methods of selecting foci for inclusion

in the quantification. P3 set the highest arbitrary threshold for ‘background’ noise,

removing a large number of ‘faint’ foci (e.g. Figure 3D, magenta). This resulted in

a the lowest mean count of foci (Figure 1C).

Low intensity foci cause discordance in quantification between

experimenters

If experimenters differ in their assessment of background noise, then one would

expect faint foci to cause discordance between experimenters, whereas high-

intensity foci should be picked by both experimenters in the three pairwise

comparisons. To quantify whether this was the case, we plotted the intensity of the

marked pixels from each experimenter in a scatter plot (a plot for a typical image

is shown in Figure 4). Matches are marked with a cross; unmatched points are

marked using a single intensity value and are placed on the X or Y axes for each

experimenter, respectively. The majority of unmatched points on the X and Y axes

are in the lower range of the pixel values (Figure 4). This shows that unmatched

foci selected by only one of the experimenters tend to be the less intense maxima.

A best fit line is shown for the intensity of matched pairs between experimenters

(Figure 4, blue lines). Deviation from the line indicates variation in the marked

centre of the focus, which should be the identical maximal value for the spot. This

Figure 3. Sources of inconsistency in focus selection between experimenters. Matches are shown in
green and unmatched points in magenta. (A) Dual assignment of a single maximum by experimenter 2
(‘double clicking’); (B) mislabelling of non-true maxima; (C) interpretation of diffraction-limited foci as a single
focus or dual foci (‘doublet’); and (D) arbitrary selection of different background levels to determine inclusion of
foci in the analysis. Arrows indicate the discordant foci in magenta.

doi:10.1371/journal.pone.0114749.g003
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Figure 4. Interpretation of low intensity foci causes variation in focus quantification between
experimenters. Plotted are the pixel intensity of the foci selected by experimenter P1 and P2 (left panel); P1
and P3 (middle panel); and P2 and P3 (right panel) for an example image from the dataset. Foci that were
selected by both experimenters (within 8 pixels of each other) are shown as crosses (‘Match’); foci selected by
experimenter P1 only are shown as a dash on the X-axis; and foci selected by experimenter P2 are shown as
a dash on the Y-axis. A best fit line for the matched pairs is shown in blue.

doi:10.1371/journal.pone.0114749.g004

Figure 5. Agreement of focus selection between any two experimenters decreases with reduced focus
intensity. Foci were arranged by pixel intensity and divided into quartiles. The match statistics (Jaccard
scores) were computed for each quartile (Q1–Q4) and the entire set (‘All’). Images are arranged in
descending order of overall Jaccard score. Q1 consisted of the 25% of foci with the lowest intensity, Q2 the
26th–50th percentile (‘low intensity’); Q3 the 51st–75th percentile (‘medium intensity’), and Q4 the 25% of foci
with the highest intensity (‘highest intensity’).

doi:10.1371/journal.pone.0114749.g005
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highlights inaccuracy in one or both experimenters in selecting the pixel with the

maximal value in the focus.

To investigate the effect of pixel intensity on matched foci, the union of the two

sets of foci was ranked by intensity values and divided into quartiles (Figure 5;

images arranged by overall Jaccard score). The match statistics for each quartile

were computed individually. Figure 5 shows the Jaccard score for each quartile

over all of the images in the dataset for each pair of experimenters. The trend was

for the lower quartiles (Q1 and Q2), which have lower intensity foci, to have a

lower score than the upper quartiles (Q3 and Q4). Thus, the less intense foci are

less likely to be selected by both experimenters. Consistent with this, the average

Jaccard score of each successive quartile increases (data not shown) indicating that

the less intense spots are where the differences between experimenters are more

pronounced.

Pairwise analysis between experimenters was complemented with a clustering

analysis of the assignments between all three experimenters. We used a centroid

linkage clustering algorithm to count foci that were selected by all three

experimenters (Figure 6). Briefly, the matches between two experimenters were

used to create clusters (size 2) using the average coordinates. The unmatched foci

were used to create clusters of size 1. The clusters were compared to the third

experimenter resulting in clusters of size 3 (all three experimenters picked the

focus), size 2 (two experimenters picked the focus), or size 1 (a uniquely identified

focus by a single experimenter). To avoid bias, we repeated this process three

times, using all possible initial combinations of experimenters. Figure 6A shows a

box plot of the raw and normalized intensity values of the foci for each cluster size

(‘concordance’) for all 21 images combined. From this, it is clear that the intensity

of foci selected by all three experimenters is higher than those selected by two or

one alone. Furthermore, analysis of individual images shows that this conclusion

applies consistently across all of the 21 images (Figure 6B). We conclude that the

intensities of foci are higher for larger clusters indicating there is more agreement

between the experimenters on the high intensity foci.

An automated focus identification algorithm can be trained to

match human assignments

Our analysis of the variation in experimenters’ manual assignment of foci led us to

develop an automated training algorithm with three defined goals. First, we

sought to understand how different people are assigning foci, thus the algorithm

should contain descriptive parameters that can be easily understood. Second, the

algorithm should allow improved consistency of focus assignment across different

experimenters, in essence eliminating human errors. Third, the algorithm should

be fast and easily applied by biological users to produce transparent outputs.

To this end, we created FindFoci, an open access, freely accessible and intuitive

plugin for ImageJ/ImageJ2. In essence, it allows users to select a representative (or

multiple representative) image, mark the foci, and use this to train the algorithm

to find the optimum parameters for focus selection. Parameter combinations are

FindFoci
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Figure 6. The average focus intensity is higher with increasing agreement between experimenters
(cluster size or concordance). Greedy clustering was performed by first comparing foci selected by two
experimenters using an 8 pixel radius. When the focus was selected by both experimenters, a cluster of size 2
was generated. Foci that were only picked by a single experimenter were used to seed a cluster of size 1. The
clusters were compared to the third experimenter and any matches used to increase the cluster sizes such
that matches between all three experimenters gave rise to cluster size 3. Clustering was performed using
experimenter order 123, 231 and 312 and all results combined for plotting (A). Because experimenters clicked
on slightly different parts of the focus, the focus intensity was calculated as the average pixel value selected
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assessed using the Jaccard or F1-score against the manually-selected foci. The

parameter combination generating the best score can then be applied to many

different images (batch mode). The outputs include marked-up (or annotated)

images of selected foci, masks of foci with different rendering, as well as an

extensive table of results.

