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P L A N E T A R Y  S C I E N C E

The end of the lunar dynamo
Saied Mighani1*†, Huapei Wang1,2*†, David L. Shuster3,4, Cauȇ S. Borlina1,  
Claire I. O. Nichols1, Benjamin P. Weiss1†

Magnetic measurements of the lunar crust and Apollo samples indicate that the Moon generated a dynamo magnetic 
field lasting from at least 4.2 until <2.5 billion years (Ga) ago. However, it has been unclear when the dynamo ceased. 
Here, we report paleomagnetic and 40Ar/39Ar studies showing that two lunar breccias cooled in a near-zero magnetic 
field (<0.1 T) at 0.44 ± 0.01 and 0.91 ± 0.11 Ga ago, respectively. Combined with previous paleointensity estimates, 
this indicates that the lunar dynamo likely ceased sometime between ~1.92 and ~0.80 Ga ago. The protracted lifetime 
of the lunar magnetic field indicates that the late dynamo was likely powered by crystallization of the lunar core.

INTRODUCTION
The intensity of the present-day magnetic field across much of the 
lunar surface is <0.2 nT, indicating that the Moon currently does not 
have a global magnetic field (1). However, paleomagnetic measure-
ments of Apollo samples indicate that the Moon once generated a 
core dynamo with surface field intensities of several tens of micro-
tesla (comparable to that of Earth today) during the period 4.25 to 
3.56 billion years (Ga) ago (2–7). Following this high-field epoch, 
the field declined by at least an order of magnitude by 3.2 Ga ago (8) and 
persisted in a weakened state (~5 T) until at least 2.5 Ga ago (9). It has 
been unknown how long the dynamo persisted beyond this time. The 
youngest lunar paleointensity constraint is an upper limit of 7 T at 
<7 million years (Ma) ago provided by an impact glass splash (10).

The time of the dynamo’s cessation has major implications for 
the mechanism of magnetic field generation as well as the thermal 
and mechanical evolution of the lunar interior (6). For example, a core 
dynamo powered purely by thermal convection (11–14) is thought 
to only be able to persist until ~3.5 Ga ago (15). In comparison, a 
mechanical dynamo driven by mantle precession (16) is thought to 
be sustainable until sometime between ~3.4 and 2.0 Ga ago for typical 
lunar physical parameters (6, 9). Alternatively, a thermochemical con-
vection dynamo powered by core crystallization could power the dynamo 
even until close to the present time (15, 17).

To constrain the late history of the lunar magnetic field, we studied 
the paleomagnetism of the young Apollo 15 breccias 15465 and 15015 
(18). During the assembly of these breccias, their clasts were welded 
together by 60 to 90 volume % matrix melt glass formed by impact 
melting of the local lunar regolith (section S1) (19). Breccia 15465 
was a float sample collected from the rim of Spur crater and contains 
clasts with diameters ranging from <1 to ~80 mm that are dominantly 
regolith breccias (figs. S1 and S7). Our 40Ar/39Ar, 38Ar/36Ar, and 
40Ar/36Ar measurements, combined with previous Ar analyses, in-
dicate that the assembly of 15465 and the formation of its matrix 
glass most likely occurred at 0.44 ± 0.01 Ga ago (age ranges are 1 SD), 
while a ~20-mm-diameter regolith breccia clast formed at >3.4 Ga 

ago (section S7, table S20, and fig. S38). The latter clast contains a diversity 
of subclasts, including anorthosites, norites, and KREEP (potassium–
rare earth element–phosphorus)–rich basalts that resemble the nearby 
Apollo 15 basalts (20, 21). Sample 15015 is a regolith breccia collected 
as float on the mare surface ~20 m from the Apollo 15 Lunar Module 
(19, 22). It contains <0.1- to 7-mm-diameter clasts in the form of rock, 
mineral, and glass fragments (figs. S2 and S11). Our 40Ar/39Ar, 38Ar/37Ar, 
and 40Ar/36Ar chronometry data indicate that 15015’s matrix glass 
likely formed at 0.91 ± 0.11 Ga ago, consistent with previous mea-
surements (see section S7, table S21, and fig. S39). Combined with 
our thermal diffusion calculations (section S2), these data indicate 
that the matrix melt glass, clasts smaller than ~10 mm in diameter, 
and the thermally equilibrated exteriors of larger clasts should 
have recorded any ambient lunar magnetic field at ~0.4  Ga ago 
(15465) and ~0.9 Ga ago (15015).

