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Integrative Predictive Models of Computed Tomography
Texture Parameters and Hematological Parameters for Lymph

Node Metastasis in Lung Adenocarcinomas

Wenping Chen, MD,* Mengying Xu, MS,† Yiwen Sun, MD,‡ Changfeng Ji, MD,* Ling Chen, MD,§

Song Liu, MD,* Kefeng Zhou, MD,* and Zhengyang Zhou, MD, PhD*
Objectives: The aims of the study were to integrate characteristics of
computed tomography (CT), texture, and hematological parameters and to estab-
lish predictive models for lymph node (LN) metastasis in lung adenocarcinoma.
Methods:A total of 207 lung adenocarcinoma caseswith confirmed post-
operative pathology and preoperativeCT scans between February 2017 andApril
2019were included in this retrospective study.All patientswere divided into train-
ing and 2 validation cohorts chronologically in the ratio of 3:1:1. The χ2 test or
Fisher exact test were used for categorical variables. The Shapiro-Wilk test and
Mann-Whitney U test were used for continuous variables. Logistic regression
and machine learning algorithm models based on CT characteristics, texture,
and hematological parameters were used to predict LNmetastasis. The per-
formance of the multivariate models was evaluated using a receiver operat-
ing characteristic curve; prediction performance was evaluated in the vali-
dation cohorts. Decision curve analysis confirmed its clinical utility.
Results: Logistic regression analysis demonstrated that pleural thickening
(P= 0.013), percentile 25th (P= 0.033), entropy gray-level co-occurrencema-
trix 10 (P = 0.019), red blood cell distribution width (P = 0.012), and
lymphocyte-to-monocyte ratio (P = 0.049) were independent risk factors asso-
ciatedwith LNmetastasis. The area under the curve of the predictivemodel es-
tablished using the previously mentioned 5 independent risk factors was 0.929
in the receiver operating characteristic analysis. The highest area under the
curvewas obtained in the training cohort (0.777 using Naive Bayes algorithm).
Conclusions: Integrative predictive models of CT characteristics, texture,
and hematological parameters could predict LNmetastasis in lung adenocarci-
nomas. These findings may provide a reference for clinical decision making.
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L ung carcinoma is the secondmost commonly diagnosed cancer
and the leading cause of cancer-related deathsworldwide.1 The

most common path of metastasis in patients with nonsmall cell
lung cancer (NSCLC) is through the lymph node (LN). The Na-
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tional Comprehensive Cancer Network guidelines (2020) demon-
strated that the presence of mediastinal LN metastasis has a pro-
found impact on prognosis and treatment decisions.2 For medically
operable diseases, resection is the preferred local treatment modal-
ity. A thorough dissection of metastatic mediastinal LN during sur-
gery plays a key role in improving disease-free survival and overall
survival rates among the patients.3 Therefore, it is necessary to ac-
curately evaluate the preoperative LN metastasis in NSCLC.

Currently, there are many methods to preoperatively assess
the LN status in NSCLC. However, invasive methods, including
endobronchial ultrasonography-guided transbronchial needle aspira-
tion and thoracoscopy, are not routinely performed.4,5 Noninvasive
methods include computed tomography (CT), positron emission
tomography–CT, andmagnetic resonance imaging. Themisdiagnosis
and false-negative rates are higher in positron emission tomography–
CT for diagnosing LN metastasis relative to the final pathological
staging after complete nodal dissection (the criterion standard).6

The time required for performing a magnetic resonance scan is long.
Lymph nodes greater than 1 cm in short-axis diameter are considered
metastatic nodes. However, the accuracy of preoperative CT scanning
in distinguishing LN status is too low for sufficient preoperative
staging.7,8 Lymph node metastasis is misdiagnosed in CT scan
analysis because of the presence of normal-sized N2 nodes.

Most studies have reported a significant association between LN
metastasis and the radiological featuresof theprimary tumor.Zhaoet al9

reported that tumor size greater than 2.65 cm was an independent pre-
dictor of LN metastasis. Moreover, several studies using texture analy-
sis describe a correlation between primary tumor and LN metastasis.
Bayanati et al10 confirmed the potential ofCT texture analysis for accu-
rately differentiating malignant from benign mediastinal nodes in lung
cancer. In addition, several studies reported that hematological inflam-
matory biomarkers could be used to predict the tumor–node–metastasis
stage of lung cancer.11 Xu et al12 showed that the neutrophil-to-
lymphocyte ratio (NLR) in lung cancer may be an independent pre-
dictive marker for the N stage. However, only a few studies have es-
tablished an integrative model based on radiological features, texture,
and hematological parameters to predict LN metastasis.

