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Structural basis for DAXX interaction
with ATRX

Dear Editor,

Alpha-thalassemia/mental retardation syndrome X-linked
protein (ATRX) is a member of the switch 2/sucrose non-
fermentable 2 (SWI2/SNF2) family of chromatin-remodeling
proteins (Clynes et al., 2013; Dyer et al., 2017). ATRX
deposits histone variant H3.3 into heterochromatin loci with
the cooperation of an H3.3-specific chaperone, the death-
domain associated protein (DAXX) (Goldberg et al., 2010;
Law et al., 2010; Lewis et al., 2010). Loss of ATRX or DAXX
leads to an increased DNA damage response, activation of
the alternative lengthening of telomeres (ALT) pathway, and
genomic instability (Dyer et al., 2017). Consequently, gen-
ome sequencings have identified ATRX and DAXX muta-
tions in a variety of cancers (Watson et al., 2015). Due to the
important roles of the DAXX-ATRX complex in the mainte-
nance of heterochromatin structure and stability, the struc-
tural studies of ATRX and DAXX have been extensively
carried out.

ATRX contains two structural domains. One is the N-ter-
minal ADD (ATRX-DNMT3-DNMT3L) domain that specifi-
cally recognizes H3 lysine 9 trimethylation (H3K9me3)
(Iwase et al., 2011). The other one is C-terminal ATP-de-
pendent chromatin-remodeling domain, which has not been
structurally characterized. DAXX also contains two structural
regions. One is N-terminal DAXX helical bundle (DHB)
domain, which has been shown to interact with RASSF1C
(Ras-association domain family 1 isoform C), P53 and
MDM2 (mouse double minutes 2 homolog) (Escobar-Cabr-
era et al., 2010). The other one is histone binding domain
(HBD), responsible for specific recognition of H3.3-H4 (El-
sasser et al., 2012; Liu et al., 2012). However, the manner in
which DAXX interacts with ATRX to orchestrate the histone
chaperone activity of DAXX and the chromatin remodeling
activity of ATRX remains largely unclear.

In the present study, we first dissected the interaction
between DAXX and ATRX. The DAXX helical bundle (DHB)
domain has been shown to interact with two modules of
ATRX (Tang et al., 2004). Residues between 1,189 and
1,326 of ATRX serve as the dominant binding module for
DAXX, and residues 321–865 of ATRX may constitute a
secondary DAXX-interacting module (Tang et al., 2004).
Here we used isothermal titration calorimetry (ITC) to

evaluate the contribution of each ATRX module to the DAXX-
ATRX interaction. We found that ATRX1,188–1,326 interacts
with DAXXDHB with a Kd of 160 nmol/L, while ATRX321–866

undergoes no detectable binding to DAXXDHB (Fig. S1A).
Therefore, we focused on ATRX1,188–1,326 for further inves-
tigation. We generated a panel of ATRX fragments spanning
1,188–1,326 and examined their binding capacities with
DAXXDHB (Fig. S1B). A minimal ATRX fragment consisting
of residues 1,260–1,289 was both necessary and sufficient
to interact with DAXXDHB (Fig. S1B and S1C). Hereafter, we
will refer to ATRX1,260–1,289 as the DAXX-binding motif of
ATRX (ATRXDBM) (Fig. 1A).

We determined the structure of the DAXXDHB–ATRXDBM

complex at a resolution of 2.2 Å using single-wavelength
anomalous dispersion with selenomethionine-substituted
crystals (Table S1). The structure has been refined to an
R-value of 18.7% (Rfree = 21.9%) with good geometry. The
electron density map allowed us to trace most of the com-
plex without much ambiguity (Fig. S2A). The final refined
model covered DAXX residues 57–141 and ATRX residues
1,267–1,284. DAXXDHB forms an elongated helix bundle
with four antiparallel packed helices α1, α2, α4, and α5
(Fig. 1B). α3 is a short helix connecting α2 and α4, and it
crosses the base of the helical bundle. ATRXDBM exists as a
long amphipathic helix (residues 1,269–1,283) lying along
the cleft between helices α2 and α5 of DAXXDHB (Fig. 1B).
ATRXDBM binding does not induce large conformational
change in DAXXDHB, because the DAXXDHB structure in the
complex is almost identical to the previously determined
NMR structure of apo DAXXDHB (Escobar-Cabrera et al.,
2010), with a root-main-square deviation (rmsd) value of
1.0 Å for 83 equivalent Cα pairs.