Similar to previously studied regolith breccias (9), the ferromag-
netic carriers in the glassy matrices of 15015 and 15645 have excep-
tional magnetic recording properties compared to most lunar rocks 
(section S6). Our electron microscopy observations indicate that the 
dominant ferromagnetic minerals in the glass matrix of 15465 are 
kamacite (-Fe1−x Nix with x < ~0.04) and schreibersite (Fe1−xNix)3P 
with x ~ 0.1, while the aforementioned glassy regolith breccia clast 
contains mostly kamacite and martensite (2-Fe1−xNix with x ~ 0.08) 
(fig. S24). Previous analytical electron microscopy (AEM) studies of 
the matrix glass in 15015 found that it contains kamacite (23), while 
our electron microscopy observations identified both kamacite and 
schreibersite (fig. S28). Our hysteresis and isothermal remanent mag-
netization (IRM) and first-order reversal curve (FORC) measurements 
of the regolith breccia clast in 15465 and the glass matrix in 15015, 
along with the AEM data (23), indicate a dominantly single-vortex 
to superparamagnetic grain size, while the glass matrix in 15465 con-
tains grains ranging from single domain to multidomain in size (figs. 
S25 to S27, S29, and S30).

Given the mineralogies and compositions of the ferromagnetic 
grains in 15465 and 15015, these grains should have acquired mostly 
a total thermoremanent magnetization (TRM) in any ambient mag-
netic field following the last major heating event (see section S6). 
The degree of crystallinity in the matrix glasses of the two breccias 
indicates that they cooled from the 780°C Curie point of kamacite 
to ambient surface temperatures over >24 hours (section S2 and fig. 
S4). Because this time scale exceeds the estimated lifetime of putative 
impact-generated fields from even the largest lunar impacts (24), the 
matrix glasses in these breccias should have only recorded any ambi-
ent dynamo field during cooling. The lack of microfractures in the 
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glass matrices of both breccias (see figs. S1 and S2) constrains post-
cooling peak shock pressures to below ~3 GPa (25).

We analyzed the paleomagnetism of the breccias in the Massachusetts 
Institute of Technology (MIT) Paleomagnetism Laboratory using a 
2G Enterprises superconducting rock magnetometer (SRM), focusing 
on the matrix glass. Natural remanent magnetization (NRM) compo-
nents were determined using alternating field (AF) and thermal de-
magnetization. Paleointensities were estimated using both nonthermal 
[i.e., anhysteretic remanent magnetization (ARM) and IRM] and 
double-heating (26) experiments (sections S3 and S4). To mitigate 
thermochemical alteration, the thermal demagnetization and pa-
leointensity experiments were conducted in a CO2-H2 gas-mixing 

controlled-atmosphere oven (27) at an oxygen fugacity of 0.5 to 
1 log unit below the iron-wüstite buffer (28, 29). We measured the 
paleomagnetism of 8 and 22 matrix glass–rich subsamples of 15465 
and 15015, respectively, 3 subsamples of the regolith breccia clast of 
15465, 1 subsample of a ~7-mm-diameter 15015 clast, and 2 com-
posite 15015 subsamples each composed of a single large clast and 
surrounding matrix glass. Note that the matrix glass–rich subsamples 
from 15015 also commonly contain some small (<1-mm-diameter) 
clasts. To our knowledge, the NRM of 15465 has never been previ-
ously studied. Two previous studies briefly characterized the IRM 
(30) of 15015 and estimated paleointensities using nonthermal ex-
periments (31) (section S3).
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Fig. 1. NRM demagnetization of matrix glass subsamples from breccias 15465 and 15015. Shown are endpoints of the NRM vectors during progressive alternating 
field (AF) and thermal demagnetization. Closed and open symbols represent projections of the NRM vectors onto the horizontal (N-E) and vertical (U-E) planes, respec-
tively. (A) 15465 subsample 4-2. (B) 15465 subsample 5-3. (C) 15015 subsample 229a1m. (D) 15015 subsample 229b8. Inset: Magnified view of HT demagnetization steps 
for 229b8. The legend in (A) shows the sample holder magnetic moment (denoted by the size of the large black box) and the MIT SRM moment resolution (denoted by 
the size of the small black box) (section S3). The initial NRM, AF levels, and temperatures for selected demagnetization steps are labeled. For both breccias, after removal 
of low coercivity (LC) and low temperature (LT) components (blue arrows), there is no discernible origin-trending magnetization in the high coercivity (HC)/high tempera-
ture (HT) range (as indicated by scattered vector endpoints).
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RESULTS
Breccia 15465
We found that the matrix glass in 15465 contains a low coercivity 
(LC) and a low temperature (LT) component that unblocked by ~3 
to 10 mT and 330° to 390°C, respectively (Fig. 1, fig. S9, and table S4). 
This component is non-unidirectionally oriented throughout the sam-
ple (fig. S8A). Given that the matrix glass was heated above the 
kamacite Curie temperature during its formation and so should 
have acquired a stable, unidirectional magnetization in the direction of 
any ambient field, the low AF and thermal stability and the non- 
unidirectionality of these components suggest that they are secondary 