The focus-finding algorithm identifies and expands local maxima using a

downhill gradient to mark all pixels assigned to each focus. The algorithm allows

foci to be filtered using parameters such as area, intensity, and height above the

saddle points (with neighbouring maxima) or the height above background. To

train the algorithm, the FindFoci Optimiser enumerates a range for each

parameter and determines the best combination of values of the included

parameters given a representative image. In processing each image, rather than

analysing each combination of parameters individually, the optimiser caches

staging points (i.e. stores intermediate results) to avoid repeated processing of

duplicate parameters. For example, the algorithm identifies all foci, saves the

intermediate results, then processes those results using filters for different focus

size, height, etc. This staging avoids having to recalculate the results that would be

unchanged for each new combination of parameters, thus increasing speed of

analysis. In this study, we used 19,800 combinations of parameters, with an

average run time of 49.5 ¡ 8.6 (SD) seconds per image (or 2.5 milliseconds per

parameter combination). If any of the parameters from the highest scoring

combination are at the boundary of the input range, then the optimiser will

recommend expanding the range. This ensures the search space for the parameters

is adequately sampled during the training of the algorithm.

In order to assess the performance of the algorithm in predicting human

assignment of foci, we trained the algorithm on all of the manually-labelled

images from each experimenter (3 experimenters, 21 images per experimenter, 63

in total). The training of the algorithm produces a ranked list of parameter

combinations for each image. The ranking is determined by the Jaccard or F1

score for the foci identified by the algorithm compared to the manually-selected

foci from the image on which the algorithm was trained. The top score for each

image was averaged across the 21 images from each experimenter (Table 2,

‘Original’). Note that for each image the optimal parameter combination may

differ. The average F1-scores per experimenter were 0.967 (P1), 0.933 (P2), and

0.958 (P3). This shows that the algorithm is able to closely match the human

assignments on a per image basis.

by the experimenters. The normalized values for the cluster were calculated by dividing the average pixel
value by the median value of all of the selected foci from the same image. The horizontal, dashed line
indicates a normalized value of 1. The analysis of individual images are shown in (B).

doi:10.1371/journal.pone.0114749.g006
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Parameterized focus detection reveals human inconsistency in

focus assignment across images

Next, we sought to assess whether the optimal parameter combination obtained

from a single image is able to detect foci accurately from other images, either from

the same experimenter or from images marked by different experimenters. To this

end, we trained the algorithm on a single image to match the foci identified by

one experimenter and then used the parameter combination to predict foci for all

21 images. These predicted foci were then compared to the manually-detected foci

from each experimenter (i.e. 3 6 21) using the F1 score. This process was

repeated for each of the manually-labelled images, resulting in 63 6 63 (3969)

pairwise comparisons.

Figure 7 shows a heatmap of the F1 scores when comparing the foci obtained

using each of the 63 optimised parameter sets (‘Image used for training’) to every

other manually-labelled image (‘Image with manual focus selection’ (‘Test’)). F1

scores close to 1 are show in light green and white, whereas scores below 0.4 are

shown in magenta. Horizontal lines show how well a single set of parameters that

have been derived from one image apply across all of the manually-scored images.

For example, when image 5 from experimenter P1 was used to train the algorithm,

the parameters obtained predicted the manual selection on the other 62 images

very poorly (arrow labelled ‘A’). This may indicate that the experimenter has

changed her/his assignment method for a certain image or the image may be non-

representative of the dataset. For example, the background surrounding this

nucleus may be higher.

Vertical lines show how well foci selected from a single manually-scored image

is predicted by every set of optimal parameter combinations from the 63 training

images. For example, there were several examples of high scoring as well as low

scoring vertical lines. The high scoring vertical lines indicate that parameters

obtained from other images were equally applicable to the image (e.g. image 14

from experimenter P1, arrow labelled ‘B’). These high scoring images suggest that

the foci may be very strong and easy to recognize. The low scoring vertical lines

show examples where the experimenter has used a very different style of focus

selection compared to the other experimenters. For example, images 15 to 21 from

experimenter P3 showed low F1 values when compared to training from other

images. When used for training, image 21 from experimenter P3 also poorly

Table 2. The FindFoci algorithm closely matches human assignmentsa.

Experimenter Original Aligned Change (%)

P1 0.967 0.972 0.483

P2 0.933 0.944 1.175

P3 0.958 0.963 0.608

aThe FindFoci algorithm was trained on individual images and the highest F1-score reported and averaged over the 21 images per experimenter. The
analysis was performed using the original selected pixel coordinates (‘Original’) or the coordinates after alignment to their appropriate local maximum
(‘Aligned’).

doi:10.1371/journal.pone.0114749.t002
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predicted foci in all other images (arrow labelled ‘C’). Visual inspection of these

foci selected by experimenter P3 suggested that the image may have been partially

or incompletely scored. Thus, although the algorithm matches P3’s assignments

for images 15-21 well, P3’s selection of foci in these images is clearly different

from those of experimenters P1 and P2.

The central diagonal running from the upper left to the lower right corner

indicates the optimal score for each image (Table 2, ‘Original’). These occur when

the same image is used for both training and testing, i.e. the maximum score when

training the algorithm on that image. The central diagonal was consistently high

for experimenters P1 and P3 but less pronounced for experimenter P2, indicating

that the algorithm is less able to match P2’s method of assignment. This is likely

due to the selection of doublets by P2 (Fig 3C), which are not chosen by the

algorithm.

The majority of the points, i.e. those that are not on the central diagonal (also

referred to as ‘off-diagonal’), indicate how successfully the parameters from one

image can be applied to another. These off-diagonal points had lower F1 scores

compared to the central diagonals (especially for P3), suggesting that the

experimenters were picking foci with different parameters in the 21 images.