Recently, with the widespread application of regression
models and the development of machine learning algorithms,
multivariate model evaluation methods have also matured. There-
fore, our study aimed to incorporate the radiological features, tex-
ture, and hematological parameters to establish predictive models
for LN metastasis for lung adenocarcinomas.

MATERIAL AND METHODS

Patients
This retrospective study was approved by the local ethics

committee, and the requirement for informed consent was waived.
Patients who were at our hospital between February 2017 and
April 2019 met the following criteria were collected and analyzed
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retrospectively in our hospital. The inclusion criteria were as fol-
lows: (1) patients who underwent radical resection of lung cancer
with systematic LN dissection; (2) postoperative pathology con-
firmed as lung adenocarcinoma; (3) complete preoperative infor-
mation on clinical data and CT images; and (4) single lesion. The
exclusion criteria were as follows: (1) image quality was poor and
could not be used for analysis; (2) patients who had received radio-
therapy or/and chemotherapy before surgery; (3) patients had a his-
tory of malignancy in other sites; and (4) patients who underwent
CT examination more than 1 month before the surgery (Fig. 1).

Finally, 207 patients (91 men and 116 women; age range,
36–85 years; mean age, 60.5 years) were enrolled in this study.
The patients were divided into 3 cohorts (1 training cohort and 2
validation cohorts) in a ratio of 3:1:1.

Hematological Test
Hematological parameters, including white blood cell (WBC)

count, lymphocyte count, neutrophil count, monocyte count
(MONO), red blood cell count, platelet count, hemoglobin, red blood
cell distribution width (RDW), C-reactive protein, albumin (ALB),
and globulin, were recordedwithin 2weeks before the surgery. Based
on the previouslymentioned parameters, the hemoglobin/RDW ratio,
NLR, lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte
ratio, C-reactive protein-to-albumin ratio (CAR), and platelet-to-
monocyte ratio (PMR) were calculated.

Computed Tomography Examination
Chest CT imageswere acquired using 16- or 64-rowmultide-

tector spiral CT (VCT 64 or Discovery HD 750, GE Healthcare;
FIGURE 1. Flowchart shows the patient selection process.
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iCT 256 or Ingenuity Flex 16, Philips Healthcare; or uCT780,
United Imaging, China). The CT scan parameters were as follows:
tube voltage, 120 kV; tube current, automatic; rotation time,
0.7 seconds; and matrix, 512� 512. The CT images were scanned
at 5-mm section thickness and reconstructed with a 1.25-mm sec-
tion thickness. The flow diagram of our study is shown in
Figure 2.
Imaging Analysis

Computed Tomography Morphological Characteristics
Readers 1 and 2 (both with 5 years of experience in chest CT

diagnosis) evaluated each lesion on the CT images together. Their
inconsistent results were confirmed in consensus through consulta-
tion. All the CT images were reviewed using the lung and medias-
tinal window settings in the image processing software. Computed
tomography morphological characteristics included: (1) border; (2)
attenuation; (3) lobulation; (4) spiculation; (5) calcification; (6)
vascular convergence sign; (7) air bronchogram sign; (8) vacuole
sign; (9) nodule/mass type; (10) adjacent pleural thickening; (11)
pleural indentation; (12) obstructive pulmonary emphysema; (13)
peripheral fibrosis; (14) pleural effusion; (15) single enlarged LN;
(16) multiple enlarged LNs; and (17) calcified LNs.

Quantitative CT Value Parameters
Quantitative CT values were measured by reader 1 to avoid

calcification, vacuoles, cavities, and bronchial shadows on the
maximal section of the lesions. The mean, maximum, and mini-
mum CT attenuations in the nonenhanced phase were recorded
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 2. Workflow of key steps in our study. Polygonal regions of interest on the axial CT section are manually drawn. Hematological
features are collected. Computed tomography characteristics and texture parameters are extracted from the defined tumor regions of CT
images. The logistic regression and machine learning algorithms are used to construct predictive models. The prediction models are
established incorporating CT characteristics, texture parameters, and hematological parameters. The performance of the multivariate
models is evaluated using the ROC curve. NEU, neutrophil count; LYM, lymphocyte count; RBC, red blood cell; PLT, platelet count; CRP,
C-reactive protein; LASSO, least absolute shrinkage and selection operator. Figure 2 can be viewed online in color at www.jcat.org.