and postdate breccia formation. Blocking temperature relationships 
for single-domain and single-vortex iron indicate that lunar samples 
are expected to have viscous overprints with 1-hour blocking tem-
peratures somewhere between ~125° and 485°C (32, 33), consistent 
with the observed peak unblocking temperature of the LC compo-
nent. Our laboratory viscous remanent magnetization (VRM) ex-
periments indicate that the magnitude of terrestrial VRM acquired 
over four decades of storage in Earth’s magnetic field at Johnson 
Space Center (JSC) could have reached ~130% of the LC/LT com-
ponents (section S5). Therefore, the LC/LT components are likely 
VRMs acquired in the geomagnetic field, although there may also 
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Fig. 2. Paleointensity estimates for subsamples of breccias 15465 and 15015. (A and C) ARM paleointensity experiments on 15465 subsample 6-3 and 15015 sub-
sample 229a1m, respectively. Paleointensities are estimated from NRM lost during AF demagnetization as a function of ARM gained in a 50-T DC bias field and a 260-mT 
AF. AF steps used to calculate the LC and HC paleointensities are colored blue and red, respectively. Paleointensities and their uncertainties (95% confidence intervals) are 
shown for the HC range. Insets in (A) and (C) show the decay of NRM and ARM during progressive AF demagnetization. (B and D) ARM paleointensity fidelity tests on 
15465 subsample 6-3 and 15015 subsample 229a1l, respectively. Legends list TRM-equivalent fields for ARMs acquired in a range of DC bias fields in an AF of 260 mT and 
assuming ARM/TRM = 1.34 (section S4) (49). Horizontal dashed lines indicate the noise level due to acquisition of spurious ARM during AF demagnetization. Inset in (D) 
shows a magnified view of the moment decay.
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be a contribution from exposure to stray fields during handling by 
the astronauts or at JSC (34). The LC/LT components for the clast 
subsamples unblocked by ~16 to 65 mT (fig. S9) and 200°C (fig. 
S10B) and likely have similar origins to those in the matrix glass 
(section S3).

After removal of the LC/LT components in 15465, further demag-
netization of matrix glass samples produced directionally unstable 
moments with no consistent decay in magnitude (Fig. 1 and fig. S9). 
Principal components analysis (PCA) of these high coercivity (HC) 
and high temperature (HT) ranges yielded non–origin-trending 
components [deviation angle > maximum angular deviation (MAD) 
(35); table S4] with highly scattered directions and most MAD val-
ues >40° (fig. S8B and table S4). This indicates the absence of any 
HC/HT components and a lack of total TRM in the glass subsam-
ples. Furthermore, we found that the ARM, IRM, and thermal pa-
leointensities for the glass subsamples are within error of zero for the 
HC/HT range (Fig. 2, figs. S16 and S18, tables S6 to S7, and section 
S4). For the nonthermal paleointensities, the mean HC paleointensity 
value for glass samples is −0.10 ± 0.08 T (paleointensity ranges are 
2 SDs), with ~90% of experiments yielding nominal values of <0.7 T. 
Glass sample HT thermal paleointensities are less well constrained 
but also near zero (mean value of 3.8 ± 2.9 T). Partial TRM (pTRM) 
checks during the thermal experiments indicate a lack of thermo-
chemical alteration during laboratory heating up to 730°C (section 
S4 and fig. S18), although the samples acquired substantial pTRM 
during in-field heating steps. Like the matrix glass samples, we also 
found that subsample 6-3, which is from the exterior of the 15465 
regolith breccia clast that is expected to have been heated above the 
kamacite Curie temperature by surrounding matrix melt after brec-
cia assembly, exhibits an unmagnetized HC range (ARM and IRM 
mean paleointensity of −0.13 ± 0.22 T and residual ARM paleointen-
sity of <0.06 T) (Fig. 2A, tables S6 and S7, and section S4). The lack 
of stable NRM in 15465 is not only due to poor magnetic recording 
properties of the sample: Our 15465 paleointensity fidelity analyses 
indicate that our nonthermal methods can accurately measure pa-
leointensities of <0.4 T (Fig. 2B, section S4, and table S11). Overall, 
our measurements of 15465 show that the lunar surface field was 
almost certainly below 0.4 T and very likely below even 0.06 T, at 
the time it was assembled at 0.44 ± 0.01 Ga ago.

