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Motivation: The Cox proportional hazard models are widely used in the study of cancer
survival. However, these models often meet challenges such as the large number of
features and small sample sizes of cancer data sets. While this issue can be partially solved
by applying regularization techniques such as lasso, the models still suffer from
unsatisfactory predictive power and low stability.

Methods: Here, we investigated two methods to improve survival models. Firstly, we
leveraged the biological knowledge that groups of genes act together in pathways and
regularized both at the group and gene level using latent group lasso penalty term.
Secondly, we designed and applied amulti-task learning penalty that allowed us leveraging
the relationship between survival models for different cancers.

Results: We observed modest improvements over the simple lasso model with the
inclusion of latent group lasso penalty for six of the 16 cancer types tested. The addition of
a multi-task penalty, which penalized coefficients in pairs of cancers from diverging too
greatly, significantly improved accuracy for a single cancer, lung squamous cell carcinoma,
while having minimal effect on other cancer types.

Conclusion: While the use of pathway information and multi-tasking shows some
promise, these methods do not provide a substantial improvement when compared
with standard methods.
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1 INTRODUCTION

Survival analysis is an important topic in cancer research as it allows predicting the time to death
or tumor progression as well as providing potential insights into the drivers of the disease. To
predict the prognostic score of cancer patients, numerous survival models using patients’
molecular and clinical data have been proposed. In particular, gene expression data have been
widely used since changes in the regulation of genes are ubiquitous in cancer. A variety of
learning methods has been applied to survival data, e.g., the Cox proportional hazard model,
deep learning or random forests–see Matsuo et al. (2019) for their comparison on cervical cancer
data. Going beyond just gene expression, these models have been used with many data types,
such as radiography data and histopathology images, to investigate cancer survival (Wulczyn
et al. (2020); Le et al. (2021)).
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In this work, we utilized a version of the Cox model (Cox
(1972))–its main strenghts being the ease of use, strong results
and interpretability. While the deep learning approach has shown
minor concordance improvements compared with the linear Cox
model it suffers in terms of interpretability (Huang et al. (2020)),
and random survival forests have consistently underperformed
the linear models, although variants such as block forest do show
promise for multi-omics data (Matsuo et al. (2019); Herrmann
et al. (2020); Huang et al. (2019, 2020)).

The large number of genes and the high multicollinearity
found between them, coupled with low sample numbers
makes overfitting a major issue. It is therefore desirable to
identify a smaller set of genes determining the cancer
progression and severity. For this purpose, the Cox
proportional hazard model can be supplemented with a
lasso regression term (Tibshirani (1997)). Depending on
the strength of the lasso regularization, some of the gene
coefficients are truncated, effectively making the model
sparse. However, there is no guarantee that the genes that
are included in the Cox model are truly more predictive than
those whose contributions are truncated. Indeed, slight
variations in the sample set can lead to large variations in
the included genes. One potential way to alleviate this is by
grouping the genes.

Often, genes are activated together in synchronized
processes called signaling pathways (Parikh et al. (2010)), a
potential solution to the multicollinearity problem is
therefore to build a model that is sparse not on a gene
level, but on a pathway level. Of particular interest to us
are pathways that are downstream of known cancer drivers.
To achieve this, a version of the group lasso penalty, grouping
genes by pathway, has been proposed and applied to cancer
data (Obozinski et al. (2011)). Group lasso regularization
works by performing ridge (L2) regression on the
components within a group and then performing lasso (L1)
regression across the groups. This means that the lasso
component of the regularization causes entire groups to be
included or removed from the model as a whole, while the
ridge component reduces some of the coefficients’ size within
any group that is included.

The version of the group lasso penalty that we use in this paper
is the latent group lasso penalty. This penalty deals with the issue
present in the naïve group lasso implementation that if the same
gene is included in two groups and model coefficients for one of
those groups are set to zero, then the gene contribution will also
be set to zero in the second group. Latent group lasso allows for
genes that fall into multiple groups to have independent
coefficients, while not biasing the model towards their
inclusion (Obozinski et al. (2011)).

Since their introduction for cancer, group lasso approaches
have been used a number of times in survival analysis (Kim et al.
(2012); Wang et al. (2018)). For instance, group lasso was used to
integrate multi-omics data at the gene level (Xie et al. (2019)).
However, to the best of our knowledge, the application of
pathway level latent group lasso to gene expression data for
cancer survival has not been investigated for large cohorts of
patients such as the Tumor Genome Atlas (TCGA).