TABLE 1. Demographic and CT Morphological Characteristics of Patients With Lung Adenocarcinomas

Variable

Training Cohort Validation Cohort One Validation Cohort Two

N− N+ P N− N+ P N− N+ P

Age, y 0.626 0.987 0.761
<60 44 14 18 4 13 3
≥60 44 21 17 3 21 5

Sex 0.021* 0.413 0.433
Female 60 16 13 4 20 3
Male 28 19 22 3 14 5

Pleural indentation 0.048* 0.244 1.000
Absent 28 5 10 1 6 1
Present 60 30 25 6 28 7

Pleural thickening 0.003* 0.631 0.237
Absent 69 18 27 4 31 6
Present 19 17 8 3 3 2

Air bronchogram 0.016* 0.353 0.238
Absent 25 18 7 2 15 6
Present 63 17 28 5 19 2

Attenuation 0.003* 0.654 0.173
GGO 11 1 4 0 2 0
Part solid 30 4 15 1 15 1
Solid 47 30 16 6 17 7

*P < 0.05 was considered statistically significant.

GGO indicates ground-glass opacity.
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as CTmean, CTmax, and CTmin, respectively. The corresponding
standard deviation (SD) value was recorded as SD1. In addition,
the long and short diameters of the lesions were measured and re-
corded. To determine interobserver reproducibility, reader 2 re-
peated the previously mentioned procedure.

Computed Tomography Texture Parameters
Polygonal regions of interest in the nonenhanced CT images

were manually drawn along the margin of the lesion on the largest
cross-section by reader 1 to avoid calcification, vacuoles, cavities,
and bronchial shadows. Texture parameters were as follows: (1)
the first-order features included the mean, SD2, max frequency,
mode, minimum, maximum, cumulative percentiles (5th, 10th,
25th, 50th, 75th, and 90th percentiles), skewness, kurtosis, en-
tropy, and histogram width; (2) the second-order features were
from the gray-level co-occurrence matrix (GLCM) and included
entropy GLCM, energy GLCM, inertia GLCM, and variance
GLCM. To confirm interobserver reproducibility, reader 2 re-
peated the previously mentioned procedure.
Development, Performance, and Testing of
Multivariate Models

First, in the training cohort, variableswith significant differences
(P < 0.05) in the univariate analysis were used for multivariate
binomial logistic regression. The Hosmer-Lemeshow test was
used to measure the goodness of fit. A multivariate modelwas ap-
plied to the 2 validation cohorts.
FIGURE 3. Typical morphological features of lung adenocarcinomas on
solid component (white arrow). B, Part solid nodule of the right lower lob
pleural tags (black arrows) and spiculation sign (white arrow). D, Spiculat
arrow). E, Irregular mass of the left upper lobe with large cavitation (whi
margins and air bronchiolograms (white arrow).
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Next, if significance (P < 0.05) was met in the univariate
analysis of the training cohort, for dimension reduction, the least
absolute shrinkage and selection operator analysis was performed.
The retained features were input into our in-house software pro-
grammed using the Python Scikit-learn package (Python version
3.8, Scikit-learn version 0.22.2, http://scikit-learn.org/). The machine
learning classifiers of support vector machine (SVM), Naive Bayes
(NB), and random forest (RF) were used to generate multivariate
models. The ratio of cases in the training and validation cohorts
was 3:1:1. In the training phase, a popular data preprocessingmethod
in machine learning—Synthetic Minority Oversampling Technique
—was used to address the class imbalance problem. Themodelswere
evaluated by repeated stratification (K = 5) cross-testing.Multivariate
models based on machine learning classifiers were applied to the 2
validation cohorts. The performance of the multivariate models was
evaluated using a receiver operating characteristic (ROC) curve and
the values for the area under of curve (AUC) value, diagnostic sensi-
tivity, specificity, and accuracy were determined. Furthermore, to
evaluate the clinical usefulness of the multivariate model, a deci-
sion curve analysis was performed by calculating the net benefits
for a range of threshold probabilities in the 2 validation cohorts.

Statistical Analysis
Statistical analyses were performed using SPSS (version

22.0, Microsoft Windows x64; SPSS) and MedCalc Statistical
Software (version 11.4.2.0, MedCalc Software bvba; http://
www.medcalc.org; 2011), and a 2-tailed P value less than 0.05
was defined as statistically significant. The χ2 test or Fisher exact
test (n < 5) was used for categorical variables. Continuous
CT images. A, Ground-glass nodule of the right upper lobe without
e (white arrow). C, Solid mass of the right lower lobe with 2 linear
ed homogeneous solid mass of right lower lobe with vacuoles (white
te arrow). F, Irregular mass of the right upper lobe with lobulated

