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This study aims to present complex network models which analyze professional
swimmers of 50-m freestyle Olympic competitions, comparing characteristics and
variables that are considered performance determinants. This comparative research
includes Olympic medalists’ versus non-medalists’ behavior. Using data from 40 athletes
with a mean age, weight and height of 26 ± 2.9 years, 87 ± 5.59 kg, 193 ± 3.85 cm,
respectively, at the Olympics of 2000, 2004, 2008, 2012, and 2016 (16-year interval),
we built two types of complex networks (graphs) for each edition, using mathematical
correlations, metrics and the spectral decomposition analysis. It is possible to show that
complex metrics behave differently between medalists and non-medalists. The spectral
radius (SR) proved to be an important form of evaluation since in all 5 editions it was
higher among medalists (SR results: 3.75, 3.5, 3.39, 2.91, and 3.66) compared to non-
medalists (2.18, 2.51, 2.23, 2.07, and 2.04), with significantly differences between. This
study introduces a remarkable tool in the evaluation of the performance of groups of
swimming athletes by complex networks, and is relevant to athletes, coaches, and
even amateurs, regarding how individual variables relate to competition results and are
reflected in the SR for the best performance. In addition, this is a general method and
may, in the future, be developed in the analysis of other competitive sports.

Keywords: network physiology, complex networks, spectral decomposition, swimming, athletes’ performance
evaluation

INTRODUCTION

Swimming is a kind of sport which involves agile body mechanics, including the action and reaction
of Newton’s third law (Cureton, 1930) where the human body must combine physiology with
engineering concepts to work as a whole (Alexander, 1992). Although it is one of the oldest physical
activities, the first swimming competition (Porter, 2017) was only hosted in 1837 at London’s six
artificial pools. The Olympic Era, in Athens, started in 1896, at a male-only swimming competition
(Oppenheim, 1970). The Summer Olympic Games are a topic which has been attracting the
attention of both general audiences and researchers. However, the Social Sciences have generated
the most Olympic papers at 1,155 papers, while Exact Sciences like Engineering, have produced
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only 510 (Skibb et al., 2016). Considering the research involving
swimming, until 2013 performance increased each year for both
women and men in the World Championships and the Olympics
(Wild et al., 2014), which points to the demand for evaluation
of the parameters for understanding this growing performance
behavior. Studies in this issue have made valuable contributions;
however, there is still no consensus for the most knowledgeable
way of studying the performance of athletes.

It is also important to consider that, regarding sport
investigations, the multiple variable approach for the assessment
of cardiorespiratory coordination and the effects on performance
helps in the evaluation of different health and fitness training
interventions (Garcia-Retortillo et al., 2019). In addition, there
are interesting works in the literature that identified and created
the first physiological complex models representing body changes
and interactions among several organ systems. We can cite one
of the first physiological networks created in the analysis of
sleep stages, where each network node represented a type of
body change interacting each other (Bashan et al., 2012). Some
authors were also able to relate different aspects of physiological
regulation using non-linear dynamics methods (Bartsch and
Ivanov, 2014). The changes in brain, cardiac, and respiratory
systems presented an important and strong relationship between
network connectivity, links’ weights and physiologic functions.
An interesting investigation about the dynamic interactions
between organs developed the concept of Time Delay Stability,
using complex hierarchical reorganization in network models
(Bartsch et al., 2015). The authors proposed transitions across
physiological states, and the network models represented various
interactions, for example, between the brain and different organs.
Statistical tools have also played an important role, once they were
able to capture key elements throughout dynamic physiological
interactions (Lin et al., 2016).

With the aim of contributing to the analysis of swimming
performance, we here provide an investigation by considering
the methodology of complex networks. In simple terms, these
networks are mathematical graphs, which usually represent
athletic performance parameters as nodes (vertices) and
interactions as links (edges). Due to their flexibility, complex
networks have been applied to a variety of scientific contexts,
despite the fact that are still a lack of studies involving sports
evaluation (Lewis, 2009). Considering complex social networks,
the players were studied as nodes and the amount of interactions
between them as links (Passos et al., 2011). Such investigation
identified a higher number of interactions among efficient
players. Another paper, inspired by the mentioned research
on network physiology, investigated the fatigue occurrence
during tethered running (Pereira et al., 2015). The network
metrics assisted in the understanding of performance and in the
avoiding of fatigue occurrence. Variables like Power, Velocity
and Lactate time were highlighted. Additionally, considering
sprinter athletes running in track field tests, the complex network
models revealed that aerobic and anthropometric measures
are meaningful in mathematical models and emphasized the
extent of the comprehension of an entire complex context
for an optimal performance output (Pereira et al., 2018).
However, in the literature, the swimming topic through complex

network analysis has not yet been explored in the context of the
possibilities provided by such a remarkable approach.