Of note, in addition to group lasso, there exist other pathway
based approaches; they however failed to demonstrate major
improvements compared with standard lasso. Zheng et al.,
using Gene Set Variation Analysis (GSVA) to reduce gene
expression to pathway expression, showed no significant
improvement over standard lasso (Zheng et al. (2020)). Our
own preliminary work using pathway based dimension
reduction via PCA and autoencoders also resulted in worse
results compared with standard lasso and the latent group
lasso method (results not shown).

One further challenge associated with cancer survival
modelling is that while across all cancers the number of
samples is quite large (over 10,000 in the TCGA data set),
the number of samples for any single cancer type can be as low
as 36. Unfortunately, the naïve solution to this, merely training
multiple cancers all together, does not perform well for a few
reasons. Firstly, while there are many similarities across
cancers, there are also many differences and thus building a
single model to describe survival across all cancers is not
feasible. Secondly, the survival across different cancers
varies greatly and therefore models trained on all cancers
together often get good global results by discriminating
samples by cancer type, essentially giving high hazard
scores to low survival cancer types and visa-versa, while
being very inaccurate on any individual cancer.

We would like to combine multiple cancers into a single model
in such a way that the similarities between them can be leveraged.
A number of multi-task approaches has been tested for survival
analysis, including autoencoders and clustered learning.
Furthermore a kernel based approach has been developed
which incorporated pathways and multi-tasking, but showed
no consistent improvements compared with the random forest
and survival SVM models (Li et al. (2016); Dereli et al. (2019);
Kim et al. (2020)).

Additionally, several extensions of the group lasso
regularization were proposed in the literature: a multivariate
sparse group lasso–a version generalized to multidimensional
response variables and predictors (Li et al. (2015)), or the
generalized elastic net (GELnet)–a penalty that admits
general weigths on both individual and pair-wise feature
levels (Sokolov et al. (2016)). Neither of the group lasso
generalizations, however, took into account the possibly
different scaling of various cancer solutions. Moreover, the
weigths are set a priori, so a particular pathway cannot be
decoupled during the optimization process in case it is
predictive for one cancer but not for the other one.

In this work, we present a method which links cancers
together by means of a coupling term in the loss function
which penalizes the models for having diverging coefficients
(Evgeniou et al. (2005); Görnitz et al. (2011)). The aim of this
method is to allow individual cancer models to leverage the
information from other cancers, while still allowing the
coefficients of each cancer model to vary individually. Ideally,
this will drive the inclusion of genes corresponding to pathways
equally important for survival in two cancer types. In this work,
this multicancer coupling term has been incorporated in
addition to latent group lasso.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7713012

Malenová et al. Exploring Pathway-Based Group Lasso

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2 METHODS

2.1 Data
In this study, we used clinical and gene expression data generated
by the TCGA Research Network: https://www.cancer.gov/tcga
(Tomczak et al. (2015)). For this work, we selected 30 cancer
types. From these, the 16 cancers with over 300 samples were used
for the comparison of latent group lasso with naïve lasso and all
30 were used in the multi-tasking study. For each cancer, RNA-
Seq data, time since inclusion in study, and survival status were
used. The TCGA RNA-Seq data set was generated following the
Firehose pipeline: MapSplice followed by RSEM (Li and Dewey
(2011)), then normalized using upper quartile fragments per
kilobase per million reads (FPKM-UQ).

The following cancer types were selected: Adrenocortical
Carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA),
Breast Invasive Carcinoma (BRCA), Cervical Squamous Cell
Carcinoma and Endocervical Adenocarcinoma (CESC),
Cholangiocarcinoma (CHOL), Colorectal Adenocarcinoma
(COADREAD), Diffuse Large B-Cell Lymphoma (DLBC),
Esophageal Carcinoma (ESCA), Glioblastoma Multiforme (GBM),
Head and Neck Squamous Cell Carcinoma (HNSC), Kidney
Chromophobe (KICH), Kidney Renal Clear Cell Carcinoma
(KIRC), Kidney Renal Papillary Cell Carcinoma (KIRP), Acute
Myeloid Leukemia (LAML), Brain Lower Grade Glioma (LGG),
Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma
(LUAD), Lung Squamous Cell Carcinoma (LUSC), Mesothelioma
(MESO), Ovarian Serous Cystadenocarcinoma (OV), Pancreatic
Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD),
Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Stomach
Adenocarcinoma (STAD), Thyroid Carcinoma (THCA), Thymoma
(THYM), Uterine Corpus Endometrial Carcinoma (UCEC), Uterine
Carcinosarcoma (UCS), and Uveal Melanoma (UVM).

