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Abstract: Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are clonal disor-
ders of a hematopoietic stem cell, characterized by an abnormal proliferation of largely mature cells
driven by mutations in JAK2, CALR, and MPL. All these mutations lead to a constitutive activation
of the JAK-STAT signaling, which represents a target for therapy. Beyond driver ones, most pa-
tients, especially with myelofibrosis, harbor mutations in an array of “myeloid neoplasm-associated”
genes that encode for proteins involved in chromatin modification and DNA methylation, RNA
splicing, transcription regulation, and oncogenes. These additional mutations often arise in the
context of clonal hematopoiesis of indeterminate potential (CHIP). The extensive characterization of
the pathologic genome associated with MPN highlighted selected driver and non-driver mutations
for their clinical informativeness. First, driver mutations are enlisted in the WHO classification as
major diagnostic criteria and may be used for monitoring of residual disease after transplantation
and response to treatment. Second, mutation profile can be used, eventually in combination with
cytogenetic, histopathologic, hematologic, and clinical variables, to risk stratify patients regarding
thrombosis, overall survival, and rate of transformation to secondary leukemia. This review outlines
the molecular landscape of MPN and critically interprets current information for their potential
impact on patient management.

Keywords: myeloproliferative neoplasms; polycythemia vera; essential thrombocythemia; myelofi-
brosis; JAK2; CALR; MPL; JAK-STAT pathway; additional mutations; prognosis

1. Introduction

In 1951, William Dameshek coined the term “myeloproliferative disorders” to include
what are currently known as classic Philadelphia chromosome-negative myeloproliferative
neoplasms (MPN) [1]. The latest 2016 World Health Organization (WHO) classification
of myeloid neoplasms includes four diseases: polycythemia vera (PV); essential throm-
bocythemia (ET); and myelofibrosis, either overt or prefibrotic primary myelofibrosis
(PMF) [2]. The original breakthrough, Dameshek’s argument was that they might represent
a relatively homogeneous family of clinically heterogeneous disorders that were expression
of, and were caused by, an abnormal proliferation capability of a stem/progenitor cell in
the bone marrow. Indeed, each has unique clinical and hematologic presentation, yet they
are largely phenotypically overlapping, especially at presentation, suggesting that they
might represent a continuum of a single disease. Not formally recognized in the WHO
diagnostic criteria are those forms of MF that develop as progression of prior PV and ET
(post PV-MF and post ET-MF, also collectively known as “secondary” MF). All MPN can
transform into secondary acute myeloid leukemia, referred to as MPN-blast phase (BP),
which is typically refractory to conventional chemotherapy and has dismal prognosis.

MPN are considered rare hematologic neoplasms, with an incidence that varies from
0.1 to 2.8/100,000 European inhabitants per year [3]; prevalence remains difficult to deter-

Cells 2021, 10, 1962. https://doi.org/10.3390/cells10081962 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-6241-1206
https://doi.org/10.3390/cells10081962
https://doi.org/10.3390/cells10081962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10081962
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10081962?type=check_update&version=1


Cells 2021, 10, 1962 2 of 23

mine, but it may be anticipated to be progressively rising. In fact, the survival of patients
with MPN is slowly but definitely improving in the last few decades, thanks to earlier diag-
nosis (nowadays facilitated by the inclusion of driver MPN-associated mutations among
the WHO diagnostic criteria); better risk stratification (largely thanks to the knowledge of
the genomic structure, including but not limited to driver mutations); and introduction
of novel therapies, including JAK inhibitors, as well as allogeneic hematopoietic stem cell
transplant (allo-HSCT).

There has been a tremendous accumulation of information deriving by the sequencing
of DNA of MPN patients, which started in 2005 with the description of a point mutation in
JAK2 (V617F), marking more than 60% of all MPN, soon followed by discovery of JAK2
exon 12, MPL, and CALR mutations. Their high frequency among MPN (overall, > 85%) and
relative selectivity compared to other hematologic neoplasia warranted a revision of the
diagnostic criteria, ultimately leading to current 2016 WHO classification. Then, not without
surprise, the appreciation of an unexpected degree of genomic abnormalities complexity in
MPN arose following the extensive use of next-generation sequencing, and opened the way
to the generation of novel, more powerful risk stratification systems, particularly in MF.
The appreciation of the uniform involvement of the JAK-STAT signaling pathway in MPN
promoted the development of a new class of drugs, the JAK inhibitors, which although
lacking selectivity against the mutated protein have nonetheless dramatically changed
the life of patients, particularly MF and PV, and may be also carrying some advantages in
terms of survival (MF) and reduction of thrombotic events, the leading cause of morbidity
and mortality in PV.

2. Mutational Landscape of Myeloproliferative Neoplasms
2.1. Driver Mutations in JAK2, MPL, and CALR

Constitutive activation of the JAK-STAT signaling is the hallmark of all MPN and
is sustained by somatic mutations in driver genes including JAK2, MPL, and CALR. The
JAK-STAT pathway is critically involved in the regulation of cytokine- and growth factor
receptor-mediated effects, as well as cell growth, survival, and differentiation of hematopoi-
etic and immune compartments. Dysregulation of the JAK-STAT pathway confers cytokine
independence and/or hypersensitivity to mutated cells, resulting in a survival advan-
tage [4]. Somatic mutations in JAK2, MPL, and CALR are referred as “driver mutations”
on the basis of their role in driving the MPN clinical phenotype and are crucial for the
diagnosis along with selected laboratory and histopathological features. These mutations,
documented in up to 85% of MPN patients, are mutually exclusive, but anecdotal cases of
co-occurrence have been described in some reports [5,6]. Conversely, patients with features
of MPN without any drive mutations are referred to as “triple negative” (TN) [7].

Two different types of JAK2 mutations are described in MPN. The first type, discovered
in 2005 by four different groups, is a single nucleotide variant at codon 617 (in exon 14)
resulting in a valine to phenylalanine substitution [8–11]; the second type, described in
2007, comprises different changes in exon 12, particularly in-frame insertions or deletions
in the region between codons 536 and 544, collectively defined as exon 12 mutations [12,13].
JAK2V617F is detected in approximately 95% of polycythemia vera (PV) and 50–60% of
essential thrombocythemia (ET) and primary myelofibrosis (PMF), whereas JAK2 exon
12 mutations are found exclusively in 2–3% of PV patients lacking the more common
JAK2V617F. Patients with exon 12 mutations are characterized by erythroid-dominant
myeloproliferation with a consequent lower leukocyte and platelet count at diagnosis,
subnormal serum erythropoietin levels, a subtle tri-lineage hyperplasia in the bone marrow,
and younger age at diagnosis in comparison to those with V617F mutation. However, there
are no substantial prognostic differences between JAK2 exon 12 and JAK2 V617F-mutated
PV patients [14,15].