Although P2’s central diagonal scores were lower than P1’s and P3’s, training on

P2’s images gave good concordance across other images from the same

experimenter as well as P1. Indeed, some of the training on P2’s images gave

higher concordance with P1’s images compared to other P2’s images within the

same set. Thus, although the algorithm is less capable of matching P2’s focus

assignments, the parameters provided by training are applicable to other

manually-scored images. Finally, P3’s parameters were poorly applicable to P1

and P2 suggesting a very different style of scoring foci. In particular images 3, 4,

14, 15, and 21 trained by P3 gave poor F1 scores on the images from P1 and P2

(dark-green/purple horizontal lines; arrow labelled ‘C’, Figure 7).

If experimenters scored the same foci in the same image, then one would expect

a central diagonal in each of the nine squares. Although central diagonals were

observed within experimenters, they were not present between experimenters.

This indicates that the parameters for one image are no more applicable to the

same image or to a different image, when two different experimenters are

compared. This supports the notion of highly variable, inconsistent, subconscious

‘parameter’ usage by experimenters when manually analysing images. This

concept is further supported by the absence of high scoring (white) horizontal

lines, i.e. no image on which the algorithm was trained gave particularly high

performance across all other images.

Figure 7. Parameters obtained from a single image show wide variation in performance when applied across the entire dataset. The heatmap
shows the F1 scores for the optimal parameters from the training image (‘Image used for training’) applied to all 21 assigned images from each experimenter
(‘Image with manual focus selection’ (‘Test’)). P1, P2, and P3 refer to the experimenter ID. Arrows labelled A to C are discussed in the main text. The colour
key and histogram of all F1 scores are shown above the heatmap.

doi:10.1371/journal.pone.0114749.g007
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The dataset in which Msh4-GFP foci were picked (images 15–21) yielded

particularly low F1 scores, both when trained on P3’s focus selection (horizontal

lines) or when trained on P1’s or P2’s images and subsequently tested against P3’s

manual assignments (vertical lines). A non-parametric ANOVA analysis revealed

that this dataset (Msh4-GFP foci) contributed substantially to the variation in the

F1 scores (13%; p ,0.001) suggesting that images from this dataset were

particularly variable. Further analysis revealed that image 21 analysed by

experimenter P3 caused the majority of variation in focus assignment (10%). This

is the image that was incompletely annotated (see above). When image 21 was

removed from the analysis, the contribution of the Msh4-GFP dataset was no

longer significant. This shows that using parameters optimised on a single image

may cause severe discordance in identified foci when applied to other images. In

summary, the algorithm can be trained to replicate focus identification on every

image. However, variation within and between the F1 scores when the parameters

from a single image are applied to other images reveals substantial variation on an

image-by-image basis.

Automated training across multiple images from one

experimenter increases consistency when compared to other

experimenters

Clearly, using parameter settings from a single image to analyse other images as

part of a larger dataset may lead to significant variation (Figure 7). We next

sought to determine whether the inconsistency of using parameter combinations

derived from training on a single image could be reduced by training on multiple

images. To do this, we created a plugin that allows training on multiple images.

We trained the algorithm on possible combinations of 1 to 21 images from each

experimenter and tested the derived parameter combinations on each of the

manually-derived images. When the algorithm was trained on a single image (21

possible combinations) or two images (210 possible combinations) from one

experimenter, we used all possible combinations of images to train the algorithm.

When the number of combinations of images used for training was large (e.g. for

n511 there are 352,716 possible combinations), we randomly sampled 100 unique

combinations to be used for training. In Figure 8, we have plotted the average F1

score of parameters obtained from each combination of images when tested

against 21 manually-marked images from the same experimenter (e.g. P1 versus

P1; Figure 8 upper row) or against images from a different experimenter (e.g. P1

versus P2; Figure 8- rows 2 and 3). I.e. when a single image or 20 images were

used to train the algorithm, 21 F1-comparisons to manually-selected images were

obtained. The average F1-score per parameter combination (in this case 21) was

plotted. When two images or 19 were used to train the algorithm, 210 average F1-

scores obtained from prediction across the 21 manually-labelled images were

obtained; for n53 to n518, 100 average F1-scores were plotted; and for n521,

one F1 score was obtained.
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Figure 8. Training on multiple images improves consistency in focus detection. The FindFoci Optimiser was trained using 1 to 21 images. When the
number of combinations of images used for training was small (n51 or n520 has 21 possible combinations; n52 or n519 has 210 possible combination) all
possible combinations were used. For larger numbers of possible combinations, a random subset of 100 combinations were used to select images for
training of the algorithm. The parameters obtained from training were tested against the manually marked images from each experimenter and the
F1-score calculated. P1 to P3 refers to experimenter ID, with the first mention indicating the images used for training and the second referring to the
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manually-assigned images against which the parameter combination was assessed. I.e. ‘P1 versus P2’ means that P1’s marked images were used for
training and the parameters were used to predict focus selection by P2.

doi:10.1371/journal.pone.0114749.g008

Batch

Figure 9. Flow chart of the automated workflow provided by the FindFoci software. Interactive tools are
shown in green; automated scriptable tools are shown in yellow. After images have been collected, manual
assignment of foci can be improved by the FindFoci Helper, which aligns clicked points to their true maximum.
The FindFoci Optimiser can then be trained on the resulting labelled image to identify the best parameters for
the algorithm. The FindFoci GUI provides a real-time update of the results while the user changes the
parameters. Training on multiple images can be achieved using the Multi-Image Optimiser plugin in order to
improve consistency. The number of initial images used for training is discussed in the main text. The
parameters can be applied to a large set of images using the FindFoci Batch plugin.

doi:10.1371/journal.pone.0114749.g009
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We observed three trends. Firstly, training on an increasing number of images

improved the consistency in all nine comparisons, as shown by the reduced

interquartile range and reduction in outliers above and below the median

(Figure 8, 9 individual plots). Thus, training on multiple images avoids skewed or

biased batch analysis from parameter combinations derived from a single image,

as demonstrated in Figure 7. Secondly, when the algorithm was trained on a

subset of the test images (P1 versus P1; P2 versus P2; and P3 versus P3; first row