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 2. Univariate Analysis of Quantitative CT and Texture Parameters in the Training Cohort

Variable N− N+ P

CTmean, HU −16.85 (−202.40 to 30.88) 31.01 (8.76 to 49.51) <0.001*
CTmin, HU −811.00 (−1024.00 to −198.25) −163.00 (−330.00 to −100.00) <0.001*
SD1 185.73 (64.83 to 273.49) 68.35 (47.69 to 96.16) <0.001*
Long diameter, cm 2.26 (1.60 to 3.00) 2.76 (2.00 to 3.75) 0.018*
Short diameter, cm 1.60 (1.30 to 2.28) 2.49 (1.50 to 3.03) 0.003*
Mean, HU 20.89 (−146.96 to 37.49) 35.09 (28.10 to 57.51) 0.002*
SD2 86.77 (62.36 to 192.88) 60.15 (51.06 to 79.43) <0.001*
Max frequency 5.00 (3.00 to 8.00) 11.00 (6.00 to 16.00) <0.001*
Mode, HU 7.5 (−175.75 to 44.50) 37.00 (9.00 to 64.00) 0.010*
Min, HU −306.50 (−724.50 to −164.25) −177.00 (−256.00 to −125.00) 0.001*
Percentile 5th, HU −115.00 (−516.50 to −57.50) −56.00 (−98.00 to −37.00) <0.001*
Percentile 10th, HU −72.00 (−433.25 to −36.25) −33.00 (−66.00 to −19.00) 0.001*
Percentile 25th, HU −18.50 (−317.25 to 0.75) −1.00 (−19.00 to 18.00) 0.002*
Percentile 50th, HU 23.50 (−115.25 to 40.00) 34.00 (27.00 to 59.00) 0.008*
Area, mm2 154.02 (84.78 to 260.24) 318.39 (168.56 to 580.39) <0.001*
Max diameter, mm 18.26 (13.51 to 26.00) 25.27 (16.82 to 35.22) 0.004*
Histogram width, HU 217.00 (148.00 to 495.50) 153.00 (122.00 to 215.00) <0.001*
Entropy GLCM 10 7.42 (5.55 to 8.23) 8.63 (7.63 to 9.26) <0.001*
Entropy GLCM 11 7.60 (5.90 to 8.29) 8.62 (7.77 to 9.33) <0.001*
Entropy GLCM 12 7.46 (5.80 to 8.24) 8.57 (7.69 to 9.18) <0.001*
Entropy GLCM 13 7.61 (6.03 to 8.42) 8.72 (7.88 to 9.45) <0.001*
Energy GLCM 10† 6.33 (3.54 to 21.68) 2.87 (1.81 to 5.19) <0.001*
Energy GLCM 11† 5.51 (3.48 to 17.47) 2.91 (1.82 to 4.68) <0.001*
Energy GLCM 12† 6.00 (3.56 to 18.25) 3.05 (1.93 to 5.10) <0.001*
Energy GLCM 13† 5.41 (3.21 to 15.95) 2.60 (1.61 to 4.66) <0.001*
Inertia GLCM 10 270.55 (204.91 to 515.96) 198.34 (150.62 to 336.28) 0.013*
Variance GLCM 10 150.90 (110.97 to 237.46) 124.04 (87.15 to 165.90) 0.008*
Variance GLCM 11 167.42 (111.73 to 237.04) 123.72 (87.04 to 200.13) 0.027*
Variance GLCM 13 170.53 (118.31 to 260.85) 132.15 (95.72 to 195.09) 0.030*

The data are presented as median with (1st quartile to 3rd quartile).

*P < 0.05 was considered statistically significant.

†�10−3.

SD1, standard deviation in quantitative CT parameters; SD2, standard deviation in texture parameters.
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variables, including hematological parameters, CT value parame-
ters, texture parameters, and the long and short diameters of the le-
sion, were tested for their normality using the Shapiro-Wilk test, and
accordingly, theMann-WhitneyU test was used for nonnormally dis-
tributed variables. The interobserver agreement of CT values and tex-
ture parameters was estimated using the intraclass correlation coeffi-
cient (ICC; 0.000–0.200: poor; 0.201–0.400: fair; 0.401–0.600:
moderate; 0.601–0.800: good; and 0.801–1.000: excellent).
TABLE 3. Univariate Analysis of Hematological Parameters in the Tr

Variable N−

MONO count, 109/L 0.30 (0.30 to 0.48)
RDW, % 12.85 (12.50 to 13.30)
NLR 1.63 (1.25 to 2.19)
LMR 5.00 (4.04 to 6.92)
PMR 533.33 (436.25 to 789.72)

The data are presented as median with (1st quartile to 3rd quartile).