The JAK2V617F mutation is capable of driving all the different MPN through ligand-
independent activation of erythropoietin (EPO), thrombopoietin (TPO), and granulocyte-
colony stimulating factor (G-CSF) tyrosine-kinase receptors. This constitutive activation
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results in an abnormal trilinear myeloproliferation [16–18]. Functionally, the inhibitory
effect of the JAK2 pseudokinase domain is abrogated and the autonomous activation of
intracellular signaling promotes cell proliferation, differentiation, and survival through
downstream signaling molecules, including signal transducers and activators of transcrip-
tion (STATs) [19], mitogen-activated protein kinases (MAPKs), phosphoinositol-3-kinase
(PI3K), and mammalian target of rapamycin (mTOR) [20]. Although the question how
JAK2V617F may induce different MPN is still incompletely answered to, the different
clinical phenotypes probably reflect different host characteristics, different progenitor cell
stage at which the mutation arises, the presence and order of additional variants, and the
influence of bone marrow microenvironment. Moreover, JAK2V617F allele burden has
been associated with different phenotype of MPN; homozygous status or a high mutant
allele burden is found in most PV patients, and is associated with increased risk of throm-
bosis and fibrotic evolution [21,22], whereas ET and PMF patients tend to have a lower
burden [23].

In 2006, mutations in the TPO receptor MPL, which specifically regulates megakary-
opoiesis and platelet production through the JAK-STAT pathway, were discovered [24].
Mutations in MPL are found in 3–8% of ET and PMF and consist in gain of function vari-
ants at tryptophan 515 (W515) in exon 10 [25]. The most common point mutations are
W515L and W515K. Other rare mutations at the same position include W515R, W515A,
and W515G [26]. Although the MPLS505N variant was identified previously as a germline
mutation in cases of familial thrombocythemia [27], it can also be acquired as a somatic
event. Recently, many second-site mutations that enhance S505N-driven activation were
described [28].

Finally, in 2013, two independent groups reported a breakthrough discovery by
identifying a novel driver mutation in a large part of JAK2 and MPL wild-type MPN
patients. By applying whole exome sequencing, both groups identified somatic mutations
in CALR encoding for calreticulin, a 46-kDa endoplasmic reticulum (ER) chaperone protein.
CALR has a key role in the quality control of glycoprotein folding and maintenance of
cell calcium homeostasis given its negatively charged C-terminus [29]. To date, more than
50 different mutations in CALR exon 9 have been described in approximately 20–25% of
ET and 25–30% of PMF cases but not in PV patients [30,31]. The two most frequent CALR
mutations, accounting for approximately 80% of all the mutations, include a type-1 52-bp
deletion (c.1092_1143del; p.L367fs*46) and a type-2 5-bp insertion (c.1154_1155insTTGTC;
p.K385fs*47). Atypical mutations are grouped as type 1-like and type 2-like in relation to
structural similarities. All CALR mutations lead to a +1 frameshift of the open reading
frame, resulting in a mutant protein lacking the ER-retention motif (KDEL) and containing a
novel C-terminal chain of positively charged amino acids instead of the negatively charged
amino acids of wild-type CALR. CALR subtypes contribute to determine clinical phenotype
and outcomes in MPN. In PMF, type-1/1-like mutations are more prevalent than type-
2/2-like (70% vs. 13%), while in ET they are more equally distributed (51% vs. 39%) [32].
In ET patients, type-1/1-like mutations were associated with a fibrotic phenotype and a
significantly higher risk of myelofibrotic transformation, whereas type-2/2-like mutations
were associated with higher platelet count and a lower risk of thrombosis [33]. In a
large series of ET patients, both CALR variants correlated with a higher platelet count,
lower hemoglobin, and leukocyte count compared to mutant JAK2 [34]. Moreover, type-
1/1-like mutations have been associated with a favorable survival in PMF [35]. Intense
research efforts lead to elucidation of the mechanism underlying the oncogenic activity
of mutated CALR in MPN. Mutant CALR binds to MPL within the ER, resulting in the
constitutively activation of the JAK-STAT signaling [36–39]. Moreover, the MPL–CALR
complex has been detected on cell surface, and its translocation appeared essential for the
oncogenic activity [40,41]. More recently, a novel intriguing mode of action of mutated
CALR was described suggesting an interleukin-6-dependent and TPO-MPL-independent
mechanism [42].
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2.2. Triple-Negative MPN

Mutations in JAK2 exon 14 and exon 12, CALR exon 9, and MPL exon 10 account for
over 90% of all MPN cases. These mutations are mutually exclusive, although rare cases of
coexisting driver mutations are reported [5]. However, approximately 15% of ET and less
than 10% of PMF patients lack a known driver mutation and are accordingly referred to
as TN [43]. These cases of MPN require a particularly diligent diagnostic workup since
reactive causes mimicking MPN-like disorders as well as alternative myeloid malignancies
need to be carefully excluded. Moreover, it was reported that some TN cases tested positive
for canonical somatic driver mutations at low mutant burden when re-sequenced using
methodologies with a higher sensitivity [44–46].

At least 10% of TN ET and PMF patients harbor mutations outside of the canonical
MPL and JAK2 hotspots. Non canonical MPL mutations include T119I, S204F/P and E230G
in the extracellular domain and Y591D/N in the intracellular domain [45], whereas non
canonical JAK2 mutations include V625F, F556V, R683G, and E627A [46]. As reported in
functional studies, most of these genomic variants lead to a constitutive activation of the
JAK-STAT signaling [45,46]. Some of them are exclusively described as somatic events,
while others also represent germline variants, with the possibility that these patients may
have a non-clonal erythrocytosis or thrombocytosis. These findings impose important
implications for the diagnosis and management of TN patients, including unique thera-
peutic approach and eventually the screening of family members. Triple negative ET is
an indolent disease with low incidence of vascular events and progression to MF, and is
usually diagnosed in young, female patients. On the contrary, TN MF is a more aggressive
disease with an adverse prognosis and a high rate of progression to blastic phase (BP).

2.3. Somatic Additional Mutations in Genes Frequently Involved in Myeloid Neoplasms

In last years, high-throughput next-generation sequencing (NGS) approaches resulted
in the identification of a considerable number of additional somatic mutations with a
prognostic and therapeutic value. At least one additional mutation can be found in more
than 50% of patients, and the prevalence increases with patient age. These co-occurring
mutations are not restricted to MPN, but occur also in other myeloid malignancies including
acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and MDS/MPN
overlap diseases, as well as in healthy individuals in the context of age-related clonal
hematopoiesis (ARCH/CHIP) [44,47]. Additional genomic abnormalities affect genes
involved in DNA methylation (TET2, DNMT3A, IDH1, and IDH2), histone modification
(ASXL1, EZH2), mRNA splicing (SFRB1, SRSF2, U2AF1, and ZRSR2), signaling pathways
(LNK/SH2B3, CBL, NRAS, KRAS, and PTPN11), and transcription factors (RUNX1, NFE2,
TP53, and PPM1D).