The interaction between DAXXDHB and ATRXDBM is pre-
dominantly mediated by hydrophobic contacts. Four non-
polar residues (A1272, L1276, L1277, and I1280) in the
center of the ATRXDBM helix constitute a hydrophobic core
that fits snugly into a shallow groove in DAXXDHB (Fig. 2A).
The side chains of these residues make close contacts with
a panel of hydrophobic amino acids, including V84, F87,
Y124, V125, and I127 of DAXX (Fig. 2A). Consistent with the
structural model, mutations of any of the hydrophobic resi-
dues on ATRX destabilized the DAXXDHB-ATRXDBM inter-
action (Fig. 2B). In particular, mutations in ATRX L1276 and
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ATRXL1280 had the most disruptive effects, and double
mutants (ATRXL1276R/L1280R and ATRXL1276Q/L1280Q) com-
pletely abolished the interaction with DAXXDHB (Fig. 2B).
Similarly, the hydrophobic residues on DAXXDHB are also
crucial to the binding of ATRX (Fig. 2C). Point mutations of
these hydrophobic residues impaired the DAXXDHB-
ATRXDBM interactions, and a DAXX double mutant (F87A/
Y124A) completely lost its ability to bind to ATRX (Fig. 2C).
These data indicate that the hydrophobic interactions are the
major driving force for the binding of ATRXDBM to DAXXDHB.
These hydrophobic residues in DAXX and ATRX are well
conserved across many species (Fig. S2B and S2C), sug-
gesting that DAXX-ATRX in other species may also adopt
the same interaction mode. The only exception is the Dro-
sophila counterparts of DAXX and ATRX, dDAXX and dXNP.
For example, DAXX F87 is replaced with a glutamate in
dDAXX, and ATRX I1280 by an arginine in dXNP (Fig. S2B
and S2C). These differences may severely impair the inter-
action between dXNP and dDAXX. Whether and how the
Drosophila counterparts interact with each other remains to
be determined.

Complementary with the hydrophobic contacts, a series of
salt bridges and hydrogen-bonding interactions further
strengthened the interactions between DAXXDHB and
ATRXDBM. The carboxylate group of ATRXE1268 engages in a
salt-bridge interaction with DAXXK122, while ATRXE1279

coordinates a salt bridge with DAXXR91 (Fig. 2D). In addition,
the carboxamide group of ATRXN1269 forms two hydrogen
bonds with the backbone carbonyl of DAXXA121 and the
backbone amide of DAXXY124 (Fig. 2D). The carbonyl of
ATRXA1272 forms a hydrogen bond to DAXXN128 (Fig. 2D). In
addition to these polar interactions observed in the structure,
the N- and C-terminal extensions of ATRXDBM may also con-
tribute to binding with DAXXDHB through electrostatic inter-
actions. Calculation of the electrostatic potential of DAXXDHB

shows that the amphipathic helix of ATRXDBM is clamped by
two basic patches of DAXX (Fig. 2E). Correspondingly, the N-
and C-terminal extensions of ATRXDBM are rich in acidic
residues (Fig. 2E). Although the N- and C-terminal extensions
are absent from the current structure, the close spatial dis-
position of these acidic extensions of ATRXDBM and basic
patches of DAXXDHB strongly suggest that the acidic regions
of ATRXDBM are associated with DAXXDHB through
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Figure 1. The structure of the DAXXDHB-ATRXDBM complex. (A) Domain organization of the ATRX and DAXX. ADD, ATRX-

DNMT1-DNMT1L domain; HP1, HP1-binding motif; DBM, DAXX binding motif; ATPase, ATPase domain; SIM, Sumo-interaction

motif; DHB, DAXX helical bundle; HBD, histone binding domain; Acidic, segment rich in Glu/Asp residues; SPE, segment rich in

Ser/Pro/Glu residues; SPT, segment rich in Ser/Pro/Thr residues. (B) Two orthogonal views of the DAXXDHB-ATRXDBM complex.

DAXXDHB is colored in green and ATRXDBM is colored in cyan.
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electrostatic interactions. To investigate the roles of these
extensions, the effect of N- or C-terminal truncation of
ATRXDBM was examined by ITC assays. Although C-terminal
truncation had no effect on DAXXDHB-ATRXDBM interaction,
deletion of N-terminal eight residues resulted in a ∼60-fold
decrease in the affinity between DAXXDHB and ATRXDBM

(Fig. 2F), indicating that the N-terminal extension is essential
for strong binding between DAXXDHB and ATRXDBM. Muta-
tions of acidic residues in the N-terminal extension of
ATRXDBM also weakened the interaction between DAXXDHB

and ATRXDBM (Fig. 2F), further underscoring the importance
of the N-terminal-extension-mediated electrostatic interac-
tions. Taken together, these extensive hydrophobic, electro-
static, and hydrogen-bonding interactions ensure a
stable association between DAXX and ATRX.