*P < 0.05 was considered statistically significant.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
RESULTS

Patient Characteristics

Among the 207 lung adenocarcinoma cases, 50 (24.2%) had
LNmetastasis, while 157 (75.8%) did not. As shown in Table 1, a
statistically significant difference was found in sex between pa-
tients with and without LN metastasis in the training cohort
aining Cohort

N+ P

0.40 (0.30 to 0.60) 0.009*
13.20 (12.80 to 13.80) 0.020*
1.94 (1.43 to 2.79) 0.042*
3.83 (2.60 to 6.00) 0.008*

434.00 (263.75 to 650.00) 0.008*

www.jcat.org 319

http://www.jcat.org


TABLE 4. The Diagnostic Performance of Quantitative CT and Texture Parameters in the Training Cohort

Variable Cutoff Sensitivity Specificity AUC Accuracy P

CTmean, HU 2.90 80.0% 61.4% 0.719 66.7% <0.001*
CTmin, HU −344.00 77.1% 67.0% 0.716 69.9% <0.001*
SD1 130.80 82.9% 61.4% 0.717 67.5% <0.001*
Long diameter, cm 2.32 71.4% 53.4% 0.638 58.5% 0.018*
Short diameter, cm 2.40 51.4% 81.8% 0.674 73.1% 0.003*
Mean, HU 22.08 85.7% 51.1% 0.676 60.9% 0.002*
SD2 115.83 94.3% 43.2% 0.716 57.7% <0.001*
Max frequency 8.00 60.0% 77.3% 0.736 72.4% <0.001*
Mode, HU 23.00 68.6% 61.4% 0.649 63.4% 0.010*
Min, HU −257.00 77.1% 58.0% 0.699 63.4% 0.001*
Percentile 5th, HU −163.00 91.4% 45.5% 0.709 58.6% <0.001*
Percentile 10th, HU −151.00 94.3% 40.9% 0.698 56.1% 0.001*
Percentile 25th, HU −51.00 91.4% 39.8% 0.675 54.5% 0.002*
Percentile 50th, HU 24.00 85.7% 51.1% 0.654 60.9% 0.008*
Area, mm2 260.54 60.0% 76.1% 0.702 71.5% <0.001*
Max diameter, mm 20.42 71.4% 58.0% 0.667 61.8% 0.004*
Histogram width, HU 246.00 91.4% 46.6% 0.706 59.3% <0.001*
Entropy GLCM 10 8.56 57.1% 84.1% 0.721 76.4% <0.001*
Entropy GLCM 11 8.54 57.1% 84.1% 0.722 76.4% <0.001*
Entropy GLCM 12 8.29 60.0% 79.5% 0.723 74.0% <0.001*
Entropy GLCM 13 8.56 60.0% 83.0% 0.723 76.5% <0.001*
Energy GLCM 10† 3.20 60.0% 80.7% 0.714 74.8% <0.001*
Energy GLCM 11† 3.00 60.0% 83.0% 0.718 76.5% <0.001*
Energy GLCM 12† 5.30 82.9% 56.8% 0.722 64.2% <0.001*
Energy GLCM 13† 2.80 60.0% 83.0% 0.720 76..5% <0.001*
Inertia GLCM 10 198.33 51.4% 78.4% 0.644 70.7% 0.013*
Variance GLCM 10 96.83 40.0% 88.6% 0.654 74.8% 0.008*
Variance GLCM 11 104.89 40.0% 85.2% 0.628 72.3% 0.027*
Variance GLCM 13 107.43 40.0% 81.8% 0.625 69.9% 0.030*

*P < 0.05 was considered statistically significant.

†�10−3.

SD1 indicates standard deviation in quantitative CT parameters; SD2, standard deviation in texture parameters.
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(P < 0.05). No significant differences in age were found in the
training cohort (P > 0.05). No significant differences in sex or
age were found between the 2 validation cohorts (all P > 0.05).
Univariate Analyses
Among the CT qualitative parameters, attenuation, pleural

indentation, pleural thickening, and air bronchogram were signif-
icantly different between patients with and without LN metastasis
in the training cohort (all P < 0.05; Table 1, Fig. 3).
TABLE 5. The Diagnostic Performance of Hematological Parameter

Variable Cutoff Sensitivity

MONO count, 109/L 0.30 65.7%
RDW, % 13.30 48.6%
NLR 2.52 42.9%
LMR 4.00 57.1%
PMR 457.50 57.1%

*P < 0.05 was considered statistically significant.