The TET2 gene encodes the second member of the TET proteins family, which are
involved in the stepwise oxidation of 5methylcytosine (5mC) to 5-hydroxyymethylcytosine
(5hmC), an important process in stem cell gene regulation. Loss of function mutations in
TET2 are mostly heterozygous and occur in 10–15% of MPN patients and 20–25% of BP.
They are the most common co-occurring mutations in JAK2V617F-mutated MPN, although
without a clear prognostic effect [48–50]. Recently, it has been reported that the order of
acquisition of JAK2 and TET2 mutations may influence MPN phenotype, with “JAK2-first”
more commonly detected in PV and “TET2-first” in ET patients [51]. DNMT3A belongs to
a family of highly conserved DNA methyltransferases involved in either de novo DNA
methylation or maintenance of pre-existing methylation patterns throughout cell division.
DNMT3A mutations are frameshift/nonsense, resulting in reduced methyltransferase
activity, and occur in 5–15% of MPN patients, with lower frequency in PV and ET compared
to PMF and BP [48–50]. Similarly to TET2, MPN patients are more likely to present with PV
when JAK2V617F is acquired before DNMT3A mutation, while patients who first acquired
DNMT3A mutations more commonly develop an ET phenotype [52]. The IDH1 and IDH2
genes encode two additional epigenetic regulators involved in both DNA methylation
and histone modification. Mutations in isocitrate dehydrogenase genes (IDH1 and IDH2)
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occur mostly as point missense mutations at residues R132 in IDH1 and R140 or R172 in
IDH2. The mutant protein acquires the ability to convert alpha-ketoglutarate (a-KG) to
2-hydroxyglutarate (2-HG), favoring leukemogenesis through epigenetic dysregulation
of a number of other genes. IDH1 and IDH2 mutations have been associated with worse
prognosis in PMF with a higher risk of transformation to BP. They are reported in up to 6%
of MPN and 30% of BP [53,54].

The ASXL1 and EZH2 genes encode for two important chromatin-binding protein of
the polycomb family involved in the epigenetic regulation of gene expression through the
interaction with polycomb repressive complex 1 (PRC1), polycomb repressive complex
2 (PRC2), and other transcription activators and repressors [55]. Loss of ASXL1 function
results from nonsense and frameshift mutations in exon 12 and are more common in PMF
and BP (18–37%) compared to PV and ET (5–10%) [54,56]. ASXL1 mutations are associated
with a worse prognosis in PV and PMF patients [48,57,58], and this unfavorable impact is
not overcome by allogenic hematopoietic stem cell transplantation (allo-HSCT) [59]. Of
interest, it has been recently reported that ASXL1 mutations are frequently acquired during
ruxolitinib treatment as part of clonal evolution of the disease [60]. EZH2 mutations are less
frequent than those in ASXL1, being found in up to 10% and 15% of MPN and BP patients,
respectively. EZH2 seems to act as a tumor suppressor in MPN, and a high number of loss
of function mutations have been identified that synergizes with JAK2V617F in initiating
MPN and promoting myelofibrosis [61]. In PMF, EZH2 mutations correlate with a higher
leukocyte count, blast count, and larger spleen size at diagnosis. Moreover, EZH2 mutations
are an independent poor prognostic factor for reduced overall survival [62].

Acquired mutations in genes encoding for spliceosome proteins and other regulatory
splicing factors are reported in all myeloid malignancies, particularly MPN and MDS, and
mainly affect SRSF2, U2AF1, ZRSR2, and SF3B1 genes. Spliceosome-affecting mutations
are typically mutually exclusive and mostly occur as heterozygous missense mutations
that confer a dominant negative activity affecting RNA splicing [63]. The SRSF2 gene is the
most frequently mutated, with variants mainly occurring at the Proline 95 residue. While
being infrequent in PV and ET patients, SRSF2 mutations occur in 8–22% of PMF and BP,
where predict for poor overall and leukemia-free survival [56,64–67]. U2AF1 mutations,
mainly at the hotspot residues Serine 34 and Glutamine 157, occur in 5–15% of PMF and BP
and are associated with a significantly shorter overall survival [68]. SF3B1 mutations affect
exons 14–16, particularly the Lysine 700 amino acid, and are more commonly found in
PMF and BP (up to 10%). Although rare in PV and ET, U2AF1 and SFRB1 mutations were
associated with an inferior myelofibrosis-free survival compared to the with wild-type
counterpart [48]. Finally, ZRSR2 mutations are very rare in MPN and are more frequently
identified in PMF, without a clear impact on prognosis.

LNK/SH2B3 is an adaptor protein that inhibits signaling through cytokine and tyro-
sine kinase receptors, including JAK2 [69,70]. Mutations affecting LNK/SH2B3 are mostly
missense substitutions and can be found in up to 10% of MPN and BP patients [48–50].
Although somatic LNK mutations detected in MPN patients are sparce through the gene,
the LNKE208Q variant is the only one that has been identified both as germline variant
in idiopathic erythrocytosis and acquired mutation in MPN, either alone or in association
with a driver mutation [71]. Germline LNKE208Q mutation has been reported also in cases
of familial MPN [72,73].

Mutations in oncogenic RAS pathway genes (NRAS, KRAS, CBL, NF1, PTPN11) are
overall rare in MPN patients. CBL encodes for a multifunctional adaptor protein with
ubiquitin ligase activity, and mutations are associated with stabilization of receptor tyrosine
kinases, resulting in constitutive activation of signaling pathways, cytokine hypersensitivity,
and autonomous cell proliferation [74]. CBL mutations are mostly missense substitutions
and can be detected in up to 6% of PMF and BP patients [49,50]. Missense mutations in
NRAS/KRAS, particularly in codons 12, 13, and 61, lead to constitutive activation of growth
signaling [75], are rare in PMF (up to 5%), and are reported in up to 15% of BP [48,49]. In a
recent paper, CBL/NRAS/KRAS mutations in PMF patients were associated with adverse
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clinical features, shorter overall survival, and poor response to JAK inhibitor therapy [76].
PTPN11 mutations are found in up to 8% of BP and are associated with a reduced overall
survival [50].

Among transcription factors, RUNX1 and NFE2 are the most commonly mutated
genes in MPN. RUNX1 mutations, result in protein inactivation, occur in up to 10% of BP,
and are associated with a shortened survival [44]. The NFE2 gene encodes for an important
regulator of megakariocytopoiesis and/or erythropoiesis. Mutations are heterogenous
but mainly represented by frameshift variants and deletions [77]. Although overall rare,
NFE2 mutations are enriched in PV (8% of cases). In one study the authors failed to find
meaningful hematological and clinical correlates, nor a clear prognostic value [78], while
in another study including a larger cohort of MPN patients, NFE2 mutations adversely
affected prognosis, increasing the risk of BP progression independently of age and other
co-occurring mutations [79]. TP53 is a transcription factor with a key tumor suppression
function in response to cellular stress and DNA damage. TP53 mutations are frequent in
BP, where biallelic loss of TP53 has been reported in up to 35% of cases, with a dismal
outcome [80]. Recently, very low burden of TP53 mutations has been reported in patients
with chronic phase MPN, even many years before diagnosis, with an association with older
age [81]. The significance of these very low mutation burdens in relation to the risk of
evolution into BP, remains however largely unknown. PPM1D mutations are more frequent
in cases of therapy related AML and MDS, particularly after cytotoxic agents [82], with an
intrinsic chemoresistance to standard therapies [83]. Mutations in PPM1D, a regulatory
inhibitor of TP53, were recently described in 1.9% of patients with MPN, both within the
driver clone and as an independent clone [44]. In Table 1, there is a summary of somatic
additional mutations in MPN with their frequency and clinical impact.

Table 1. Somatic additional mutations in MPN.