Breccia 15015
Demagnetization of 15015 glass-rich, clast, and composite clast glass 
subsamples yielded similar results. Subsamples taken from within 
2.7 mm of two surfaces previously cut with a bandsaw at JSC in 1971 
have NRM intensities and directions that correlate with the position 
of the subsamples (fig. S15D, table S5, and section S3). Subsamples 
with surfaces cut by the JSC bandsaw have stable, origin-trending 
LC/LT components with low unblocking temperatures (150°C) (Fig. 1D) 
but high peak coercivities (>145 mT) (fig. S13, C and D). The LC/LT 
components are collectively highly non-unidirectional but have 
directions dispersed approximately along a great circle and correlated 
with the distance of the subsamples from the two JSC sawcut surfaces 
(fig. S15C). The peak AF levels and unblocking temperatures of the 
LC/LT components also correlate with distance from the JSC sawcuts 
(fig. S15 and table S5). These LC/LT components have a paleointen-
sity of ~5 to 69 T, within the range of Earth’s present surface field 
(table S8 and section S4). These observations indicate that the LC/LT 
overprints are likely overprints acquired during bandsaw cutting at 
JSC, which has been shown to partially thermally remagnetize sam-

ples due to the lack of a coolant (8). By comparison, for glass sub-
samples located >3.4 mm from either JSC sawcut, the LC/LT compo-
nents unblocked by just ~2 to 16 mT and <150°C (Fig. 1C; fig. S13, A 
and B; and table S5). The low AF and thermal stability and non- 
unidirectionality of these components (fig. S12) suggest that they are 
also recent overprints. Our laboratory VRM acquisition experiments 
indicate that the magnitudes of the LC/LT components of these in-
terior samples are consistent with their origin as a terrestrial VRM 
(section S5) with a possible weak contribution from bandsaw heating.

As with the 15465 subsamples, after removal of the LC/LT com-
ponents, we found that the remaining NRM does not consistently 
weaken in intensity or maintain a stable orientation during further 
demagnetization in the HC/HT range (Fig. 1, C and D, and fig. S13), 
with PCA fits yielding scattered, non–origin-trending fits with MAD 
values >30°. As with 15465, this again indicates the absence of an 
HC/HT component. Our HC/HT ARM and IRM paleointensities (Fig. 
2C, fig. S17, and tables S7 and S8) are indistinguishable from zero 
(with glass samples having a mean value of −0.01 ± 0.02 T and 68% 
of samples having nominal values of <0.1 T) and the residual ARM 
paleointensity of <0.08 T. Our thermal paleointensity experiments 
measured an HT mean value of 0.31 ± 0.18 T (Fig. 3, fig. S19, and 
table S8), with pTRM checks (table S10) demonstrating that no sub-
stantial thermochemical alteration occurred up to 680°C. Our pa-
leointensity fidelity measurements indicate that 15015 can accurately 
record paleofields of <0.7 T (Fig. 2D and section S4). Collectively, 
these data indicate a lack of total TRM during the breccia formation. 
We conclude that the matrix glass of breccia 15015 certainly formed 
in a field of no more than 0.7 T and very likely less than 0.08 T at 
0.91 ± 0.11 Ga ago.