To group genes into pathways, we combined several
databases of genes activated or repressed as a result of an
activation of signaling pathway (pathway downstream genes):
SPEED, PROGENy, Duke University and Curie Institute-
curated data sets (Martignetti et al. (2016); Gatza et al.
(2010); Parikh et al. (2010); Rydenfelt et al. (2020); Schubert
et al. (2018)). Merging these databases resulted in a total of 69
unique sets of pathway downstream genes, which were further
used in our study.

Of note, we made a choice to use in this study only genes
representing downstream targets of signaling pathways instead of
other available gene sets representing pathway players, e.g.,
Reactome or KEGG (Fabregat et al. (2018); Kanehisa and
Goto (2000)), or biological processes from Gene Ontology
(Ashburner et al. (2000)) since biologically gene expression of
pathway downstream genes only is expected to show coordinated
changes.

2.2 Group Lasso
The Cox proportional hazards model is the most common
survival prediction model for cancer prognosis. We denote m
the number of covariates (genes) and n the number of patients.
Moreover, x � (x1, . . . , xn) ∈ Rm,n is the (standardized) gene

expression data matrix. For each patient, Yi is the time of
event, i � 1, . . . , n, and Ci is its type: Ci � 1 stands for
deceased and Ci � 0 for right-censored (removed from study)
patients. The negative log-partial likelihood associated with the
Cox model is then defined as

ℓ(β) � − ∑
i: Ci�1

xi · β − log ∑
j: Yj ≥Yi

exj ·β⎛⎝ ⎞⎠, (1)

where β ∈ Rm is the (unknown) dependence of patients’ survival
on their gene expression: positive elements correspond to the
positive association of gene expression with a poor prognosis.

We are interested in β minimizing ℓ(β) in (1). The minimum
is, however, not well defined form≫ n, which is often the case in
the cancer survival analysis setting. Tumor databases typically
include several hundreds of patients characterized for over 20,000
gene expression values. A remedy is provided by adding a
regularization term, the most popular being ridge and lasso, or
their combination into an elastic net (Zou and Hastie (2005)). In
this work, we use the standard lasso term penalty

Pλ(β) � λ‖β‖1, (2)

where λ is a non-negative constant corresponding to the strength
of the regularization. Finding β that minimizes

ℓ(β) + Pλ(β) � − ∑
i: Ci�1

xi · β − log ∑
j: Yj ≥Yi

exj ·β⎛⎝ ⎞⎠ + λ‖β‖1 (3)

produces a sparse solution where some of the coefficients are
reduced to zero. However, while such regularization usually
improves survival predictions, one of the important limitations
remains excessive variation in selected genes across models
trained on even slightly varying data (e.g., different folds in a
cross-validation).

In addition to the classic lasso setting, here we explore the
group lasso model, where genes are grouped by molecular
pathways. However, two distinct pathways often share a
number of common genes. In the standard group lasso setting
each gene only has a single coefficient and thus if a gene is
truncated in one pathway it will be truncated in all of them.
However, a simple duplication of genes occurring in two or more
pathways has been shown to solve this issue and is known as
latent group lasso (Jacob et al. (2009); Obozinski et al. (2011)).
Therefore, we consider pathways as non-overlapping; but the
overall gene set contains repetitive elements.

More precisely, we have a partition of the index set {1, . . . ,m}
into non-overlapping sets (groups). Consider a group g and
u � (u1, . . . , um) ∈ Rm. Then ug ∈ Rm denotes its projection to
R|g|: (ug)i � ui for i ∈ g, and (ug)i � 0 otherwise. Here, |g| is the
number of elements in group g. In this work, we use the latent
group lasso constraint

Rλ(β) � λ∑
g

���
|g|

√
‖βg‖2. (4)

The Cox group lasso regression then will minimize the
following loss function:
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ℓ(β) + Rλ(β) � − ∑
i: Ci�1

xi · β − log ∑
j: Yj ≥Yi

exj ·β⎛⎝ ⎞⎠
+ λ∑

g

���
|g|

√
‖βg‖2. (5)

Adding Rλ(β) to the loss function ℓ(β) effectively shrinks some
of the coefficient groups to 0. Hence, one obtains a sparse model
where only some of the covariate groups have non-zero
coefficients (Figure 1).