Gene Location Function Mutation Type Frequency Clinical
Consequences Reference

DNA Methylation

TET2 4q24

Evolutionary conserved
dioxygenases that

catalyze conversion of
5-methyl-cytosine (5-mc)

into
5-hydroxymetylcytosine

(5-hmc) and promote
DNA demethylation

Heterozygous and
homozygous

loss-of-function
mutations mainly

in catalytic domain

10–25% of all
MPN, including

BP

Associated with
diseases phenotype;
no clear impact on

prognosis and
thrombosis

[48–51]

DNMT3A 2p23

The encoded protein
catalyze

5-methyl-cytosine
methylation; regulatory

domains allow
interactions with histone
methyltransferases and

histones to influence
gene expression

Nonsense/frameshift
and missense
mutations are

described

5–15% of all
MPN, including

BP

Associated with
disease phenotype;

detrimental effect in
MF and inferior

survival

[48–50,52]

IDH1-
IDH2

2q33.3-
15q26.1

Isocitrate dehydrogenase
1 and 2 are key metabolic

enzymes that convert
isocitrate to

alpha-ketoglutarate
while reducing NADP to

NADPH

Mostly
heterozygous point
missense mutations
at residues R132 in
IDH1 and R140 or

R172 in IDH2

3–6% of MPN;
20–30% of BP

Disease progression
to BP and inferior

survival
[53,54]
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Table 1. Cont.

Gene Location Function Mutation Type Frequency Clinical
Consequences Reference

Histone Modification

ASXL1 20q11

ASXL1 protein belongs
to protein complexes

involved in epigenetic
regulation of gene

expression

Nonsense/frameshift
mutations, mostly

in exon 12

5–10% of PV
and ET;

18–37% of MF
and BP

Disease initiation;
risk of fibrotic and

leukemic progression

[48,57,58,
60]

EZH2 7q35-36

EZH2 protein is a
histone-lysine

N-methyltransferase
enzyme that participates
in histone methylation

and transcriptional
repression

Heterozygous and
homozygous

loss-of-function
mutations mostly

in SET2 domain are
described

0–3% of PV and
ET;

0–15% of MF
and BP

Disease initiation;
risk of fibrotic and

leukemic progression
[49,62]

mRNA Splicing

SF3B1 2q33.1

Involved in pre-mRNA
splicing as a component
of the splicing factor 3b

protein complex

Heterozygous
missense point

mutations in exons
14–16, mostly

involved hotspot
K700E

3–5% of PV and
ET;

5–8% of MF
and BP

Increased risk of
fibrotic progression

and related with
phenotypic change

(anemia)

[48,49]

SRSF2 17q25.1

The protein is a member
of the serine/arginine

(SR)-rich family of
pre-mRNA spicing

factors; in addition to
mRNA splicing, the SR
proteins are involved in
mRNA export from the
nucleus and translation

Heterozygous
mutations and
small in-frame

deletions, mostly
around hotspot P95

0–3% of PV and
ET;

8–22% of MF
and BP

Increased risk of
leukemic progression
and reduced overall

survival in MPN

[54,64,67]

U2AF1 21q22.3

U2 auxiliary factor 1 is a
non-snRNP (small

nuclear
ribonucleoprotein)

protein, member of SR
family, required for the
binding of U2 snRNP to
the pre-mRNA branch

site

Heterozygous
missense mutations

mostly around
hotspot S34 and

Q157

1–2% of PV and
ET;

5–15% of MF
and BP

Disease progression
and reduced overall

survival in MF;
related with

phenotypic change
(anemia)

[68,84]

ZRSR2 Xp22.2

Encodes protein
associates with the U2

auxiliary factor
heterodimer, which is

required for the
recognition of a

functional 3′ splice site in
pre-mRNA splicing,

necessary during
spliceosome assembly

Frameshift/nonsense
and missense

mutations

0–2% of PV and
ET;

5–10% of MF
and BP

No clear impact on
prognosis [49,50]
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Table 1. Cont.

Gene Location Function Mutation Type Frequency Clinical
Consequences Reference

Cell Signaling

LNK/SH2B3 12q24

SH2B adapter protein 3
inhibits signaling

through cytokine and
tyrosine kinase receptors,

including JAK2

Mostly
heterozygous

missense mutations
are described as

somatic or germline

2–10% of all
MPN

Synergy with
JAK2V617F; no

defined impact on
prognosis or

thrombosis; may
have a role in the
context of familial

cases of MPN

[48,49,70,
72,73]

CBL 11q23.3

An adaptor protein that
functions as a negative

regulator of many
pathways that are

triggered by activation of
cell surface receptors

Mostly
homozygous

missense
substitutions

0–2% of PV and
ET;

0–6% of MF
and BP

Reduced overall
survival in MF,

resistance to JAKi;
disease progression

to BP

[49,50,74,
76]

NRAS-
KRAS 1p13.212p12.1

RAS superfamily
proteins share a common

ability to bind and
hydrolyze guanine
nucleotides; these

proteins are involved in
transduction of

extracellular signals

Heterozygous
missense

mutations,
particularly in

codons 12, 13, and
61

0–1% of PV and
ET;

3–15% of MF
and BP

Reduced overall
survival in MF,

resistance to JAKi;
disease progression

to BP

[76,85,86]

PTPN11 12q24.13

Member of the protein
tyrosine phosphatase

(PTP) family; PTPs are
signaling molecules that

regulate a variety of
processes including cell
growth, differentiation,

mitotic cycle, and
oncogenic

transformation

Mostly missense
mutations in

Src-homology 2
(N-SH2) and

phosphotyrosine
phosphatase (PTP)

domains

0–2% of PV, ET,
and MF; 2–5%

of BP

Reduced survival in
BP [50]

Transcription Factors

RUNX1 21q22.12

It is a transcription factor
that forms a complex

with the cofactor CBFB
(core binding factor B);
this complex provide

stability to the RUNX1
protein, which is
involved in the
generation of

hematopoietic stem cells
and their differentiation

Loss of function
missense and

frameshift
mutations

0–1% of PV and
ET;

3–10% of MF
and BP

Reduced survival in
BP [44,50]

NFE2 12q13.13

It is a component of the
NF-E2 complex, essential
for regulating erythroid

and megakaryocytic
differentiation and

maturation

Mostly
heterozygous

frameshift and
point mutations

1–3% of PV and
ET;

3–10% of MF
and BP

No clear impact on
prognosis [78,79]
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Table 1. Cont.

Gene Location Function Mutation Type Frequency Clinical
Consequences Reference

Transcription Factors

PPM1D 17q23.3

Encodes a member of the
PP2C family of Ser/Thr

protein phosphatase that
regulates the DNA
damage response

pathway by inhibiting
p53 and other

tumor-suppressors

Nonsense or
frameshift

mutations in exon 6

0–2% of all
MPN

No clear impact on
prognosis or
thrombosis;
resistance to

chemotherapy

[83,87]

TP53 17p13.1

Tumor suppressor
protein induces growth

arrest and apoptosis
depending on the

physiological
circumstances and cell

type

Mostly missense
mutations

1–3% of PV, ET,
and MF;

10–30% of BP

Disease progression
to BP and reduced

overall survival in all
MPN

[50,80,81]

PV, polycythemia vera; ET, essential thrombocythemia; MF, myelofibrosis; BP, blast-phase; MPN, myeloproliferative neoplasms; JAKi,
JAK inhibitors.