320 www.jcat.org
Among the CT quantitative parameters, there were signifi-
cant differences in the mean CTattenuation, minimum CTattenu-
ation, SD1, long diameter, and short diameter between the differ-
ent LN statuses in the training cohort (all P < 0.05).

Among the texture parameters, 24 of 35 were significantly dif-
ferent between patients with and without LNmetastasis in the train-
ing cohort (all P < 0.05; Table 2). Therewere significant differences
in values ofMONO, RDW,NLR, LMR, and PMR between patients
with and without LN metastasis in the training cohort (Table 3).

Among the quantitative CT parameters in the training cohort,
CTmean had the highest AUC value (0.719), with a sensitivity of
s in the Training Cohort

Specificity AUC Accuracy P

54.5% 0.648 57.7% 0.009*
78.4% 0.634 69.9% 0.020*
84.1% 0.618 72.4% 0.042*
75.0% 0.653 69.9% 0.008*
72.7% 0.852 68.3% 0.008*

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 4. The histogram shows hematological parameters in
different LN status. * P < 0.05 was considered statistically
significant. CAR, C-reactive protein-to-albumin ratio; PLR, platelet-
to-lymphocyte ratio. FIGURE 5. Receiver operating characteristic analysis to predict LN

metastasis in lung adenocarcinomas. The values of AUCs for
pleural thickening, percentile 25th, entropy GLCM 10, RDW, LMR,
and predictive model were 0.635, 0.675, 0.721, 0.634, 0.653,
and 0.929, respectively. The predictive model presented good
performance in predicting LN metastasis than univariate
parameters. PRE, prediction probability. Figure 5 can be viewed
online in color at www.jcat.org.
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80.0% and a specificity of 61.4%. The texture parameters using
maximum frequency had a good ability to predict LN metastasis
with an AUC of 0.736, a sensitivity of 60.0%, and a specificity
of 77.3% in the training cohort (Table 4). Platelet-to-monocyte ra-
tio had the highest AUC value of 0.852 for the 5 optimal hemato-
logical parameters, with a sensitivity of 57.1% and specificity of
72.7% in the training cohort (Table 5, Fig. 4).
Multivariate Analyses
Variables with significant differences (P < 0.05) in the uni-

variate analysis were subjected to binary logistic regression analy-
sis in the training cohort. The results demonstrated that pleural
thickening (P = 0.013), percentile 25th (P = 0.033), entropy
GLCM 10 (P = 0.019), RDW (P = 0.012), and LMR (P =
0.049) were independent risk factors associated with LN metasta-
sis (Table 6). These 5 independent risk factors were chosen to es-
tablish the predictive model. The ROC curve results showed that
the AUC of the predictive model was 0.929 (Fig. 5). The results
were higher than those of the single-factor parameters. The model
was tested in the 2 validation cohorts and values of AUCs were
0.886 and 0.871, respectively (Table 7, Supplementary Table 1,
http://links.lww.com/RCT/A136). Decision curve analysis results
TABLE 6. Binomial Logistic Regression Results for Prediction of
LN Metastasis in Lung Adenocarcinomas

Variable B SE Wald df P

Pleural thickening 2.234 0.900 6.165 1 0.013*
Percentile 25th, HU 0.275 0.129 4.533 1 0.033*
Entropy GLCM 10 −16.428 7.024 5.470 1 0.019*
RDW, % 1.278 0.506 6.375 1 0.012*
LMR −0.580 0.294 3.889 1 0.049*
Predictive model −7.659 10.685 0.514 1 0.473

*P < 0.05 was considered statistically significant.

B indicates the estimated value of the regression coefficient given by the
statistical software; df, degree of freedom; SE, standard error.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
for the multivariate models in the 2 validation cohorts are plotted
in Figure 6.

Machine Learning Algorithm
Table 7 lists the values of AUCs for the 3 models based on

machine learning algorithms. The greatest AUC in the training co-
hort model of 0.777 was obtained by using NB algorithm (Supple-
mentary Table 2, http://links.lww.com/RCT/A136).

Interobserver Agreement
Among all the 41 CT continuous variables, 4 parameters of

the interobserver agreements were good (0.643–0.796) and 29
of those were excellent (0.803–0.982; Table 8).