Similar to the mentioned complex models, the network
approach offers an overview of the athletes’ parameters during a
competition scenario for swimming analysis. Shortly, a complex
network model can be represented by a mathematical graph,
which has an adjacency matrix. It is also possible to determine its
decomposition system, for the spectral decomposition analysis.
Through the matrix, the eigenvalue can be calculated for each
network node, and the higher network eigenvalue is called
Spectral Radius (SR). Through the groups of medalists versus
non-medalists comparison, the spectral decomposition here
proposed becomes possible to analyze the robustness of the
interactions. All of this assists in performance comprehension.
Physiological and related variables represented as nodes in the
networks are one of the first steps in a distinguished level
of swimming performance interpretation. If compared with
isolated cause and effect studies, variables’ interactions are able
to closely represent different levels of change during an activity
or physical exercise.

In this article, inspired by the mentioned complex networks
approaches on physiology and sports analysis, we developed
a complex network study of the most recent 50 m freestyle
swimming performance at the Olympic Games, Rio 2016,
compared to London 2012, Beijing 2008, Athens 2004, and
Sydney 2000. This 16 year range is useful to understand the
medalists (winners) versus non-medalists’ behavior. Specifically,
topological properties are used to summarize the impact of
topology on behavior (Lewis, 2009), but not yet in sports like
swimming in the Olympics, as introduced in this research.

MATERIALS AND METHODS

Considering swimming as a kind of exercise which depends
on muscle contractility, strength, and speed through previously
applied maximal or submaximal loads on the muscle system
(Cuenca-Fernández et al., 2018) and metabolic responses
(Hellard et al., 2018), data were selected from that which was
publicly available from the last 5 editions of the games, specifically
concerning the Men’s 50 m freestyle swimming, whose finalists
are 8 athletes in each year, totalizing 40 athletes. Using data from
swimmers with a mean age, weight and height of 26 ± 2.9 years,
87 ± 5.59 kg, 193 ± 3.85 cm, respectively, it was possible to
organize the following data available for each athlete in the
event: Birth year (YYYY), Age (years), Weight (kg), Height
(cm), BMI – Body Mass Index (kg/m2), Number of Olympic
Medals, Time (s), Velocity (m/s), Reaction Time (s) and Lane.
Other available data from the country related to the athlete
at the competition occasion included: Number of Women and
Number of Men at the swimming team, Number of Total
Participants, Number of Country Medals and Country HDI
(Human Development Index).

Thereafter, it was necessary to proceed with the organization
of data with the 8 finalists of each edition, leading to the
correlations’ calculation and model construction. The 40 finalist
athletes of the Men’s 50 m freestyle swimming competition, in
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a range of 16 years, were selected from the largest swimming
competition that occurs every 4 years. These athletes were
filtered through pre-Olympic qualifiers and then each staged
within the specific event until the grand finale, where only 8
can compete, representing the swimming elite, with a small
variance. The other filter of these athletes is that they should be
specialized in high intensity and short duration exercise, since
this test is crossing an Olympic pool of 50 m in about 20 s. It
was also possible to work with current competition data from
athletes representing the world’s greatest sprinter swimmers over
5 competitions, something that could be different from other
groups of volunteers, usually from the same country, as that even
though they were good swimmers, they would have a different
kind of representativeness. It is believed, therefore, that the 2000,
2004, 2008, 2012, and 2016 Olympics finalists are high-level
representatives of outstanding swimming performance.