3. Prognostic Scores in MPN Based on Clinical and Molecular Variables
3.1. Polycythemia Vera and Essential Thrombocythemia

For many years, thrombosis prediction in PV and ET relies only on two clinical
variables: older age (>60 years) and prior history of thrombosis. More recently, several
studies highlighted the possibility that genetic factors contribute to the assessment of
thrombotic risk. Unlike patients with PV who almost exclusively carry mutations in JAK2,
in ET the effect of driver mutations has been extensively evaluated comparing JAK2V617F
mutated and unmutated patients. Overall, these studies showed that the presence of
JAK2V617F is associated with a higher risk of thrombosis [88–90]. In 2012, on the basis
of these pieces of evidence, the International Prognostic Scoring of Thrombosis in ET
(IPSET-thrombosis) was developed by adding the JAK2 mutated status and cardiovascular
risk factors (2 and 1 points, respectively) to the classic variables older age (>60 years)
and prior thrombosis (1 point each) [91]. A re-analysis of the original IPSET-thrombosis
data led to the exclusion of cardiovascular risk factors with the development of a revised
IPSET [92] (Table 2) that was subsequently validated in a large independent cohort of ET
patients [93]. On the basis of the score, it is suggested that young ET patients without a
prior history of thrombosis and lacking the JAK2V617F mutation may not need aspirin
because of their very low risk of thrombosis. Moreover, it was reported that in this category
of ET patients, aspirin could eventually increase the risk of bleeding without reducing the
risk for thrombosis [92,94].

Table 2. Revised IPSET-thrombosis model for essential thrombocythemia.

Risk Category Clinical Variables Molecular Variables Suggested Management

Very low Age ≤ 60 years, no history of
thrombosis JAK2 wild type Management of CV, observation, or low dose ASA, unless

contraindicated a.

Low Age ≤ 60 years, no history of
thrombosis JAK2 positive Management of CV and low dose unless contraindicated a.

Higher dose ASA a may be used if presence of CV.

Intermediate Age > 60 years, no history of
thrombosis JAK2 wild type

Management of CV risk factors and cytoreductive therapy
plus low-dose ASA, unless contraindicated a. Higher dose

ASA a without cytoreductive therapy without CV.

High Age > 60 years or prior
thrombosis JAK2 positive Management of CV risk factors and cytoreductive therapy

plus low-dose ASA a.
a ASA is contraindicated if acquired von Willebrand’s disease or active major bleedings are present. IPSET: International Prognostic Score
for Essential Thrombocythemia; CV: cardiovascular risk factors; ASA: acetylsalicylic acid (aspirin).
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Recently, the prognostic relevance of additional somatic mutations was investigated
in two large cohorts of PV and ET patients [48]. Upon age-adjusted multivariate analy-
sis of their impact on overall, leukemia-free, and myelofibrosis-free survival, molecular
variants associated with adverse outcomes included ASXL1, SRSF2, and IDH2 in PV, and
SH2B3/LNK, SF3B1, U2AF1, TP53, IDH2, and EZH2 in ET. Specifically, the presence of
at least one of these mutations was associated with inferior overall survival in both PV
(median survival, 7.7 vs. 16.9 years) and ET (median survival, 9 vs. 22 years). On the
basis of the results obtained from the analysis of 906 molecularly annotated patients from
Mayo Clinic and University of Florence cohorts, the authors incorporated genetic data
into two new prognostic models: the Mutation-Enhanced International Prognostic Scor-
ing System for PV (MIPSS-PV) and ET (MIPSS-ET) (Table 3) [95]. MIPSS-PV included
age >67 years, leukocyte count ≥15 × 109/L, thrombosis history at diagnosis, and the
presence of SRSF2 mutation. Conversely, MIPSS-ET included male sex; age >60 years;
leukocyte count ≥11 × 109/L; and the presence of mutations in SRSF2, SF3B1, U2AF1, or
TP53. A recent sub-analysis of the ET cohort included in the MIPSS-ET demonstrated that
ASXL1/RUNX1/EZH2 mutations were associated with a decreased risk of arterial throm-
bosis, suggesting a different underlying biology [96]. These interesting and promising
results require further studies to determine their practical role in clinical management.

Table 3. Clinical-molecular prognostic scores in polycythemia vera and essential thrombocythemia.

Prognostic Score
[Reference] Clinical Variables (Points) Molecular Variables

(Points) Risk Categories (Points) Survival *

MIPSS-PV, Tefferi
et al. [95]

Leukocyte count
≥15 × 109/L (1); thrombosis
history (1); age > 67 years (2)

SRSF2 mutation (3)
Low (0–1)

Intermediate (2–3)
High (4–7)

24
13.1
3.2

MIPSS-ET, Tefferi
et al. [95]

Leukocyte count
≥11 × 109/L (1); age > 60

years (4); male sex (1)

SRSF2, SF3B1, U2AF1, and
TP53 mutation (2)

Low (0–1)
Intermediate (2–5)

High (6–8)

34.3
14.1
7.9

MIPSS, Mutation-Enhanced International Prognostic Scoring System; PV, polycythemia vera; ET, essential thrombocythemia. * Survival
in years.

3.2. Primary and Post-PV/ET Myelofibrosis

Currently, two prognostic models that include exclusively hematologic and clinical
variables are employed to stratify PMF patients into risk categories with significant differ-
ences in overall survival: the International Prognostic Scoring System (IPSS) [97], applicable
at the time of diagnosis, and the Dynamic IPSS (DIPSS) [98]. These scores can be applied
at any time during the clinical course of PMF, using five clinical variables that indepen-
dently predict inferior survival: age > 65 years, hemoglobin < 10 g/dL, leukocyte count
> 25 × 109/L, circulating blasts ≥ 1%, and constitutional symptoms. Subsequently, the
DIPSS was revised to the DIPSS plus [99], including red blood cell transfusion need,
platelet count < 100 × 109/L, and unfavorable karyotypes (complex karyotype or sole
or 2 abnormalities that included +8, −7/7q-, I (17q), inv (3), −5/5q-, 12p-, or 11q23 re-
arrangements) [100]. As outlined previously, in addition to driver mutations, more than
80% of patients with PMF harbor genomic variants in myeloid genes, often in multiple
combinations [49]. Moreover, in PMF patients, driver and additional mutations have been
shown to influence overall and leukemia-free survival, independent of IPSS and DIPSS/-
plus [35,56,57]. The prognostic contribution of driver mutations supports the distinction
between presence or absence of type 1 CALR mutations [101,102], whereas additional
abnormalities in ASXL1, SRSF2, EZH2, and IDH1/IDH2 were defined as a high molecular
risk (HMR) variable, with a prognostic relevance amplified by the number of those mu-
tations in individual patients [49,54,56]. At the light of these observations, the Molecular
Enhanced International Prognostic Score Systems (three-tiered MIPSS70 and four-tiered
MIPSS70-plus) were developed using a cohort of patients aged ≤70 years, potentially eligi-
ble for allo-HSCT, recruited from multiple Italian centers and the Mayo Clinic, Rochester,
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USA [103]. The MIPSS70-plus score additionally included unfavorable karyotype defined
by any abnormal karyotype other than normal karyotype or sole abnormalities of 20q2,
13q2, + 9, chromosome 1 translocation/duplication, -Y, or sex chromosome abnormality ex-
cluding -Y. Both models predicted LFS as well as OS, but MIPSS70-plus seemed to have the
best performance in identifying a very high–risk category of patients age ≤70 years, 23% of
whom developed acute leukemia likely as a consequence of additional cytogenetic abnor-
malities. A further revision termed MIPSS70-plus v2.0 [84] incorporated the U2AF1Q157
variant as an additional HMR mutation on the basis of previous findings [68]. Additional
refinement of risk categories was provided by defining new sex- and severity-adjusted
hemoglobin thresholds for anemia (severe for hemoglobin levels of <8 g/dL and <9 g/dL,
and moderate for hemoglobin levels of 8 to 9.9 g/dL and 9 to 10.9 g/dL, respectively, for
women and men) [104], and by integrating a refined three-tiered cytogenetic risk distribu-
tion with the introduction of very high risk (VHR) group; the latter included patients with
single/multiple abnormalities of −7, I (17q), inv (3)/3q21, 12p-/12p11.2, 11q-/11q23, or
other autosomal trisomies not including +8/+9 [105].