DISCUSSION
In this study, 207 lung adenocarcinoma cases were divided

into training cohort and 2 validation cohorts. Qualitative CT,
quantitative CT, texture, and hematological parameters were ana-
lyzed to predict LN metastasis. Parameters with significant differ-
ences (P < 0.05) in the univariate analysis were chosen as input
parameters for the binary logistic regression analysis and machine
TABLE 7. The Diagnostic Performance of the Models in the
Training and 2 Validation Cohorts

AUC

Model
Logistic

Regression SVM
Naive
Bayes

Random
Forest

Training cohort 0.929 0.767 0.777 0.734
Validation cohort 1 0.886 0.747 0.710 0.714
Validation cohort 2 0.871 0.879 0.702 0.842
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FIGURE 6. Decision curve analysis for the multivariate models based on regression analysis in validation cohort 1 (A) and validation cohort 2
(B). The y-axis indicates the net benefit, and the x-axis indicates threshold probability. Compared with the simple diagnoses such as all LN
metastasis in patients with lung adenocarcinomas (blue lines) or all patients without LN metastasis (black lines), the multivariate models (red
lines) had the highest net benefit across the majority of the range of reasonable threshold probabilities at which a patient would be
diagnosed as LN metastasis. Figure 6 can be viewed online in color at www.jcat.org.
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learning algorithm and the prediction model was established. The
results showed that the AUC values of the binary logistic regression
models were 0.929, 0.886, and 0.871 in the 3 cohorts, respectively.
The highest AUC value of the machine learning algorithm model
was 0.777 in the training cohort using NB algorithm. The highest
AUC values of the machine learning algorithm were 0.747 and
0.879, respectively, in the 2 validation cohorts by using SVM.

Among the qualitative CT parameters, pleural indentation,
pleural thickening, attenuation, and air bronchogram were signif-
icantly different in the training cohort. Malignant lesions tend to
cause pleural thickening and indentations close to the pleura.13,14

Malignant tumors are prone to LNmetastasis. The risk of LNme-
tastasis is greater in lung adenocarcinomas, which are diagnosed
as solid lesions. This is probably because the blood supply to
ground-glass opacity lesions is not as rich as that in the solid le-
sions.15 Lymph node metastasis was found in 21.3% of patients
with air bronchogram and 41.9% without air bronchogram with
lung adenocarcinomas. Hattori et al16 confirmed the significance
of the presence of an air bronchogram in the lung adenocarcinoma
as a predictor of LN-negative metastasis. However, Li et al13 re-
ported that tumors with an air bronchogram were more common
in the LN-positive metastasis group than in the LN-negative me-
tastasis group. Further validation with larger sample size is needed
to confirm these results.
322 www.jcat.org
Five quantitative CT value parameters were found to be sta-
tistically significant in the training cohort. The mean CT attenua-
tion and minimum CTattenuation were higher in the LN-positive
metastasis group. This might be because the lesions with more
solid components have an abundant blood supply.15 The values
of long diameter and short diameter were higher in the LN-
positive metastasis group. The larger is the tumor size, the higher
is the risk of LN metastasis.17

Among the texture parameters, 24 were statistically signifi-
cant and mainly included the percentile, second-order entropy,
and second-order energy series. The lower percentiles (5th–25th)
are referred to as the ground-glass component.18 The higher is
the value, the lower is the ground-glass component. Lesions with
fewer ground-glass components are more likely to develop LN
metastasis.19 This was consistent with our results of CT morpho-
logical assessment. In this study, the values of the second-order
entropy GLCM 10-13 were higher in the LN-positive metastasis
group relative to the LN-negative metastasis group. Entropy quan-
titatively features the heterogeneity of the tumor CT values.20,21

The higher is the heterogeneity, the more malignant is the tumor,
thereby resulting in a higher risk of LN metastasis became. How-
ever, the values of the second-order energy GLCM 10-13 were
lower in the LN-positive metastasis group than those in the LN-
negative metastasis group. The energy features indicate the
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 8. Interobserver Agreement of Quantitative CT and Texture Parameters

Variable ICC (95% CI) Variable ICC (95% CI)