DAXX is a scaffold protein that interacts with more than
50 proteins with diverse roles (Lindsay et al., 2008). The
DAXX helical bundle (DHB) domain has been reported to
interact with ATRX, RASSF1C, MDM2, HAUSP, P53, P63,
and P73 (Escobar-Cabrera et al., 2010; Gostissa et al.,
2004; Tang et al., 2006; Tang et al., 2004). The molecular
mechanism by which DAXXDHB recognizes different partners
remains poorly understood. Here we compared
complex structures of DAXXDHB-ATRXDBM and
DAXXDHB-RASSF1CDBM. ATRXDBM and RASSF1CDBM both
exist as amphipathic helices and bind to the same groove
between helices α2 and α5 of DAXXDHB (Fig. 2G). Although
these two DBMs show low sequence homology, key resi-
dues involved in hydrophobic contacts are conserved
(Fig. 2H and 2I). ATRX L1276, L1277, and I1280 occupy
positions corresponding to those of L31, F35, Y34 of
RASSF1C, respectively (Fig. 2H). These structural equiva-
lent residues interact with the same panel of hydrophobic
residues of DAXX (Fig. 2H). Notwithstanding these similari-
ties, there are substantial structural differences between
ATRXDBM and RASSF1CDBM. First, they exhibit distinct ori-
entations within the complex structures. ATRXDBM extends
across the α2 and α5, while RASSF1CDBM is anti-parallel to
α2 and α5 of DAXXDHB (Fig. 2G). In this way, these two DBM
helices are almost perpendicular to each other. Second, both
N- and C-terminal extensions of ATRXDBM are acidic in
nature, while RASSF1CDBM has a negatively charged N--
terminal extension and a positively charged C-terminal tail.
Due to the topological difference between ATRXDBM and
RASSF1CDBM, the basic C-terminal tail of RASSF1CDBM is
close to the basic patch of DAXXDHB, which is where the
acidic N-terminal extension of ATRXDBM binds (Fig. 2E and
2G). The basic C-terminal tail of RASSF1CDBM may interfere

with the otherwise strong binding to DAXXDHB. This may
explain the relatively low binding affinity between DAXXDHB

and RASSF1CDBM (Kd = 65 μmol/L) (Escobar-Cabrera et al.,
2010).

In summary, the structural characterization of the
DAXXDHB domain in complex with ATRXDBM provides a
molecular framework for understanding the interaction
between DAXX and ATRX. The DAXX-ATRX interaction is a
crucial link to bridge the chaperone-activity domain of DAXX
and the remodeling-activity domain of ATRX together to
deposit H3.3 into heterochromatin foci. The structural model
and mutagenesis data presented here also provide an
opportunity to dissect the functional consequences of
specific disruption of DAXX-ATRX in vivo. Although there are
a few of disease mutations identified in regions of ATRXDBM

and DAXXDHB, none of these mutations seems to affect
DAXX-ATRX interaction (Fig. S3). Why the DAXX-ATRX
interface is not susceptible to disease mutations needs fur-
ther investigation. Moreover, our structural analyses of
DAXXDHB-ATRXDBM and DAXXDHB-RASSF1CDBM indicate
that DAXXDHB is a general protein-interaction domain with
sufficient structural plasticity to accommodate DBMs from
different interaction partners. Given that the topological
relationships of these DBMs are completely different, at this
stage, it would be difficult to detect the hidden similarities
among these DBMs based solely on sequence information,
without 3D structural information. As more DAXXDHB-inter-
action partners are identified and their structures become
available, it should be possible to identify the conserved
features of these interaction partners in the future.
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Figure 2. The interfaces between DAXXDHB and ATRXDBM.

(A) Details of hydrophobic contacts in the DAXXDHB-ATRXDBM

interface. The contacting residues are presented as ball-and-

stick models. DAXX residues are colored in green and ATRX

residues are colored in cyan. (B and C) Effects of mutations in

the ATRX1,253–1,326 (B) and DAXX55–144 (C) on the interaction

between DAXX and ATRX analyzed by ITC assays. The Kd

values for WT and mutants were indicated. “N.D.” stands for

“Not Detectable”. (D) Details of salt bridge and hydrogen-

bonding interactions between DAXXDHB and ATRXDBM, shown

as dashed red lines. (E) The N- and C-terminal extensions of

ATRXDBM may interact with DAXXDHB. DAXXDHB is shown in

surface representation and colored according to its electrostatic

potential (positive potential, blue; negative potential, red). The

absent N- and C-terminal extensions cannot be modeled

unambiguously. The red dashed lines indicate possible location

of these missing extensions for illustration purpose. (F) Effects

of truncations and mutations of ATRXDBM on DAXX-ATRX

interactions shown by ITC assays. (G) Superimposition of

DAXXDHB-ATRXDBM and DAXXDHB-RASSF1CDBM (PDB:

2KZU) structures shown in two orthogonal views. DAXXDHB in

DAXXDHB-ATRXDBM complex, green; ATRXDBM, cyan;

DAXXDHB in DAXXDHB-RASSF1CDBM complex, yellow;

RASSF1CDBM, red. (H) The conserved hydrophobic interfaces

in two structures. The structural equivalent residues are

indicated. (I) The sequence alignment of ATRXDBM and

RASSF1CDBM shows low similarity. The structural equivalent

residues are not sequentially aligned.
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