In 2018, all these information regarding the prognostic role of genetic and cytogenetic
alterations in PMF prompted the development of a Genetically Inspired Prognostic Scoring
System (GIPSS). The latter was exclusively based on molecular (absence of type-1 CALR
mutations and presence of ASXL1, SRSF2, and U2AF1Q157 additional somatic mutations)
and cytogenetic variables [106]. GIPSS was not inferior to DIPSS and MIPSS70-plus in
discrimination ability and prediction accuracy. Moreover, these data were validated in a
large independent cohort of PMF patients [107].

Notably, all the above models were developed exclusively for patients with a diagno-
sis of primary MF. When applied to secondary MF, among IPSS, DIPSS, and DIPSS-plus,
DIPSS was found to be the most accurate risk stratification model. Further, a four-tiered
Myelofibrosis Secondary to PV and ET-Prognostic Model (MYSEC-PM) was specifically
developed for secondary MF. This clinical-molecular score included the following variables:
hemoglobin level, peripheral blasts, platelet count, age, presence of constitutional symp-
toms, and CALR mutational status [108]. The MYSEC-PM was demonstrated to perform
better than IPSS.

In order to accurately predict patients’ outcome following allo-HSCT, the Myelofibro-
sis Transplant Scoring System (MTSS) was recently formulated for patients with primary
and post-PV/ET myelofibrosis. The score variables include: age (≥57 years), perfor-
mance status, platelet and leukocyte count prior to transplantation (<150 × 109/L and
>25× 109/L, respectively), HLA-mismatched unrelated donor, and CALR/MPL and ASXL1
mutational status [109]. Finally, a recent large study based on sequencing of 69 genes in
more than 2000 patients with MPN identified a prognostic role for CBL, NRAS, RUNX1,
TET2, P53, GNAS, IDH2, and U2AF1 in both OS and LFS. This study led to the creation of a
personalized predictive individual model for disease progression and death, integrating a
high number of demographics, clinical variables, and genomic variables [44]. However,
due to its complexity, clinical application is limited at present.

Prognostic calculators for MYSEC-PM (http://www.mysec-pm.eu/, accessed on
12 July 2021), MIPSS70 (http://www.mipss70score.it/, accessed on 12 July 2021) and
MPN personalized risk model (https://jg738.shinyapps.io/mpn_app/, accessed on 12 July
2021) are available online. Table 4 provides a comprehensive overview of the clinical and
molecular integrated prognostic scoring systems described in myelofibrosis.

http://www.mysec-pm.eu/
http://www.mipss70score.it/
https://jg738.shinyapps.io/mpn_app/
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Table 4. Clinical and molecular integrated prognostic scores in myelofibrosis.

Prognostic Score
[Reference] Clinical Variables (Points) Molecular Variables

(Points)
Risk Categories

(Points) Survival *

MIPSS70, Guglielmelli
et al. [103]

Hemoglobin < 10 g/dL (1)
Blasts > 2% (1)

Constitutional symptoms (1)
Leukocytes > 25 × 109/L (2)
Platelet count < 100 × 109/L

(2)
BM fibrosis ≥ 2 (1)

Non CALR type-1 (1)
HMR a = 1 (1)
HMR a ≥ 2 (2)

Low (0–1)
Intermediate (2–4)

High (5–12)

27.7
7.1
2.3

MIPSS70 plus,
Guglielmelli et al. [103]

Hemoglobin < 10 g/dL (1)
Blasts > 2% (1)

Constitutional symptoms (1)

Non CALR type-1 (2)
HMR a = 1 (1)
HMR a ≥ 2 (2)

Unfavorable karyotype b

(3)

Low (0–2)
Intermediate (3)

High (4–6)
Very high (7–11)

20.0
6.3
3.9
1.7

MIPSS70 plus
v2.0,Tefferi et al. [84]

Hemoglobin 8-10 g/dL (1)
Hemoglobin < 8 g/dL (2)

Blasts > 2% (1)
Constitutional symptoms (2)

Non CALR type-1 (2)
HMRa+U2AF1 Q157 = 1 (2)

HMRa+U2AF1 Q157 ≥ 2
(3)

HR karyotype c (3)
VHR karyotype d (4)

Very low (0)
Low (1–2)

Intermediate (3–4)
High (5–8)

Very high (9–14)

Not reached
10.3

7
3.5
1.8

GIPSS,
Tefferi et al. [106] No clinical variables

Non CALR type-1 (1)
ASXL1 mutation (1)
SRSF2 mutation (1)

U2AF1 Q157 (1)
HR karyotype c (1)

VHR karyotype d (2)

Low (0)
Intermediate-1 (1)
Intermediate-2 (2)

High (3–6)

26.4
8.0
4.2
2.0

MYSEC-PM,
Passamonti et al. [108]

Hemoglobin < 11 g/dL
Blasts ≥ 3%

Platelets < 150 × 109/L
Constitutional symptoms (2)
Age at secondary MF (0.15

point/year)

CALR unmutated genotype
(2)

Low (<11)
Intermediate-1 (11–14)
Intermediate-2 (14–16)

High (≥16)

Not reached
9.3
4.4
2.0

MTSS,
Gagelmann et al. [110]

Platelets < 150 × 109/L (1)
Leukocytes > 25 × 109/L (1)

Karnofsky PS < 90% (1)
Age ≥ 57 years (1)

HLA-mismatched unrelated
donor (2)

Non CALR/MPL mutation
(2)

ASXL1 mutation (1)

Low (0–2)
Intermediate (3–4)

High (5)
Very high (6–9)

83% **
64% **
37% **
22% **

MIPSS, Mutation-Enhanced International Prognostic Scoring System; GIPSS, Genetically Inspired Prognostic Scoring System; MYSEC-PM,
Myelofibrosis Secondary to PV and ET-Prognostic Model; MTSS, Myelofibrosis Transplant Scoring System;. a High molecular risk (HMR)
includes ASXL1, SRSF2, EZH2, IDH1/2. b Unfavorable karyotype defined any abnormal karyotype other than normal karyotype or sole
abnormalities of 20q2, 13q2, +9, chromosome 1 translocation/duplication, -Y, or sex chromosome abnormality other than -Y. c High-risk
(HR) karyotype includes all the abnormalities that are not VHR and favorable (normal karyotype or sole abnormalities of 20q-, 13q-, +9,
chromosome 1 translocation/duplication, or sex chromosome abnormality including -Y). d Very high risk (VHR) includes single or multiple
abnormalities of -7, inv (3), I (17q), 12p-, 11q-, and autosomal trisomies other than +8 or +9. In bold molecular variables. * Overall survival
in years; ** 5-year overall survival.