Figure 8), increasing the number of images used in training significantly

improved the median F1-score and reduced the number of outliers. In contrast,

the median remained fairly stable, but outliers were greatly reduced when

experimenters were compared against each other as a function of the number of

images used to train the algorithm (Figure 8, rows 2 and 3). Visual inspection of

the data in Figure 8 suggests that the majority of variation (i.e. outliers) are

removed when roughly half of our dataset is used to train the algorithm. In the

majority of cases, even using only five images reduces the low-scoring outliers

significantly. Only in the case of comparing P1 or P2 against P3 is a larger number

of images required to reduce the extreme outliers. This is due to the different

focus selection method used by P3 in images 15–21 (Figure 7). Finally, when

trained on all 21 images, the average F1 value when comparing experimenters

increased up to 9% (Table 3, % Change). We conclude that training on multiple

images reduces the risk of bias from using a non-representative image (or images)

for training. Reduction of bias by using an automated algorithm trained on

multiple images can explain the increase in F1 scores between experimenters

compared to their manual assignments.

Spot alignment before training improves the performance of the

training algorithm

Human assignment of foci is biased towards picking bright spots in an image,

which is subject to error due to the large dynamic range of the image that cannot

be effectively viewed by the human eye. Visual tools such as heatmaps and 3D

relief maps of intensities can aid the visualization of the dynamic range. However,

ultimately, contrast and background subtraction is subjective and tends to be

adjusted to favour either bright or low-intensity spots. Subjective adjustment of

contrast invariably leads to pixel saturation in the displayed image (Figure 3D)

and an inability to select the true maxima in a subset of foci. We therefore

investigated whether the inconsistencies of assignments between experimenters

could be reduced by semi-automated assignment, where foci selected by the

experimenter are aligned to their nearest local maximum. For each image all of the

potential maxima were identified and the surrounding pixels assigned to each

maximum using an uphill gradient algorithm (see Materials and Methods). The

manual assignments from each experimenter were processed in order of intensity,

aligning each to their true maximum using the assigned maximum for the selected

pixel. Only one point could be aligned to each maximum. In the event that the

maximum had already been used the second point was aligned to the highest
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available maximum within a search radius. The radius was set as the distance to

the unavailable true maximum thus searching for other candidates within an

equivalent error margin. Foci without an available maximum were unmoved.

To prevent alignment to insignificant maxima (i.e. background noise), the

alignment was not allowed if the new maximum was below a threshold height.

This threshold was defined using all of the heights from the aligned maxima.

Thresholding methods were: the bottom Nth percentile; 1.56 the interquartile

range below the Q1–Q2 boundary; the mean of all of the heights for the aligned

maxima minus a factor, which was multiplied by the standard deviation of the

summed heights; and an adaptive threshold set by lowering the height from the

highest point until the number of missed maxima above the threshold was a set

fraction of the total maxima (missed and aligned). The last method relies on the

human assignments including the most intense maximum in the image, i.e. 0% of

maxima are missed when the threshold is the intensity of the highest maximum.

This was the case for our dataset.

After thresholding, the alignment was assessed by comparing the aligned spots

to all of the potential maxima above the height of the lowest aligned focus. F1

statistics were computed and used to assess the best method for aligning foci. The

F1 scores were maximal when the adaptive thresholding method was used, with an

allowed missed fraction less than 15% of the total maxima. I.e. clicked points are

aligned to their local maximum and an intensity threshold for accepting the new

maxima is set where at least 85% of true maxima would be detected. This prevents

alignment of clicked points to insignificant, low intensity maxima. When using

the optimal method, the average distances that foci moved were 0.767, 1.77 and

0.953 pixels for each experimenter, respectively, indicating that most foci chosen

were close to their true local maximum.

The aligned assignments were then compared between experimenters by

iteratively assigning the closest pairs up to a radius of 8 pixels. The average Jaccard

score improved 1.27, 0.026 and 0.098 percent when compared to the unaligned

assignments and the F1 score changed 0.54, 20.13 and 0.68 percent (Table 1).

This indicates that the comparisons between experimenters’ assignments were not

Table 3. Comparison of F1-scores from human assignments or automated focus assignment to other experimentersa.

Training Set ‘Ground truth’ Original Algorithm Change (%)

P1 P2 0.834 0.855 2.45

P1 P3 0.790 0.786 20.51

P2 P1 0.834 0.909 8.93

P2 P3 0.798 0.826 3.46

P3 P1 0.790 0.839 6.18

P3 P2 0.798 0.839 5.06

aThe average F1 score between experimenters across 21 images using the original manually assigned foci from each experimenter (‘Original’) or the
automated focus assignment trained across a dataset (‘Algorithm’) when compared against the ‘ground truth’, defined by another experimenter. Matches
were iteratively assigned using the closest pairs within 8 pixels. Values are shown to three significant figures.

doi:10.1371/journal.pone.0114749.t003
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greatly altered by the point alignment, likely due to the generous 8 pixel

comparison radius applied.

We subsequently addressed whether prior alignment would improve the

automated detection of foci on a per image basis. To assess this, the algorithm was

retrained on each image using the aligned assignments for each experimenter. This

improves the average F1 score 0.61, 0.48 and 1.2 percent when compared to the

unaligned assignments (Table 2). Thus, although the F1 scores were already very

high, indicating that the algorithm was able to closely match human assignments,

alignment to local maxima prior to training nevertheless improved the ability of

the algorithm to predict human focus selection.

To understand whether the prior alignment to local maxima would improve

automated assignment of foci between experimenters, the algorithm was retrained

across the dataset using the aligned assignments with the highest combined F1

score used to set the optimised parameters. As shown in Table 4, training on the

aligned images results in higher scores compared to the unaligned images for each

experimenter. This is not unexpected given that alignment of spots will ensure

more spots are positioned on a maximum, increasing chances of matching the

results obtained by the algorithm. More critically, when the optimal parameters

from one experimenter are applied to another’s assignments the scores are

improved compared to training on unaligned images in all but one case. This

demonstrates that alignment of foci before training improves the performance of

the training algorithm.