Since many genes have correlated expression, the full set of
genes is generally not necessary to achieve a good model
accuracy. Typically, the group lasso is expected to achieve a
similar precision as the standard lasso; however, we
hypothesize that it will provide both better interpretability
as well as higher congruence across folds. Since our gene
grouping is based on cancer associated signaling pathways,
the selected groups should be informative of cancer driving
molecular processes.

2.3 Multi-Task Model
The single-type cancer survival prediction accuracy can be
limited by various factors, e.g., the low number of patients,
noise, or high proportion of censored patients. The goal of the
multi-task model that we introduce here is to improve that
accuracy by forcing sharing (with some re-scaling coefficients) β
weights of gene contributions to survival between different
cancer types. We design a penalty for coupling gene
contributions in a per-pathway way, assuming that gene
contributions to pathway activities should be constant and
therefore gene contributions to survival, which is driven by
pathway deregulations, should be proportional across
cancer types.

Let us consider two cancers with their corresponding loss
functions ℓ(βj) + Rλj(βj), j � 1, 2. To force a coupling between
the coefficients β1 and β2, we introduce a new penalty term:

Cμ(β1,β2) � μ ∑
g

|g| A12
g + A21

g( )2⎛⎝ ⎞⎠1/2

, where

Aij
g � βi

g − βj
g

‖βi
g‖

‖βj
g‖

⎛⎝ ⎞⎠Iβig Iβjg

����������
����������.

(6)

Here, μ is a hyperparameter corresponding to the strength of
the coupling term Cμ(β

1, β2) and I denotes the indicator function.
The penalty Cμ has the following properties:

1) for each pathway g actively contributing to patients’ survival,
the penalty matches β1g and β2g,

2) normalization with ‖βig‖/‖βjg‖ allows for matching in a
situation when the same pathway is differentially predictive
for survival in two cancers,

3) if a pathway is not important for patients’ survival in one of
the cancers, the indicator function will remove corresponding
coefficients from the matching penalty, and

4) the penalty is symmetric.

Finally, we find β1 and β2 minimizing the following loss
function to produce maximum partial likelihood estimates of
the model parameters:

ℓ(β1) + Rλ1(β1) + ℓ(β2) + Rλ2(β2) + Cμ(β1, β2). (7)

The loss function (7) can be extended to an arbitrary number k
of cancer types. Note that the number of hyperparameters is
growing quadratically since there are k terms Rλ, and k(k − 1)/2
terms Cμ.

2.4 Assessing Model Accuracy and
Reproducibility
We define a hazard score xi ·β for each patient i � 1, . . . , n. In this
work, we used the concordance index (c-value) on the test data to
evaluate model accuracy (Steck et al. (2008)). The c-value is equal
to the proportion of pairs of observations where an event
occurred first for an individual with a higher hazard score
predicted by the model.

The interpretability of the model is conditional on how
consistent the pathway selection is over different random
seeds. As a measure of consistency, we compute the Tucker’s
congruence coefficient (Tucker (1951)), and average it over all
pairs of β. To assess its significance, we carry out a paired t-test
over the congruence of non-overlapping pairs of β.

2.5 Model Optimization
To find β minimizing the loss functions of lasso, group lasso and
multi-task group lasso models, we used the Adam optimizer
implemented in the PyTorch package (Kingma and Ba (2014)).
Moreover, in case of group lasso or multi-task group lasso, we
truncated βg to zero when all elements from a group g were below
a threshold of 0.001 in absolute value.

FIGURE 1 | Typical solutions minimizing the Cox loss function with either
the lasso (left) or the group lasso regression term (right), here computed for
the UCEC gene expression data: these two models predict survival of cancer
patients based on expression values for genes from downstream targets
of 69 signaling pathways. The number of inputs varies between the two
examples since the implementation of latent group lasso duplicates genes that
appear in more than one group (i.e., set of signaling pathway downstream
genes).
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Selection of Hyper-Parameters
For each cancer type, we selected the hyperparameter λ using a
10-fold cross-validated grid search over a suitable range
on the training set. We then performed 100 random
80–20 training-test splits, computed β on the training sets
and evaluated the c-value on the test sets. Finally, we
computed the paired t-test statistics value and its associated
p-value, along with a congruence coefficient for both lasso and
group lasso cases.