4. Impact of Mutational Landscape on Therapeutic Decisions

The remarkable knowledge accumulated in recent years concerning mutational land-
scape of MPN opened the possibility of developing targeted therapies aiming at specifically
interact with cell pathways demonstrated to be dysregulated. The identification of the
specific dependence of MPN on JAK/STAT pathway dysregulation, irrespective of the
underlying driver mutation, led to the development of small-molecule inhibitors of the
JAK family of tyrosine kinases (JAKi). To date, several compounds have been developed
that differ in structure, mechanism of action, potency, and kinase selectivity, all being
type I inhibitors. It is important to underline that JAKi target the ATP-binding pocket of
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the JAKs without being selective against mutant JAK protein, thus explaining the clini-
cal efficacy also in JAK2-unmutated patients. Ruxolitinib was the first JAK1/2 inhibitor
that received approval for myelofibrosis treatment on the basis of the results from the
COMFORT-I/II studies [111,112]. Ruxolitinib was effective in reducing spleen volume and
alleviating constitutional symptoms, with possible effects on OS. Long term follow-up
studies suggested modest reduction of JAK2V617F allele burden, with rare cases of molecu-
lar remission [113,114]. Subsequently, ruxolitinib was investigated in the RESPONSE [115]
and RESPONSE-2 [116] studies that enrolled high-risk PV patients resistant or intolerant to
hydroxyurea (according to European Leukemia-Net (ELN) criteria [117]) with and without
splenomegaly, respectively. A modest progressive decline in JAK2 mutant allele burden in
patients under ruxolitinib was documented also in the RESPONSE trial, although without
clear clinical correlations [118].

Unfortunately, most patients with myelofibrosis on ruxolitinib eventually become
resistant to therapy with progression of symptoms and splenomegaly, worsening cytope-
nias, or evolution to BP. In the COMFORT-II study, among patients responsive to JAKi
treatment, less than 50% had chance of maintaining response at five years [113]. Intrigu-
ingly, in a recent paper, Newberry et al. [60] demonstrated that 35% of patients treated
with ruxolitinib had a clonal evolution after ruxolitinib discontinuation, defined by the
acquisition of at least one additional mutation. ASXL1 mutations was the most frequent,
followed by TET2, EZH2, and TP53. The main downside of this study was the lack of
a control patients’ cohort [119]. Subsequently, another study, which included a control
group of 25 MF patients treated with hydroxyurea, confirmed these observations but also
demonstrated that clonal progression is independent of the treatment [120].

The impact of the mutational landscape on treatment outcomes with JAKi has been
addressed by a few studies with overall inconsistent findings. A retrospective analysis
of the COMFORT-II trial reported that spleen and anemia responses were not correlated
with either driver or HMR mutations [111]. Conversely, JAK2V617F allele burden ≥50%
was associated with higher spleen response rates to ruxolitinib [121]. In another study
evaluating 95 ruxolitinib-treated patients, patients with ≥3 mutations had ninefold lower
odds of spleen response and shorter time to treatment discontinuation [122]. Similarly,
mutations in ASXL1 and CBL as well as an HMR profile correlated with shorter time
to treatment failure [123]. Moreover, loss of spleen response was associated with HMR
mutations, whereas the absence of ASXL1 mutations and > 20% reduction in JAK2V617F
allele burden at any time during treatment correlated with long-term spleen response [120].
Altogether, these data suggest that although no individual mutations can predict the
response to JAKi, particular variants and higher mutational burden may influence the
duration of response and hence treatment failure, likely as a consequence of a more
aggressive disease. More recently, mutations in the RAS pathways genes (NRAS, KRAS,
CBL) were identified as independent predictors of reduced symptom and spleen responses
to JAKi [76].

Allo-HSCT remains the only potentially curative therapy for MF patients; despite
many improvements, outcomes of allo-HSCT are still burdened by substantial morbidity
and high transplant-related mortality and only a minority of patients are eligible for
such an intensive procedure. Consequently, insights into molecular mechanisms of MPN
pathogenesis have spurred drug development, searching for more effective treatments. In
recent years, interferon-α (IFNα), especially in the better tolerate pegylated forms (Peg-
IFNα), has emerged as a promising approach in MPN, particularly in PV and ET [124–129].
Although IFNα is not currently approved for treatment in ET and PV, consensus guidelines
recommend interferon as an option for first-line cytoreduction, particularly in younger or
pregnant patients [117]. As suggested by the high rate of reduction of JAK2V617F allele
burden under Peg-IFNα compared to mutated CALR, the treatment appears to selectively
target the mutant JAK2 clone [130]. Enhanced sensitivity of JAK2V617F-mutated cells
to IFNα may be related to high expression and phosphorylation levels of STAT1 [131].
Interestingly, the presence of concomitant non-driver mutations is associated with smaller
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mean decreases in JAK2V617F allele burden with Peg-IFNα treatment [125]. At this regard,
IFNα may have decreased ability to eradicate TET2 positive clones even when JAK2V617F-
mutant clone is markedly reduced, indirectly suggesting that the presence of additional
mutations can predict responses to IFNα treatment [132]. However, also the dose of the
drug seems to impact on the response to treatment; at this regard IFNα at a higher dose
in a cohort of 31 CALR-positive ET patients induced hematologic responses in all patients
with a median reduction of CALR mutated allele burden from 41% to 26% [133]. Similar to
findings in JAK2 mutated patients, the presence of TET2, ASXL1, IDH2, and TP53 additional
mutations was associated with poorer molecular responses. In a long-term 83-month follow-
up of ET and PV patients treated with Peg-IFNα, median duration of hematologic and
molecular response was 66 and 53 months, respectively [134]. Additionally, although
in most patients JAK2V617F allele burden increased after the first 2 years of treatment,
three patients had a complete molecular remission even after discontinuation of therapy.
Recently, it was demonstrated that a diplotype spanning the coding region of the IFNL4
gene influences molecular response to IFNα in PV patients [135]. Nonetheless, disease
evolution remained comparable to historical data in patients treated with other therapies,
with an 8% transformation rate to MF or BP [134].