The dataset comparisons via Pearson’s correlation were
calculated. We firstly built two complex networks for each of
the 5 editions of the games: groups of medalists and non-
medalists dataset. The values of the correlations were the value
of the network links in %. In order to set a complex model
that adequately represents an analysis linked to individual
performance, publicly available data were chosen. In this way,
6 variables were selected and transformed into nodes of the
complex models. They are: Age (years), Weight (kg), Height (cm),
BMI – Body Mass Index (kg/m2), Number of Olympic Medals
and Reaction Time (s). The parameters which may directly
predict victory, such as Velocity and Time, were not transformed
into nodes, in order to avoid bias results. The selection of the
variables was made considering those related to performance and
individualizing each athlete, according to the Data Availability of
each competition. Variables considered unrelated to performance
were not included, such as team size and lane. In addition, there
is great importance identified in runners for anthropometric data
(Pereira et al., 2018). In accordance with the concept of creating
complex networks, it is of fundamental importance to include
variables such as height, weight, age, BMI, etc. The idea is to
understand the relationships (information flow) among them and
other variables. Such relationships are represented by links and
the variables under analysis represented by nodes, which result in
the final complex structure under analysis.

Five correlations (5 links) were calculated for each of the
6 variable analyzed (6 nodes) with a total of 30 links by
each of 10 network model. The total calculation involves the
creation of: 10 complex networks, 60 nodes, and 300 weighted
links (correlations).

Any network can be represented by a graph. Any graph
can be represented by its adjacency matrix, from which other
matrices such as Laplacian are derived. This linear algebra
determines that for each matrix, a collection of eigenvalues
with their respective eigenvectors can be associated. The term
Eigen has a German origin and means what is inherent, a
characteristic or fundamental property. Therefore, knowing
that each graph is represented by its matrix, it is natural to
investigate its “Eigen system” once it characterizes the graph
(Van Mieghem, 2014). Other topological graph characteristics
are used to characterize network connectivity, for example, in

financial market fluctuations (Spelta, 2017). Topological metrics
can be classified into metrics that are based on graph distance,
connectivity and spectrum (Van Mieghem, 2010; Jovanovic et al.,
2017). The nature of a complex system pattern is possible to
determine by decomposing the system’s response to a stimulus
into a set of fundamental modes or basis vectors also called
orthonormal vectors. This mathematical process is called spectral
decomposition. This process of finding the basic vibrational
modes (harmonics) and expressing them in terms of constants
is called spectral analysis.

This kind of complex network analysis refers to the analysis of
a mathematical graph. The measure of the degree of the nodes
(parameters under analysis) of a complex network (graph) is
related to the total number of edges (relations between the nodes)
incident to this node. Nodes with an higher number of edges to
it incidents are called hubs. Only the measure of nodes’ degree
may not adequately reflect the importance of these nodes in the
complex model. An alternative metric can be used to calculate
the eigenvalues for each node of the resulting network and to
rank these eigenvalues for the General Winners network. Each
metric, such as eigenvalue calculation, was made by Eclipse IDE
via Java Programing algorithm. The eigenvalue calculation is
crucial for the understanding of this approach, and it is explained
at the introductory section. The largest eigenvalue of a graph is
also known as its SR or index. The basic information about the
largest eigenvalue of a (possibly directed) graph is provided by
Perron–Frobenius theory (Smyth, 2002).

Each graph G has a real eigenvalue θ0 with non-negative real
corresponding eigenvector, and such that for each eigenvalue θ

we have |θ| ≤ θ0. The value θ0 (G) does not increase when vertices
or edges are removed from G (Brouwer and Haemers, 2011).

Under the assumption that G is strongly connected, then:

(i) θ0 has multiplicity 1.
(ii) If G is primitive (strongly connected, and such that not

all cycles have a length that is a multiple of some integer
d > 1), then | θ | < θ0 for all eigenvalues θ different
from θ0.

(iii) The value θ0 (G) decreases when vertices or edges are
removed from G.