In the multi-task setting, along with λ1 and λ2 parameters, we
select the best value of the coupling parameter μ, which we do in
a similar cross-validation loop as for the standard lasso and
group lasso. With a growing number of tasks, a grid search over
multiple hyperparameters becomes computationally
demanding or even unfeasible. An implementation of a
random search then provides a possible solution. To
determine λj in the multi-task setting, 30 values were selected
randomly from a normal distribution with the mean set as the λj
previously calculated from standard group lasso and a standard
deviation of 0.1λj. Additionally, 30 values for μ were randomly
selected from a half-normal distribution around 0 with standard
deviation 0.5 (chosen heuristically). By selecting the best cross-
validated set of hyperparameters per task, in the Results section,
we compared the performance (c-values) of the multi-task
model with its single-task counterpart.

2.6 Training and Testing a Multi-Task Model
Training on Synthetic Data
To check the validity of our multi-task learning approach and
corresponding code, we simulated the following synthetic
data set: Two “toy” cancer gene expression and survival
data sets T1 and T2 drawn from a normal sampling
distribution generated from two TCGA cancers
COADREAD and STAD. Both T1 and T2 comprised nearly
10,000 genes, and 300 and 200 patients respectively.
Moreover, we assumed that the patients’ survival is fully
determined by two pathways each where one is being
shared among the two toy cancer types. The corresponding
“true” β coefficients were obtained as the first principal
component coefficients of the genes included in the
pathway over the combined COADREAD and STAD data sets.

To each patient i, we randomly assigned either event Ci � 1
(with probability 70%) or censorship Ci � 0 (30%). The score xi ·β
is an indicator of the patient’s risk. In case all patients were
deceased, we could use − xTβ as the time-of-event Y (since actual
values do not matter in the Cox model (1), only their ordering).
However, since censorship only provides a lower bound on the
time of death, we randomly decreased the censored patients’
times Yi as a function of the number of patients with a
higher score.

We trained individual latent group lasso and multi-task
models. After hyperparameter selection, 100 80–20 splits were
performed to calculate significance.

Training on TCGA Data
We examined all possible pairs between 30 cancer types in the
TCGA data set. For each pair, we selected hyperparameters using

a 10-fold cross-validated random search. We then performed
30 80–20 training-test splits, computed β on the training sets and
evaluated the c-value on the test sets for both cancers. We
computed the paired t-test statistics value and its associated p-
value for each pair with respect to the latent group lasso without
multi-tasking. Finally, the false discovery rate (FDR) correction
for the number of pairs tested per cancer was applied.

3 RESULTS

3.1 Latent Group Lasso
As despite the popularity of group lasso, we could not find a
comparison between standard lasso and group lasso model for the
cancer survival prediction on gene expression data, we first
evaluated and compared accuracies of these two models on 16
cancer types from the TCGA database with at least 300 patients per
set (see Section 2.1 for data set description). Out of the 16 cancers
tested, five had a significantly higher prediction accuracy (c-value)
for simple lasso, seven were significantly higher for latent group
lasso and there was no significant difference for the remaining four
cancers (Figure 2A). Also, model reproducibility measured
through the averaged congruence coefficients (see Section 2.4)
was better for the group lasso model for 12 out of the 16 cancers
tested (Figure 2B). The most frequently selected pathways across

FIGURE 2 | The average test prediction accuracy (c-value, (A)) and
model stability (average congruence coefficients, (B)) for the standard and
group lasso models, evaluated on 16 cancers from the TCGA data set. The
error bars represent standard deviations. The asterisks (*) mark
significant p-values at the p <0.05 level.

FIGURE 3 | The most commonly selected pathways by group lasso
across 16 cancer types with more that 300 samples. The frequency is
computed over all random tests, totalling 1,600 data points.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7713015

Malenová et al. Exploring Pathway-Based Group Lasso

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


all cancer types over all random tests (i.e., 16 × 100 data points) are
plotted in Figure 3. We observed that the most common pathways
are the stromal up-(63%) and downtake (58%).

Our results showed a very modest improvement in prediction
accuracy from applying latent group lasso to cancer survival;
however, we hypothesized that this accuracy could be improved
by adding a multi-task term to the loss function to allow sharing
information across cancer types.