CTmean 0.891 (0.859–0.916) CTmax 0.254 (0.122–0.377)
CTmin 0.625 (0.534–0.701) SD1 0.697 (0.619–0.761)
Long diameter 0.889 (0.856–0.914) Short diameter 0.889 (0.857–0.915)
Mean 0.952 (0.937–0.963) Histogram width 0.851 (0.809–0.885)
SD2 0.847 (0.804–0.882) Entropy GLCM 10 0.979 (0.972–0.984)
Max frequency 0.939 (0.921–0.954) Entropy GLCM 11 0.980 (0.973–0.985)
Mode 0.796 (0.740–0.841) Entropy GLCM 12 0.981 (0.975–0.985)
Minimum 0.803 (0.749–0.847) Entropy GLCM 13 0.979 (0.973–0.984)
Maximum 0.836 (0.790–0.873) Energy GLCM 10 0.901 (0.871–0.924)
Percentile 5th 0.875 (0.838–0.903) Energy GLCM 11 0.924 (0.902–0.942)
Percentile 10th 0.890 (0.858–0.915) Energy GLCM 12 0.897 (0.867–0.921)
Percentile 25th 0.927 (0.905–0.944) Energy GLCM 13 0.820 (0.770–0.860)
Percentile 50th 0.965 (0.955–0.973) Inertia GLCM 10 0.263 (0.132–0.385)
Percentile 75th 0.982 (0.976–0.986) Inertia GLCM 11 0.643 (0.556–0.717)
Percentile 90th 0.970 (0.961–0.977) Inertia GLCM 12 0.288 (0.158–0.408)
Skewness 0.537 (0.433–0.628) Inertia GLCM 13 0.651 (0.565–0.723)
Kurtosis 0.547 (0.443–0.635) Variance GLCM 10 0.342 (0.215–0.456)
Entropy 0.899 (0.870–0.923) Variance GLCM 11 0.973 (0.965–0.980)
Area 0.975 (0.968–0.981) Variance GLCM 12 0.412 (0.293–0.519)
Max diameter 0.937 (0.918–0.952) Variance GLCM 13 0.848 (0.805–0.883)
SsD low 0.851 (0.808–0.984)

SD1 indicates standard deviation in CT value quantitative parameters; SD2, standard deviation in texture parameters.
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uniformity of gray-level voxel pairs.22 The more uniform is the tu-
mor, the lower is its degree of malignancy, and the lower is the as-
sociated risk of LN metastasis.

Recently, it has become a common practice to add clinical in-
formation in radiological studies. In this study, we also incorpo-
rated hematological factors and radiological parameters to predict
LN metastasis. The results showed that significant differences in
the values of MONO, RDW, NLR, LMR, and PMR between pa-
tients with different LN statuses in the training cohort. The corre-
lation between hematological factors and tumors needs confirmed
further. Wang et al23 reported that a decreased LMR is considered
to be associated with aworse prognosis of patients due to their im-
portant roles in the initiation and development of cancers. Our re-
sults showed that the LMR values were significantly lower in the
LN-positive metastasis group. Thus, the results of these 2 studies
were similar.

Statistically significant parameters, including 5 CT morpho-
logical characteristics, 5 CT value quantitative parameters, 24 tex-
ture parameters, and 5 hematological parameters, were subjected
to binary logistic regression analysis in the training cohort. The re-
sults demonstrated that pleural thickening, percentile 25th, en-
tropy GLCM 10, RDW, and LMR were independent risk factors
associated with LN metastasis and were chosen further to estab-
lish a predictive model. Decision curve analysis indicated that
multivariate models based on regression analysis were useful for
predicting LN metastasis in lung adenocarcinomas, which sug-
gested the net benefit of its clinical consequences according to
the threshold probability.

The AUC of the predictive model was 0.929, which was
higher than those in the previous studies, thereby leading to
overfitting.18,24 Therefore, we also established models using ma-
chine learning algorithms to predict LN metastasis. Before model
building, least absolute shrinkage and selection operator analysis
was used for dimension reduction. The results showed that the
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
highest AUC value of the machine-learning algorithm model
was 0.777 in the training cohort by using NB algorithm. Gener-
ally, machine learning algorithm models require a larger sample
size. The larger is the sample size, the higher is the efficiency of
the model. Therefore, further studies with larger sample sizes
should be performed. In addition, we analyzed the consistency
of the included parameters. Four parameters of the interobserver
agreements were good (0.643–0.796), and 29 of those were excel-
lent (0.803–0.982).

However, our study had some limitations. First, the sample
size was relatively small. This was a single-center study and exter-
nal validation is lacking. Thus, larger sample sizes should be used,
and multicenter cooperation in the future is necessary to validate
these findings. Second, our study was retrospective in design,
and patient inclusion bias was inevitable. Third, we did not evaluate
the interobserver consistency in CT morphological characteristics.
Finally, texture analysis was performed on the 2-dimensional im-
ages by selecting only the cross-section of the maximum slice. This
contains little information andmay not reflect the features of the en-
tire tumor.

CONCLUSIONS
Multivariate models incorporating CT morphological char-

acteristics, CT value quantitative parameters, texture, and hema-
tological parameters using logistic regression and machine
learning algorithms could predict LN metastasis in lung adeno-
carcinomas. These findings may provide a reference for clinical
decision making.
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