There are essentially two types of information related to
the spectrum. The largest eigenvalues (and their eigenspaces)
give some information on global graph properties. The typical
eigenvalues give information on local graph properties, such as
degree, partition function, etc. Here the focus is on the SR, which
is related to a graph property called maximum eigenvalue. The
maximum eigenvalue of a complex network (graph) is also called
the SR. As mentioned in the explanation of its calculation, the
eigenvalue is a final value assigned to each node, considering not
only the number of edges (links) of this node but also the weight
of the links to it, associated to its location in the complex network
topology. A node with final high value of eigenvalue, if compared
to the others in the same graph, is interpreted as an important
node due to the amount and weight of the edges, besides it being
a node that connects to the nodes around it that, in turn, also
have greater amount of weighted links and so on, relevance. In
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this new proposal of spectral decomposition, considering that the
correlation matrix in the context of the networks is sensitive to
the weight value attributed to the link, we used correlations in an
attempt to not discard connections which have their importance
in the context of the complex model and the calculation of the
SR. The idea was to consider the set of interactions and their
outcomes. That is the reason why complex network analysis
includes such measure and the greater adequacy of a measure
of maximum eigenvalue (SR) to a convergence tendency of the
complex system as a whole. The data that support the analysis and
conclusions of this article are publicly available on the website
Sports Reference (Evans et al., 2016) and are in accordance with
all the Publishing Ethics of this journal.

RESULTS

The following public data available at every edition of the games
was analyzed. The measures of central tendency by each Olympic
game edition are shown at the Table 1.

Pearson’s correlations among sets of data were defined as the
weights of the network. Such correlations were a useful choice
once it showed the same result for both directions of the model
set, as shown at the Figure 1.

A similar method was used in another research of the authors
(Pereira et al., 2015). An algorithm was built in Java Programing
Language, which received the data sets as vectors in a main
function, passing them to the function to correlation calculation
including the set of data gathered. Every value of correlation was
considered and transformed into link. For example, if the result

of the correlation between Age and BMI was 0.56, a connection
(link) was added between such nodes with a weight of 56%. The
6 nodes of each Olympic edition were included with the same
magnitude, once one of the main goals of the model is to identify
the resulting dynamics of the nodes through complex metrics.
The resulting weighted network had bidirectional links, which
means that the link influence flows in both directions. This was
necessary once it is not possible to stand that a node like Age, for
example, has a cause and effect weight in BMI. Instead, it has a
correlation inside the dynamic network. It is interesting to note
that most real-world networks, links’ weights may mean capacity,
flow or intensity (Bartsch et al., 2015). In this way, a complex
model is analyzable simplification of reality representation with
mathematical groundwork. Such links’ weights in every complex
model directly determined the network structure and the main
complex metric utilized in the result: The SR. The complex
network models were built as shown in Figure 2.

With the focus on what data to analyze together, from the
point of view of complex network construction, and the spectral
decomposition, which can help to identify trends in the profile of
the winners, the complex networks were built in a computational
interface. Then, the network SRs were determined. The SR is
computed by finding the largest eigenvalue of the weighted
connection matrix C, where an element of C is equal to the
weight assigned to the link between nodes. Matrix C is symmetric,
because links are bi-directional.

By considering the 6 nodes and 10 models proposition, 2
networks by edition were constructed – 2 networks for each
edition (2 networks for Sydney, 2 networks for Athens, 2
networks for Beijing, 2 networks for London and 2 networks for

TABLE 1 | Measures of central tendency – mean and standard deviation – by each Olympic edition split by medalists and non-medalists athletes.

Weight Height BMI Olympic Reaction Velocity

Olympiad Year DataSet MCT∗ Age (kg) (cm) (kg/m2) medals time Time (s) (m/s)

Sydney 2000 Medalists Mean 22.000 86.333 194.000 22.886 7.000 0.743 21.997 2.273

SD 2.000 8.444 2.667 1.577 2.000 0.051 0.022 0.002

Non-med Mean 26.200 88.200 196.800 22.802 1.800 0.824 22.298 2.242

SD 2.240 2.640 3.520 1.042 2.880 0.033 0.130 0.013

Athens 2004 Medalists Mean 24.667 89.667 195.000 23.560 4.667 0.673 21.963 2.277

SD 2.889 6.222 3.333 1.128 3.556 0.036 0.038 0.004

Non-med Mean 27.400 88.400 192.000 24.027 1.600 0.704 22.200 2.252

SD 2.160 3.840 4.000 1.594 2.560 0.053 0.092 0.009

Beijing 2008 Medalists Mean 22.667 86.000 197.667 22.011 3.667 0.720 21.413 2.335