3.2 Validating the Multi-Task Penalty on
Synthetic Data
To explore the efficacy of the multi-task penalty (7) we designed,
we first applied our approach to synthetic data sets T1 and T2
comprising 300 and 200 samples respectively (see Section 2.6 for
the detailed data set description). Our simulation results showed
that while the latent group lasso without multi-tasking generally

FIGURE 4 | Performance of the multi-task model on a synthetic data set. Box plots showing the range of model coefficients β by pathway for standard group lasso
(A–B) and multi-task group lasso (C–D) on T1 and T2 data sets. Out of the 69 total pathways, only pathways with at least one non-zero coefficient are shown. By design,
activity of pathways 1 and 2, and one and three were predictive for patient survival for T1 and T2, respectively. The average congruence coefficient of β is 0.81 (T1) and
0.96 (T2) for single tasking, and 0.80 (T1) and 0.91 (T2) for multitasking (e–f) c-values and box plots of the paired difference for 100 random seeds for single andmulti-
tasking for T1 and T2 synthetic data. Note that T1 and T2 are sorted independently, so their random seed numberings do not correspond. The t-test p-values are
1.35·10–7 (T1) and 0.49 (T2).
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selected the correct pathways for T1 (pathways 1, 2) and T2
(pathways 1, 3) the model also assigned non-zero coefficients to a
number of the irrelevant pathways (Figures 4A,B). However,
when the multi-task penalty was added, the number of
irrelevant pathways included in the model usually reduced
for both data sets (Figures 4C,D), and no correctly included
pathways were lost. Furthermore, the average c-value
increased significantly for T1 when the multi-task penalty
was included, and did not change significantly for T2

(Figures 4E,F). From these results, we concluded that the
multi-task penalty we designed was acting as intended. Finally,
however, the congruence of the models across folds decreased
for both sets, significantly for T2.

3.3 Multi-Task Group Lasso Model on the
TCGA Data
To check the efficacy of the multi-task group lasso model for the
survival prediction, we applied it to 30 TCGA cancer data sets (see
Section 2.1 for more details). For each pair of cancer types, we
compared the resulting model accuracies (c-values) calculated for
100 random splits for the individual group lasso and multi-task
group lasso models. Although based on the results of the model
validation on synthetic data, we expected the multi-task setting to
improve predictions, little significant difference was observed
after multiple testing correction (Figure 5). For one cancer type,
LUSC, significant improvements were observed when the cancer
was paired with a number of other cancer types. Further, while

FIGURE 5 | Heatmap showing the mean paired difference in c-value between single and multi-task training. Positive values correspond to the improvement of
model prediction accuracy with multi-tasking. The rows correspond to cancer types for which the c-values were calculated and the columns to cancer types with which
the target cancer was paired for the multi-task training. Asterisks (*) indicate significance with the FDR corrected p-value p <0.05.
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not significant after multiple testing correction, significant
uncorrected differences were observed for PRAD. In
particular, combining PRAD with CHOL, COADREAD and
GBM each led to an improvement of c-value over 0.08.
Finally, several other combinations showed a marginal
significant improvement, e.g., BLCA with STAD, KIRC wth
KIRP, or UCEC with COADREAD.

No significant improvements in the model stability, measured
by congruence between model coefficients β, were observed with
the addition of multi-tasking (Figure 6). The mean congruence
decreased for almost every cancer pair tested.

Of note, other multi-tasking approaches using the same data
and similar validation strategies, such as VAECox (Kim et al.

(2020)), have reported similar results, with only limited
improvements over standard lasso. VAECox observed a
microaverage concordance across 10 cancers from TCGA of
0.649; using the same microaverage method for those 10
cancers, our multi-task approach gave results in the range
0.645–0.663, depending on the paired cancer type.

4 DISCUSSION

In this paper, we assessed the efficacy of different regularization
penalties for linear models for survival prediction on cancer gene
expression data. First, we compared standard lasso with latent

FIGURE 6 |Heatmap showing the mean paired difference in congruence between single and multi-task training. Positive values correspond to the improvement of
model stability with multi-tasking. The row gives the cancer for which the congruence was calculated and the columns give the cancer with which the target cancer was
paired for the multi-task training. Asterisks (*) indicate significance with the FDR corrected p-value p <0.05.
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group lasso. This analysis showed a very slight overall
improvement in survival prediction accuracy when using
molecular pathways as a priori known groups compared to
simple lasso. In short, for seven cancers the prediction accuracy
significantly increased, significantly reduced for five cancer types,
and for the remainder it did not significantly vary between the two
methods. This suggested that latent group lasso alone does not
meaningfully improve cancer survival predictions beyond what can
be achieved with naïve lasso when using gene expression data.
Despite these modest results, we observed that model stability, i.e.,
congruence between model coefficients when training using
different random seeds, appeared to be higher for latent group
lasso regularization, suggesting potential improvements in
biological interpretability.