DISCUSSION
Our results from both breccias show that the lunar surface field was 
very likely below 0.06 and 0.08 T at 0.44 ± 0.01 Ga ago and 0.91 ± 0.11 
Ga ago, respectively. These upper limits are at or below inferred lunar 
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surface fields over much of the mare (1) and compatible with the weak 
fields measured at the Apollo 15 site (2). These upper limits are also 
below the surface fields typically predicted by dynamo scaling laws 
(36): In particular, all published lunar thermal and evolution models 
(12, 14–16, 37, 38) predict surface fields of >0.1 T for >~90% of the 
dynamo’s active period. Such a weak intensity is also below the 
weakest known dynamo surface field in the solar system today, that 
of Mercury (39). Therefore, we conclude that the lunar dynamo was 
likely no longer operating at 0.91 ± 0.11 Ga ago.

The youngest evidence for the existence of the lunar dynamo is 
the ~5 ± 2 T paleointensity estimate from regolith breccia 15498, 
whose age of assembly is constrained using 40Ar/39Ar chronometry 
(9) to ~1.75 ± 0.75 Ga ago and using trapped 40Ar/36Ar data (40) to 
  1.32 −0.52  +0.59   (section S7.5). We obtain a new refined age of the NRM in 
15498 by adopting the weighted mean of these two ages of 1.47 ± 
0.45 Ga ago. Combining the 1-SD extremes of the age estimates for 15498 
and 15015, we conclude that the dynamo ceased sometime between 
1.92 and 0.80 Ga ago. Furthermore, the age and paleointensity constraints 
on 15465 indicate that the dynamo field remained absent at 0.44 ± 
0.01 Ga ago (Fig. 4). Such a protracted history is likely inconsistent with 
the late magnetic field being generated by precession (16, 41), which 
is thought to have only been capable of powering a dynamo until 

~2.0 Ga ago given the expected evolution of the lunar orbit (9). Instead, 
the persistence of the magnetic field until after 1.92 Ga ago is likely com-
patible with the late dynamo being driven by core crystallization for 
relatively low values of core thermal conductivity and expansivity (17). 
Future paleointensity studies on young Apollo samples should de-
termine whether the dynamo ceased permanently after 1.92 Ga ago 
or, alternatively, whether it entered a start-stop regime (17).

METHODS
Paleomagnetism
Paleomagnetic analyses were conducted using a 2G Enterprises 
SRM 755 inside the MIT Paleomagnetism Laboratory. We prepared 
mutually oriented subsamples of 15465 and 15015 in this shielded 
room using a wire saw previously shown to not measurably disturb 
the NRM of lunar samples (8).

Static three-axis AF demagnetization of NRM was conducted up 
to a maximum AF of 145 mT for most subsamples (in some cases, up 
to 290 mT). Thermal demagnetization and thermal paleointensity 
experiments were conducted up to 780°C in a CO2-H2 gas-mixing 
controlled-atmosphere oven (27) at an oxygen fugacity set to the 
estimated formation conditions of lunar materials (0.5 to 1 log units 
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below the iron-wüstite buffer) (28, 29). ARM and IRM paleointen-
sities were conducted using multicomponent methods (42, 43). The 
thermal paleointensities were conducted following the IZZI (in-field, 
zero-field, zero-field, in-field) protocol (44) and included pTRM checks 
for alteration. NRM components were estimated using PCA (45).

ARM and IRM measurements were obtained using the MIT SRM. 
Hysteresis and FORC measurements were conducted at the MIT 
Department of Materials Science and Engineering using a vibrating 
sample magnetometer.

40Ar/39Ar, 38Ar/37Ar, and 40Ar/36Ar chronometry
40Ar/39Ar, 38Ar/37Ar, and 40Ar/36Ar thermochronometry experiments 
were conducted at the Berkeley Geochronology Center following our 
previously described procedures (4, 8, 46). We analyzed both whole 
rock matrix glass and clast subsamples from both lithologies. We cal-
culated apparent 40Ar/39Ar ages for each degassing step relative to 
the Hb3gr fluence monitor [age = 1081 Ma (47)] using the decay con-
stants of (47) and the isotopic abundances of (48). For 15465 glass 
subsample 6-4-1, 15465 clast subsample 6-2, and 15015 glass sub-
sample 229b1, we corrected the 40Ar/39Ar ages for the trapped 40Ar 
using the ordinate-intercept 40Ar/36Ar ratios determined by error- 
weighted linear regressions in three-isotope plots. Cosmogenic 38Ar 
exposure ages for each degassing step were estimated following the 
procedures described in (46).
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