Imetelstat, a 13-mer lipid-conjugated oligonucleotide that targets the RNA template of
human telomerase reverse transcriptase (TERC), was tested both in MF and ET patients. In
2015, Mayo Clinic investigators reported on 33 patients with intermediate-2 and high-risk
MF according to DIPPS-plus score treated with imetelstat (2 h of intravenous infusion;
starting dose, 9.4 mg/kg every 1 to 3 weeks) and observed a complete (n = 4; 12%) or partial
response in seven patients (21%). Remarkably, all four patients with complete remission
experienced reversal of bone marrow fibrosis, and a molecular response occurred in three of
these four patients. Responses to imetelstat were correlated with the presence of JAK2V617F,
SF3B1, or U2AF1 mutations and the absence of ASXL1 mutation [136]. In another pilot
study included 18 ET patients treated with imetelstat, a partial molecular response was
detected in seven out of eight JAK2V617F-mutated patients. Overall, JAK2V617F allele
burden was reduced by a median of 71% 3 months after the initiation of treatment, along
with allele burden reductions of mutated MPL and CALR (15–66%) [137]. In the latter
cohort of ET patients, additional somatic mutations significantly reduced the depth of
response and had an impact on duration of response. Among acquired mutations, ASXL1,
EZH2, and U2AF1 were responsive to imetelstat, unlike SF3B1 and TP53 mutations [138].
Recently, in a phase II study of two imetelstat doses, VAF of JAK2V617F, CALR, or MPL
driver mutations by at least 25% was observed in 42.1% of patients in the 9.4 mg/kg arm,
and 5.6% of patients in the 4.7 mg/kg arm. Additionally, patients who achieved ≥20%
VAF reduction demonstrated higher rates of spleen response, symptom response, and BM
fibrosis improvement, along with a longer median OS [139].

Mutations in IDH1/IDH2 and TP53 are overall uncommon in chronic phase MPN but
occur more frequently in BP disease. These findings may have a clinical impact according to
the favorable results from studies evaluating ivosidenib and enasidenib (anti-IDH1 and IDH2,
respectively) in patients with relapsed/refractory IDH-mutated AML [140,141], as well as
high response rate of TP53-mutated AML to 10-day decitabine [142]. In a mouse model of
JAK2 and IDH2 co-mutated MPN, combined inhibition of JAK2 and IDH2 (with ruxolitinib
and enasidenib, respectively) normalized reduced disease burden to a greater extent than
JAK inhibition alone by reversing aberrant gene expression and metabolite perturbation
in the hematopoietic stem cell compartment [143]. Murine double minute 2 (MDM2), a
key downregulator of TP53, is overexpressed in patients’ CD34+ cells, and treatment with
idasanutlin, a second-generation inhibitor of TP53-MDM2 interaction, has been shown
to target MPN stem and progenitor cells both alone and in combination with IFNα [144].
On the basis of these data, researchers evaluated idasanutlin in a phase I trial showing
hematologic, symptomatic, pathologic, and molecular responses in some patients [145].
Regrettably, the subsequent phase II trial of idasanutlin in HU-resistant/intolerant PV
was prematurely terminated due to the high rate of gastrointestinal toxicities. Another
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MDM2-inhibitor, KRT-232, is being evaluated in patients with TP53 wild-type MF who are
relapsed or refractory to JAKi (NCT03662126).

Anti-apoptotic proteins represent another potential target for MF therapy. At this
regard, a promising option is represented by venetoclax, an oral, selective, potent inhibitor
of the BCL2 antiapoptotic protein, used in combination with low-dose cytarabine or hy-
pomethylating agents. In a recent trial designed for patients newly diagnosed with AML
ineligible for standard induction chemotherapy, azacitidine plus venetoclax was superior
to azacitidine alone, also in the subset of IDH1/IDH2- and TP53-mutated patients [146].
Venetoclax in combination with azacytidine/decitabine has also been tested in BP-MPN.
In a multicenter series of 32 consecutive cases, complete remission was achieved by 44%
of patients and was more likely to occur in the absence of pre-leukemic PV/post-PV MF,
complex karyotype, and NRAS/KRAS mutations, with no correlation with neither TP53
nor IDH1/IDH2 mutational studies. Importantly, 6/14 patients with complete remission
subsequently received allo-HSCT [147].

Although these therapies are promising, BP patients carries a dismal prognosis, with a
median survival of ≈6 months; the only possibility of long-term survival is offered by allo-
HSCT in the minority of patients who are able to achieve complete remission, or return to
chronic phase, with therapy before transplant. Further studies are needed, but these target
therapies may represent a valid therapeutic approach also as a bridge to transplantation.

Finally, the prognostic effect of somatic mutations in outcomes following allo-HSCT
remains poorly defined. Among 133 patients with PMF or secondary MF receiving HSCT,
the presence of CALR mutations was associated with better 4-year OS, non-relapse mortality
(NRM), and a trend toward lower cumulative incidence of relapse [148]. In survival
analysis, patients with mutated CALR had the best better prognosis following allo-HSCT,
those with JAK2 or MPL mutations had an intermediate prognosis, and TN patients had
the worst prognosis. Interestingly, these finding recapitulate those in non-transplant
setting [35]. In another retrospective study of 169 MF patients, CALR-mutated patients
were found to have lower NRM and improved PFS and OS; ASXL1 and IDH2 mutations
were associated with lower PFS; whereas no impact was observed for TN, SRSF2-, or EZH2-
mutated patients [59]. The presence of somatic mutations in driver and non-driver genes
in most MF patients offers the opportunity to use these markers as indicators of minimal
residual disease (MRD) after allo-HSCT. Two large studies reported that the persistence of
JAK2V617F following allo-HSCT was associated with a higher incidence of relapse and a
poor OS [149,150]. More recently, in a series of 136 patients, Wolschke et al. demonstrated
that patients with detectable driver mutations after allo-HSCT at either day + 100 or day
+ 180 had a significantly higher risk of relapse at 5 years compared to those in molecular
remission [151]. These studies strongly recommended the monitoring of molecular MRD
in MF patients after allo-HSCT, helping overall in patient management.

5. Conclusions

The summary presented in this review of the molecular abnormalities that harbor
patients with MPN, and how these are progressively raising the bar of knowledge of disease
pathophysiology as well as improving the management of patients, stand for an exceptional
last decade or so of scientific achievements. MPN driver mutations (JAK2, CALR, and MPL)
activating JAK-STAT signaling are crucial for MPN pathogenesis. Moreover, additional
somatic mutations are detected in more than 50% of MPN cases, particularly in MF, and
are associated with disease progression. While in MF many clinical-molecular integrated
prognostic models have been developed and routinely used in clinical practice, in PV
and ET, the prognostic significance of concomitant somatic mutations is starting to be
explored. Yet, there is still much work to do. The category of patients with triple negative
MPN is an unmet diagnostic need: why is prognosis so poor for triple-negative MF?
What genetic abnormalities do they hide? Are these MPN, or some other disease, for
example, are they more akin to myelodysplastic syndrome? The phenomenon of loss of
sensitivity to ruxolitinib is a challenging therapeutic dilemma and is known to associate
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with clonal complexity detected at the time of loss of response. Will we be able to predict it
in advance and select the best candidates for alternative treatments? Moreover, the events
that promote progression to acute leukemia are largely unknown in terms of what prevents
development of appropriate surveillance and early diagnostic criteria. These few examples
will hopefully reinforce the interest and promote efforts of the scientific community to
reach a full understanding and satisfactorily treatment of MPN.
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