Next, we tested our multi-tasking model a on syntetic data set
designed so that it closely mimicked real cancer data (including
strong gene collinearity). We used two toy sets drawn from a
sample distribution associated with COADREAD and STAD, and
then determined the patients’ hazard scores from two overlapping
gene groups each. We randomly censored 30% of the patients and
adjusted for their survival time uncertainty. In order to leverage
similarities between cancers, we introduced a rather low number
of patients–300 and 200 respectively. Our model showed a
comparably high c-value for both toy cancers separately, and a
significant improvement in the accuracy of the first set after
multi-tasking. Moreover, fewer irrelevant pathways were
generally selected with multi-tasking compared to the
univariate model, though the congruence decreased,
significantly for the second data set. Therefore, we would
expect similar improvements in real data sets, especially if they
comprise a low number of patients.

However, in themulti-tasking test on experimental data, we saw
relevant significant improvements in prediction accuracy
measured by c-value with only one cancer type, LUSC. For this
type of cancer, we witnessed extremely poor performance of single-
task group lasso regression on gene expression data, generally
giving results around 0.52 of c-value, marginally above the random
level (0.5). This value improved slightly with multi-tasking up to
0.53. Further, we observed the largest, albeit not significant
improvement in c-value for PRAD. However, the comparably
high survival rate (10 deaths for 498 patients) causes a large
variance in the c-values due to the random fold splitting. The
improvement in c-value for both LUSC and PRAD occurred when
they were paired with many different cancers and the improvements
were of a similar magnitude across the board. This suggested that the
benefit here was not from finding a similar cancer to leverage frombut
more that any extra available information was benefitting survival

models, which are inherently difficult to build from expression data.
Our initial intuition that survival models for cancer types sharing
similar features, such as ovarian and cervical cancers or uveal and skin
melanomas, would benefit from multi-tasking was not confirmed.

We hypothesize that this may depend on the noise in the data
and measurement uncertainties, or simply the limitation of gene
expression prediction power. We cannot exclude however that
different, possibly non-linear cancer survival models could
benefit from multi-tasking and prior knowledge on pathway
downstream genes. We are going to explore this type of
approaches in our future work.

For our linear group lasso-based approach, we also tested a
number of other potential coupling penalty terms, including very
simple ones such as penalizing the mean absolute difference in
coefficients (Table 1). None of these approaches were as
successful on our synthetic data as the one that has been
presented in this work, but we include them for completeness.

Although theoretically our approach could be extended to
triplets of cancer types and larger groups, we do not present
these results here. Indeed, several tests applied on cancer triplets
did not show strong positive results, which was expected given
moderate performance of our new model on cancer pairs.

To sum up, in this study we addressed the question of
building cancer survival models on gene expression data
when incorporating both information about pathway
downstream genes and multi-tasking across different cancer
types. For the majority of cancer types we tested, the
performance of our multi-task model was generally
comparable with that of the latent group lasso and classic
lasso approaches. However, we would advocate for the use
the individual latent group lasso because of the improved
model stability and interpretability.
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TABLE 1 | Alternative coupling penalty terms that were given preliminary investigation using synthetic data.

Coupling term Preliminary results

μ∑g

���|g|√ ‖β1g − β2g‖ This term was discarded as it did not allow for different scaling for β1g and β2g between cancer types

μ∑g

���|g|√ |1 − β1g ·β2g
‖β1g‖ ‖β2g‖

| This term allowed matching of β1g and β2g as intended, but did not show improvement of c-value on synthetic data

μ∑g

���|g|√ ‖ β1g
‖β1g‖

− β2g
‖β2g‖

‖
����
‖β1g‖

√ ����
‖β2g‖

√ This term allowed matching of β1g and β2g as intended and showed improvement of c-value on synthetic data. However, the
improvement was slightly worse than for the penalty we proposed in (7) and used in this study
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