Automated training of FindFoci outperforms focus detection by an

optimised batch-analysis (‘pipeline’) in CellProfiler

The current state-of-art to identify foci consistently is to set up a workflow of

software algorithms to detect foci using the same parameter combination applied

to all images. The parameters must be selected appropriately for the image analysis

Table 4. Focus alignment prior to training of the algorithm improves the F1-scorea.

Training Set Test Set Raw Aligned Change (%)

P1 P1 0.925 0.930 0.581

P1 P2 0.855 0.863 0.963

P1 P3 0.786 0.787 0.151

P2 P1 0.909 0.915 0.654

P2 P2 0.891 0.893 0.138

P2 P3 0.826 0.820 20.669

P3 P1 0.839 0.845 0.725

P3 P2 0.839 0.839 0.024

P3 P3 0.887 0.889 0.209

aParameter combinations for the detection algorithm were optimised for all images in a given dataset (‘Training Set’). The F1-scores when the parameter
combinations were applied to the same or other manually-labelled images (‘Test Set’) were averaged. Training was performed using the manually-detected
foci (‘Raw’) or after the manually-selected foci were aligned to their appropriate local maximum (‘Aligned’). Values are shown to three significant figures.

doi:10.1371/journal.pone.0114749.t004
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task. This is done by either estimating or directly measuring certain parameters

(e.g. size of foci) manually. To evaluate the FindFoci algorithm against the current

state-of-the-art, we compared the performance of the FindFoci algorithm to the

object identification module of CellProfiler. CellProfiler is a configurable tool that

allows image processing pipelines to be created from modules and then batch

applied to images. Since CellProfiler cannot be trained automatically to optimize

parameter settings, a pipeline for focus identification was constructed based on

the pipeline developed by González et al. (2012) and manually optimized to

achieve the best performance (see Materials and Methods). Our pipeline was

trained manually for each experimenter using all 21 images. Parameter

optimization was achieved by manually adjusting parameters until the highest

average F1 score across images was obtained. Specifically, to ensure fair

comparison between FindFoci and CellProfiler, we applied the same region of

interest (DNA mask) to extract the foci for comparison. Performance was assessed

by comparing the extracted foci to those identified manually by the

experimenters. The pipeline using CellProfiler achieved an average F1 score across

images of 0.655 to 0.792 (Table 5) showing reasonable agreement between the

manually-selected foci and those detected by the optimized CellProfiler pipeline.

The number of manually-selected foci that were identified by CellProfiler (Recall1)

was high. However, CellProfiler also identified a large number of foci that were

not selected manually by the experimenter (equivalent to Recall2, also known as

‘precision’). Thus, CellProfiler overpredicts foci, i.e. it identifies too many foci

that are not real, based on human assignment.

Comparison to the FindFoci algorithm revealed that the FindFoci method

consistently outperforms the CellProfiler pipeline (Table 5). This is especially

noticeable for Experimenter 3 with an increase of 35% in the F1 score. The

performance improvement is attributed to two factors: (1) the automated training

of the algorithm is able to process a far larger range of parameters than the manual

training required for CellProfiler, thereby achieving a higher optimum; (2) the

algorithm is more suited to describing the type of foci in this study. In addition it

is noted that we are not experienced users of CellProfiler and a better pipeline may

be possible. However this highlights the need for algorithms that can be trained on

example datasets without expert knowledge of the software.

Table 5. FindFoci outperforms CellProfilera.

Experimenter CellProfilera FindFoci Change (%)

P1 0.792 0.925 16.73

P2 0.723 0.891 23.28

P3 0.655 0.887 35.48

aCellProfiler was manually trained by adjusting the parameters of the EnhanceOrSuppressFeatures and IdentifyPrimaryObjects modules until the best
overall F1-score was achieved (see Methods for parameter ranges). FindFoci was optimised for all images in the dataset using the FindFoci Optimiser
(Table 4, ‘Raw’). The average F1-score is shown for each dataset.

doi:10.1371/journal.pone.0114749.t005
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Discussion

Human variation in focus detection influences biological

interpretations

Consistent and accurate focus detection is paramount to the study of biological

systems. The preparation of samples as well as focus quantification are two critical

factors to understanding the underlying biology. Quantification is particularly

problematic because this is often carried out manually, sometimes without a

record of images on which to compare different experimenters or without

specification of parameter settings used to detect foci. The standard solution to

this known variability is to manually select a range of parameters and analyse all

images within a dataset with one specific parameter combination (e.g.

FociCounter [12] and CellProfiler). In some cases, this improves consistency [7]

as well as speed of analysis [11], but is ultimately highly dependent upon the

sample preparation being consistent. For example, this could be achieved by

reducing background noise levels from non-specific antibody staining within and

between different slides.

In this work, we set out to determine what causes variation in focus detection

between images and between experimenters. Moreover, we wanted to develop an

automated training algorithm (FindFoci) that could predict experimenters

assignment of foci and produce transparent outputs in real time. We reasoned this

would allow experimenters to accurately quantify many different types of proteins

without extensive investment in standardized sample preparation that allows the

same parameter combination to be used between samples or experimenters.

To understand how experimenters assign foci, we chose Zip3-GFP and Msh4-

GFP, two DNA interacting proteins that have been studied extensively in a range

of organisms, including budding yeast as used here [36, 37, 38, 39, 40, 41]. In

budding yeast, the number of Msh4 or Zip3 foci per nucleus have been used to

estimate how many crossover depend upon these highly conserved proteins.

Manual assignment of the same 21 images by three different experimenters

showed tremendous variation in the number of foci assigned. Two ‘experts’

showed nearly a two-fold difference in their quantification of foci (Figure 1C).

These differences are important because such differences have previously been

attributed to different yeast strains and timing differences [36, 37]. Our data show

that experimenters’ highly varied quantification could equally account for such

differences in the published literature.