SD 1.556 4.000 2.889 0.944 0.444 0.027 0.076 0.008

Non-med Mean 25.600 84.600 190.600 23.281 1.800 0.686 21.660 2.308

SD 2.480 2.880 1.920 0.767 1.040 0.042 0.028 0.003

London 2012 Medalists Mean 24.667 91.333 196.333 23.674 2.667 0.637 21.490 2.327

SD 2.444 7.556 1.778 1.757 1.111 0.016 0.100 0.011

Non-med Mean 28.200 78.600 190.600 21.670 1.800 0.690 21.798 2.294

SD 2.960 2.720 2.320 1.188 1.040 0.040 0.082 0.009

Rio 2016 Medalists Mean 29.000 92.667 196.000 24.041 4.333 0.670 21.433 2.333

SD 4.000 10.444 3.333 1.956 2.444 0.027 0.038 0.004

Non-med Mean 23.800 86.200 190.600 23.745 0.000 0.648 21.816 2.292

SD 1.840 3.440 2.320 1.167 0.000 0.046 0.106 0.011

∗Measures of central tendency – mean and standard deviation – by each Olympic edition, split by medalists and non-medalists athletes.
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FIGURE 1 | The heat map of the Pearson’s correlations results among variables for each edition and complex network model. Predominantly, the weighted links
between Medalists had highest values than the weighted links of non-medalists athletes, with significant differences between groups (One-way ANOVA followed by
Tukey HSD post hoc test, p < 0.01 at 2000, 2004, and 2008 editions and p < 0.05 at 2012 and 2016 editions). In this figure, A, age; W, weight (kg); H, height (cm);
B, body mass index (kg/m2); N, number of Olympic medals and R, reaction time (s).

Rio). The core idea was to compare medalists’ and non-medalists’
behavior via complex models. The Winners – Medalists network
has the correlations of the 3 medalists for that edition. The non-
medalists network was created by data from the 5 other athletes’
positions, which did not win medals.

For comparative analysis, within these new 10 complex
models we found the eigenvalues of each node and the value
of the SR (largest eigenvalue) for each network. In fact, the SR
of the winners’ networks, in each edition, are predominantly
bigger than the SR of the non-medalists’ networks, as shown at
Figures 3, 4. The SR proved to be an important form of evaluation
since in all 5 editions it was higher among medalists (SR results:
3.75; 3.5; 3.39; 2.91; and 3.66) compared to non-medalists (2.18;
2.51; 2.23; 2.07; and 2.04), with significant differences between
groups (One-way ANOVA followed by Tukey HSD post hoc
test, p < 0.05).

DISCUSSION

Through this new study using quantitative data for the
construction of complex networks models, it is interesting to
note that success and winning in sports are reached by decisions
guided by data and models. Sports analytics is a process of
strategically modeling the data available to transform it into a
source of competitive advantage (Trewin et al., 2004; Miller,
2015). Players, managers, owners and fans are interested in
such strategies in the context of data science, where sports
analytics is a blend of business savvy, information technology and
modeling techniques.

Our network approach moves toward the recent understand-
ing of the human body as a collection of physiologically
interacting systems, according to the interdisciplinary concept

of network physiology (Ivanov et al., 2016). Networks are
representations of these interacting physiological systems, which
include organ changes and metabolites, among others, and
provide feedback and feedforward data interacting, which
are capable of reflecting on different performances. The
computational modeling comes to help in this understanding,
allowing the calculation of complex metrics like SR, for example.
The concept of network physiology in different sports is still
not fully explored but is promising, and may in the future also
involve specific interactions, such as those found in different
brain regions and their effects on physiological states during
sleep (Liu et al., 2015). Considering the potential limitations of
this work, there is the fact that the data were not obtained in
time series and successively, as could be done in a hypothetical
scenario of competition. On the other hand, it was possible to
work with actual competition data for athletes representing the
world swimming elite over 5 distinct competitions (16 years
range) from different countries.