We identified four sources of variation in focus quantification (Figure 3). Of

relatively minor contribution was P2 erroneously selecting non-maxima (one

occurrence in the images assessed; Figure 3B). The two major contributing factors

to variation were the interpretation of diffraction-limited foci as ‘doublets’

(Figure 3C), which could also have contributed to by double clicking (Figure 3A),

and how the background level was selected (Figure 3D). We found that although

P1 and P2 had similar total counts of foci (Figure 1C), this was due to selecting

different foci. Specifically, P2 had set a higher background threshold compared to

P1, but this potential deficit was offset by double-clicking and selecting doublets
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at a higher rate than P1. P3 had used the highest stringency of background

threshold, interpreting a high proportion of fainter staining foci as noise (e.g.

Figure 3D). This was particularly the case for dataset 2 (images 15–21), which

included Image 21 where the Jaccard score was very low between experimenters

P1 and P3 (,0.3).

The potential biological implications of these differences are important. For

example, dataset 2 was concerned with the quantification of Msh4 foci. Msh4 has

previously been reported to form foci in numbers that are equivalent to Zip3 and

that colocalized with Zip3 on yeast chromosomes [37]. However, if faint Msh4

foci were excluded due to stringent threshold settings, then Msh4 focus numbers

would be underestimated. Moreover, if the fainter Msh4 foci are of a different

classification than the more intense ones that colocalize with Zip3, then the

overall colocalization estimates would be inflated as well. This potential source of

variation is critical, because the focus numbers and colocalization of Msh4 with

Zip3 in yeast has been used to infer that Msh4 marks only sites of a subset of

recombination events, i.e. those giving rise to reciprocal exchanges termed

crossovers [37]. In contrast, Msh4 marks most sites of ongoing recombination in

mammals and has been suggested to be important for general recombination

processes as well as crossover recombination [39, 40]. Our findings that fainter

staining foci are preferentially excluded due to variation in determining

background noise by different experimenters (Figure 4, 5, 6) raise the possibility

that Msh4 may also mark the majority of recombination sites in budding yeast. In

summary, the significant variation in human assignment of foci raises the distinct

possibility that our interpretation of biological processes more generally may be

strongly biased to the first observer’s characterization of the protein’s behaviour.

Once published, differences in or even reversal of conclusions would be difficult to

facilitate leading at best to data loss and, at worst, to incorrect biological

inferences that would be perpetuated in the field.

FindFoci: an automated training algorithm closely matches human

assignments and negates the need for manual, non-intuitive

parameter selection

We reasoned that automating focus detection could not only speed up the time

needed for quantification analysis, but could also greatly assist in eliminating

inconsistencies. In many programmes, selecting a range of parameter choices for a

single image and then applying this combination to other images in a batch or

pipeline analysis is the norm [7, 10, 11, 42]. This requires expert knowledge of the

parameters as well as substantial time in testing different parameter combinations.

The search for optimal parameters is most often non-exhaustive and this may

influence results, since parameter choices can affect the output of a focus

detection algorithm. We developed an adaptable focus identification algorithm

applicable to all images with local maxima (FindFoci) that closely matches human

assignment on a variety of single images (Table 2). When trained on a single

image, the algorithm gave average F1-scores of 94–97% when used to detect foci
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on the same image. To our knowledge, this is the first open-source programme

that allows training of the algorithm as opposed to manual parameter

configuration.

The FindFoci Optimiser (Figure 9) quickly searches parameter space and

reports optimal parameter settings that closely match human assignments from

approximately 20,000 combinations in , 50 seconds per image. This is orders of

magnitude faster than manual selection of parameters in applications such as

CellProfiler. The automated warning that an optimal parameter is at an edge of

the search space allows further refinement of the parameters. FindFoci thus

reduces the parameter search time making it time efficient to optimise parameters

for a pipeline analysis or to simply just record parameters for future reference.

Although the F1-scores were very high (Table 2), the optimised parameters

obtained from single images do not exactly match the results of the manual

assignment. This may be due to human error in the manual assignment (e.g.

Figure 3B) but can also be due to failings in the algorithm, for example in the case

of secondary spots that are not true local maxima due to overlap with a primary

spot (see example Figure 3C). Cases will arise when the knowledge and experience

of the scientist cannot be encapsulated easily within an analysis algorithm. If the

algorithm fails to identify only a low percentage of foci selected manually by the

scientist, then a semi-automated analysis is valid. In this case, the algorithm can be

applied to the image as a first pass and then the results verified manually and

additional spots added if necessary. Alternatively, the scientist may wish to label

all spots manually but have the points aligned to the correct local maxima if

available. To aid in this workflow we have created a helper application that

analyses an image for all candidate maxima (Figure 9, FindFoci Helper). Existing

points marked on the image are aligned to their nearest maximum. Additional

points marked will be aligned to a maximum within a configured search radius.

Points that cannot be assigned will be unmoved.

Training across single images can skew subsequent data analysis

From most pipelines, it is unclear how a specific parameter combination has been

selected for subsequent batch analysis. Even if optimal parameters are selected

from a single image, the parameter combination derived from a single image may

not improve performance across datasets within or between experimenters

(Figure 7). In some cases, using a parameter combination from a single image

gives rise to very low concordance (e.g. Image 21 from Experimenter P3 in

Figure 7). Thus, although single parameter settings may work well for batch

analysis in some cases [7, 11], this has to be empirically tested. For example, using

single image parameters to assess a range of other images would be appropriate

where the experimental work-up is very consistent and/or foci very bright and

homogenous. We conclude that the use of analysis pipelines clearly speeds up the

workflow, but does not necessarily improve performance and in some cases may

significantly skew data analysis.
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Training FindFoci on multiple images improves consistency of

focus analysis

We overcame the problem of single images skewing batch analysis (Figure 7) by

training the algorithm on multiple images (Figure 8). Training on multiple

images improved consistency in focus detection within experimenters (top row,

Figure 8) and also improved the similarity in focus detection between

experimenters.

From a practical point of view, how would an experimenter determine how

many images to train the algorithm on before applying the parameter

combination to a larger dataset? For a small dataset, the experimenter may want to

manually mark all images and then use the algorithm to make parameter usage

transparent. For larger datasets, the number of images the experimenter chooses

to train the algorithm on would depend upon how representative the images are.

Ideally, one would determine when outliers are reduced or eliminated (as in

Figure 8), however, this is time consuming and requires expert data analysis.

Figure 8 reveals that even when only a few images are used for training (n 5 5),

outliers are relatively infrequent (less than 10% of the 100 combinations tested

were outliers). More extreme outliers, where F1-scores were heavily affected

(,0.4, e.g. P3 versus P1 and P3 versus P2), were eliminated when five or more

images were used for training. If one desires a higher concordance where no

outliers are acceptable, then one would choose a larger number of images, e.g. 11

in our case. In summary, if the dataset contains an image where the scoring of foci

is atypical, using multiple images reduces its effect.

It is also possible to train the algorithm on the same images marked by two or

more different experimenters. This will be subject to the caveat that the

experimenters consistently mark similar foci. Our results show that the most

intense foci are consistently selected by different experimenters, whereas the less

intense foci are the subject of disagreement (Figure 4 and 5). If there is

discordance between two experimenters, the final algorithm parameters will be an

equal weighting between the two experimenters’ styles of focus selection.

Wider usage of FindFoci: assignment of nuclei and other

subcellular structures

FindFoci can also be applied to a range of other biological applications. For

example, automated nuclei counting in Drosophila embryos, C. elegans, and other

multicellular organisms currently relies on ImageJ plugins such as the automated

nuclei counter, ITCN. This and many other plugins require that the experimenter

first measure nuclei diameter, distance between nuclei, and a range of other

parameters in order to manually characterise the parameter describing the size

range of the nucleus. FindFoci overcomes these tedious steps by allowing

experimenters to simply click on the foci and use the algorithm to derive optimal

parameters.

Figure 9 shows the automated workflow provided by the FindFoci software.

Basic manual focus detection where images are labelled (‘Manual’) and foci
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counted manually can be facilitated using the FindFoci Helper, which aligns a

clicked point on the image to the nearest local maximum. Alternatively,

interactive manual focus selection can be performed using software such as the

FindFoci GUI to get a labelled image. In this scenario, parameters can be manually

adjusted to obtain labelled images and quantitative outputs. The FindFoci GUI is

fast enough to allow real-time updates of the results, unlike other ImageJ plugins

and CellProfiler.

In contrast to manual selection, our findings show that automated training

allows the FindFoci algorithm to match human assignments. Thus, a few

manually-labelled images can be used to train the FindFoci algorithm, using the

FindFoci Optimiser. The initial range for input parameters can be determined

using the FindFoci GUI to explore the effect of parameter changes on the

identified foci. During training, the FindFoci Optimiser automatically reports

parameters at the edge of their range, which can be readjusted to increase the

search parameter space to find more optimal sets of parameter combinations.

Unfortunately, the ImageJ/ImageJ2 architecture does not currently support

executing programmes against multiple images. Therefore, we have developed a

plugin that allows the FindFoci Optimiser to be executed against a directory

containing multiple images and the results combined to provide parameter

combinations derived from multiple training images. These parameters can then

be used to set up a ‘batch analysis’ (or pipeline) on a large number of images using

the FindFoci Batch plugin. This process of marking five images, running the

FindFoci Optimiser, and predicting foci on the 63 images took less than an hour.

The rate determining step is training the FindFoci Optimiser. Therefore we

implemented multi-threaded code so that multiple images can be processed in

parallel to increase speed. FindFoci generates labelled images as well as extensive

statistics on the foci identified.

All software is written as plugins for ImageJ/ImageJ2 and is available from our

website (see list of downloads in Materials and Methods) or as an automated

ImageJ2/Fiji update using the GDSC update site (http://fiji.sc/List_of_update_

sites). The plugins are fully supported within the ImageJ macro recorder and can

be used within scripts. FindFoci contains a built-in batch plugin that allows

processing of all images within a directory using parameters loaded from file. In

summary, FindFoci is fast and intuitive, enabling experimenters to explore

parameter space interactively. It is able to match the focus assignment methods of

individual experimenters closely (Table 2), thereby making the detection of foci

transparent and parameterised. Importantly, concordance between experimenters

improved using FindFoci compared to manual assignments and also performed

better than using manually-optimised parameter settings in CellProfiler and thus,

presumably FociCounter [11]. Finally, although we used 2D images, the algorithm

can also be used for 3D stacks.
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Materials and Methods

Image preparation

Strains Y2064 and Y2715 were induced to undergo meiosis as described previously

[43]. Msh4-GFP or Zip3-GFP foci were detected with primary antibodies against

GFP (guinea pig anti-GFP), and secondary antibodies using mouse FITC-

conjugated antibodies as described previously. DNA was stained with DAPI. All

conditions for spreading, detection, and imaging have been described previously

[43]. All images are available in Dataset S1.

Focus assignment and comparison

Manual focus assignments were made using the multi-point ROI tool in ImageJ.

The experimenter was allowed to view the DAPI channel containing the DNA

spread and the channel containing the foci. The experimenter was free to adjust

contrast and other viewing controls as required. Following assignment the DAPI

channel was thresholded using the Otsu method [44] and only ROI points within

the mask were analysed. The same mask was used to filter foci from the automated

methods to ensure a fair comparison of the foci of interest. Focus assignments

were compared by iteratively assigning the closest pairs up to a radius of 8 pixels

as matches. The remaining unmatched assignments from each set were counted. It

took each of the experimenters more than one hour to analyse the 21 images.

The FindFoci algorithm

The FindFoci algorithm first identifies potential foci and then expands these into

peaks. The peaks are then merged to remove insignificant peaks. All steps can be

controlled using configurable parameters.

Candidate foci are identified by selecting single pixels with intensities above all

of their neighbours. All pixels with intensities below a background level are

ignored. An allowance is made for foci that cover multiple pixels with the same

intensity (plateau maximum) by positioning the candidate focus at the centre of

mass of the plateau. The background level is set using thresholding methods,

which determine the foreground pixels using an analysis of the intensity values in

the image, or using an absolute intensity threshold.