This research approach brings a novel way in order to
identifying data sources, gathering data to organize and
prepare for the complex analysis. Furthermore, the data
selections for this study seemed to be in concordance with
research involving the need of evaluate anthropometrics and
athletes’ variables. For example, evaluating the performance
and the anthropometrical parameters, such as body height,
called the attention for both female swimmers (Jagomägi
and Jürimäe, 2005) and male swimmers 100-m events
(Sammoud et al., 2018). In addition, age, height, and hand
grip strength were the best predictors in short-distance events
(Zampagni et al., 2008). A balanced diet allows to maintain
a stable body weight for athletic performance in swimmers
(Ciosek et al., 2015) and anaerobic qualities are important
in regards to age in other competitions (Fairbrother, 2007).
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FIGURE 2 | Complex network model parameters (nodes and links) representation proposed for Medalists (yellow) and non-medalists (red) athletes. Every edition of
the games results in two complex models. They are: The 2000 Olympic Games, which took place at Australia, in Sydney; 2004 Olympic Games, which took place in
Greece, at Athens city; the 2008 Olympic Games, which took place in China, in Beijing; the 2012 Olympic Games, which took place in United Kingdom, in London;
and the 2016 Olympic Games, which took place in Brazil, in the city of Rio de Janeiro. The finalists of the 50 m freestyle male swimmers were considered, relating 6
transformed variables into nodes – colored (Age, Height, Weight, BMI, Number of Olympic Medals and Reaction Time) and their weighted links (black) through the
resulting correlation. The links of the Medalists complex models had higher weighted links.

These are shown at the Olympics over the years, with the
important contribution to the model body demonstrated
as interactions of a complex network (Herman et al., 2009;
Ivanov et al., 2016).

The complex networks make possible the study of the
dynamical interactions among professional athletes. This article
took into account 5 different Olympics editions and allowed
the calculation of the SR, which is a measure that reflects the
robustness of each complex model. Once multiple seasons were
analyzed, it is possible to track the development of winners
SR values and its similarities. In the case of the models of
the medalists, there is a communication of greater weight
among the variables, that is, for a winner; the intensity of
communication between variables at the proposed levels was
reflected in a higher SR. For non-medalists, this lower level of
communication among the variables may have been decisive in
the position they reached.

By considering the SR values analysis, the winners’ networks
always have the highest SR values. It is also true even when
considering the mean eigenvalues. Winners may be better at
combining all factors, here represented as nodes. Maybe a

well-balanced athlete is a winner and the complex networks
and SR analysis are a newsworthy way of identification of
the best fit athlete. It is interesting to note that the variables
analyzed via complex models together, may indicate the best
use of the set of factors by the winners. Thus, complex
networks in association with complex metrics, such as SR,
may, in the future, allow for a given test, according to
the specific profile and performance of the analyzed athletes,
the calculation of SR for different groups of athletes in
training and determination of SR values. These network models
and their metrics can assist in verifying which groups of
athletes would present a greater chance of victory when
compared to each other.

The higher SR value among medalists should reflect the more
efficient communication of the variables analyzed within the
model. The combined communication between physiological
basis and previous experience, results in a higher SR for medalists.
The application of these physiological complex network models
should be taken into consideration when focusing on new
training strategies, assisting coaches, athletes, and amateurs.
The complex models in conjunction with the spectral analysis
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FIGURE 3 | The Spectral Radius (SR) network (y-axis) by Olympic edition, comparing Medalists result (white) and non-medalists result (black). The Medalists –
Winners network of each edition had the highest SR values at all competitions. It is worth mentioning that the winners always resulted in higher SR values at all
editions analyzed, with significantly differences between groups (One-way ANOVA followed by Tukey HSD post hoc test, p < 0.05).

FIGURE 4 | The SR results (y-axis) by Olympic edition versus mean eigenvalues (x-axis) represented by the triangle with the coordinates (x; y). It is important to note
that the Medalists SR results were always above 2.91 and the non-medalists’ results are under 2.51. This point to a common behavior among Medalists-Winners
(highest values) at all 5 editions of the games analyzed, with significant differences (One-way ANOVA followed by Tukey HSD post hoc test, p < 0.05).
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proposed by this study showed consistency with the profile of the
winners. Such analysis can be applied in future work for women’s
swimming events and also for other sports categories, such as
athletics. The methodology presented here can also be applied
in other types of tests and even other sports, in order to identify
the profiles of possible medalist groups and may help in practice,
which may inspire new future research applications.
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