Local maxima are expanded into peak regions by assigning surrounding (non-

maximum) pixels to the appropriate maximum by following the uphill gradient.

The expansion of each peak can be restricted relative to the height of the peak, e.g.

expand the peak to any pixel within 50% of the maximum intensity. Following

identification of peak regions the boundaries between peaks are calculated and the

highest boundary points between touching peaks are stored as saddles.

A peak merge algorithm is then used to join insignificant, smaller peaks into

their most significant neighbouring peak. In the case when a small peak has many

suitable neighbours, the significant neighbour is defined using the highest saddle

point. Peaks are identified as insignificant using their height and area as criteria.

Peak merging is done in three stages. In the first stage, peaks are ranked by their
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highest saddle point. Each peak is checked using a height threshold and is merged

if it is not distinct from the neighbour. Secondly, peaks are ranked by their size

and merging is performed using total peak size. In the final stage peaks are ranked

and merged using size above the highest saddle point. After every merge the size

and highest saddle point for the new peak are updated. The final merge stage is

optional since computation of the size above the new saddle point is expensive

and reduces the algorithm’s speed. By processing peaks in sorted order each merge

is performed using a single pass over the data allowing fast elimination of

insignificant peaks.

FindFoci allows noisy data to be smoothed using a Gaussian blur prior to peak

identification. However, reported peak statistics always use the intensity values

from the original, unsmoothed image. The algorithm can be applied to 2D or 3D

images and is available as a plugin for ImageJ/ImageJ2. The plugin allows setting

parameters to control the background level, search method, merge criteria and the

display of results. The plugin is scriptable via the ImageJ/ImageJ2 macro facility

and provides a GUI that allows the parameters to be adjusted with real-time

update of the results. An optimiser is provided to identify the best parameters by

comparing results to a reference image marked with foci of interest. The optimiser

can use multiple reference images and combine the results across the dataset to

identify the optimum combination of parameters.

Focus alignment

Foci labelled on an image are reassigned to their closest true local maximum. The

image background level is set using the minimum pixel value of the selected

points minus the standard deviation of the image. This allows all maxima relevant

to the selected points to be detected. Potential maxima in the image are assigned

using the FindFoci algorithm with a minimum size of 1 pixel. Peaks are expanded

and a mask is created from each maximum to label that region as belonging to the

maximum. Foci to be assigned to local maxima are processed in descending order

of pixel intensity. Each focus is assigned to the maximum using the region in

which it resides. If the maximum is already assigned then the distance to the

unavailable maximum is used as a search radius to locate the nearest unassigned

maximum. If no maximum is available, the point will remain unaligned otherwise

the point is moved to the assigned maximum.

Training on multiple images

The FindFoci Optimiser was run using the same range of parameters on multiple

images and the results for each image saved to file. The performance scores

(Jaccard/F1-score) for each combination of parameters is aggregated across all the

images and the best parameters selected using the best aggregated score. Before

aggregation the scores for each image were optionally converted to allow fair

comparison across images. The scores were converted using different methods: no

conversion (raw score); the relative score; the z-score; or the rank. The relative
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score was computed for each image by identifying the best possible score for that

image (top score) and then expressing the individual scores relative to the top

score as a fraction (therefore the bottom score was assumed to be zero). The z-

score was computed by subtracting the average score for the image and dividing

by the standard deviation of the scores for the image. The rank was assigned by

ordering the scores and labelling incrementally from 1. In the event of a tie

between scores then the rank was assigned as equal for the set of values with the

same score. Training using the raw score, relative score or z-score returned the

same optimal parameters in our dataset. Training using the rank returned optimal

parameters with lower performance.

Training across multiple images was performed using 1 to 21 images. The

number of possible combinations was calculated using the formula n!/(r!(n-r)!).

When the number of combinations was low (e.g. r51, combinations521; r52,

combinations5210) all combinations of images were enumerated to eliminate

random sub-sample bias and duplicate combinations. When the number of

combinations was higher than 210 (e.g. r53, combinations51,330; r511,

combinations5352,716) then a subset of combinations was produced by sampling

randomly from the possible images; 100 random combinations were produced.

Training using combinations of 1 to 21 images took approximately 45 minutes

per experimenter on a single 2.67GHz CPU.

CellProfiler

Analysis was performed using CellProfiler version 2.1 [10]. A range of manually

selected parameters were tested for identifying foci. Small spots were enhanced

using the EnhanceOrSuppressFeatures module using the Enhance Speckles option

with a maximum feature size of 15–25 pixels. Foci were identified using the

IdentifyPrimaryObjects module with an expected feature size range of min 2–5

and max 10–15 pixels, objects outside this range were optionally excluded. Global

thresholding was performed using the Otsu or MoG methods and the objects

optionally smoothed using a radius of 0–5 pixels and local maxima suppressed

using a radius of 0–5 pixels.

Statistics and plots

R was used to generate plots (ggplot2) [45] and carry out statistical analyses

(www.r-project.org). The lmPerm package was used to conduct non-parametric

ANOVA analysis [46]. Additional packages used were plyr, lattice, lme4, grid and

MASS.

List of Downloads

The FindFoci web page including a user manual describing all the plugins: http://

www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/findfoci
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The FindFoci plugins are packaged within the GDSC ImageJ plugins and

distributed using an ImageJ2/Fiji update site allowing simple install into ImageJ

(http://fiji.sc/List_of_update_sites). Further details can be found here:

http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/gdsc_plugins

The source code for the plugins is available on GitHub:

https://github.com/aherbert/GDSC

The GDSC ImageJ Batch Processing Guide contains help for creating batch

analysis scripts in ImageJ:

http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/batch

Supporting Information

Dataset S1. Dataset containing 21 images of spread, meiotic nuclei from

budding yeast. Foci were stained using fluorescently labelled antibodies against

two DNA repair proteins: Zip3-GFP (images 1-14); and Msh4-GFP (images

15-21). The DNA was stained using DAPI.

doi:10.1371/journal.pone.0114749.s001 (ZIP)
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