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In the decades since the discovery of angiotensin-converting enzyme 2 (ACE2), 
its protective role in terms of antagonizing activation of the classical renin-an-
giotensin system (RAS) axis has been recognized in clinical and experimental 
studies on kidney and cardiovascular diseases. The effects of ACE inhibitor/an-
giotensin type 1 receptor blockers (ACEi/ARBs) on ACE2-angiotensin-(1-7) (Ang-
(1-7))-Mas receptor (MasR) axis activation has encouraged the use of such blockers 
in patients with kidney and cardiovascular diseases, until the emergence of coro-
navirus disease 2019 (COVID-19). The previously unchallenged functions of the 
ACE2-Ang-(1-7)-MasR axis and ACEi/ARBs are being re-evaluated in the era of 
COVID-19; the hypothesis is that ACEi/ARBs may increase the risk of severe acute 
respiratory syndrome coronavirus 2 infection by upregulating the human ACE2 
receptor expression level. In this review, we examine ACE2 molecular structure, 
function (as an enzyme of the RAS), and distribution. We explore the roles played 
by ACE2 in kidney, cardiovascular, and pulmonary diseases, highlighting studies 
that defined the benefits imparted when ACEi/ARBs activated the local ACE2-
Ang-(1-7)-MasR axis. Finally, the question of whether ACEi/ARBs therapies should 
be stopped in COVID-19-infected patients will be reviewed by reference to the 
available evidence.
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Angiotensin-converting enzyme 2 and kidney 
diseases in the era of coronavirus disease 2019 
Sang Heon Suh, Seong Kwon Ma, Soo Wan Kim, and Eun Hui Bae

INTRODUCTION

Over the two decades since its discovery in 2000 [1,2], 
angiotensin-converting enzyme 2 (ACE2) has been 
shown to protect against certain actions of the classi-
cal renin-angiotensin system (RAS) (Fig. 1). The RAS is 
physiologically essential, but contributes to the patho-
genesis of many diseases. The RAS is composed of an 
ACE, angiotensin II (Ang II) and the angiotensin type 1 
receptor (AT1R). Suppression of the ACE-Ang II-AT1R 
axis by ACE inhibitors/AT1R blockers (ACEi/ARBs) has 
become the “dogma” of management for patients with 
kidney and cardiovascular diseases [3-6]. In contrast, the 

ACE2-angiotensin-(1-7) (Ang-(1-7))-Mas receptor (MasR) 
axis largely mitigates the consequences of AT1R activa-
tion, thus counterbalancing activation of the classical 
RAS [7]. Thus, blockade of the classical RAS via con-
current activation of the ACE2-Ang-(1-7)-MasR axis has 
emerged as an attractive therapeutic strategy [8-11]. The 
evidence indicates that ACEi/ARBs enhance ACE2-Ang-
(1-7)-MasR axis activity [12-15], although the agents do 
not directly target ACE2, Ang-(1-7), or MasR, further sug-
gesting that ACEi/ARBs are valuable for patients with 
kidney or cardiovascular diseases. 

This dogma, however, is being threatened by the viral 
pandemic coronavirus disease 2019 (COVID-19). Struc-
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tural studies [16-18] have shown that the causative virus, 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), utilizes airway epithelial ACE2 as the receptor 
for entry into the human host. It has been suggested 
that ACEi/ARBs may increase vulnerability to SARS-
CoV-2 infection by upregulating the viral ACE2 recep-
tor [19-21], triggering an intense debate as to whether 
ACEi/ARBs should be continued or stopped in patients 
with COVID-19. Indeed, clinicians have been forced to 
continue or discontinue ACEi/ARBs in patients with 
COVID-19 and underlying kidney and/or cardiovascular 
diseases, without reliable evidence for such decisions.

In this review, the molecular structure, function (as 
an enzyme of the RAS), and distribution of ACE2 will be 
discussed. We will explore the role played by ACE2 in 
kidney diseases, highlighting studies that have demon-

strated the benefits afforded when ACEi/ARBs activate 
the local ACE2-Ang-(1-7)-MasR axis. The roles played 
by ACE2 in cardiovascular and pulmonary diseases 
will also be summarized. Finally, the differing opin-
ions on the use or disuse of ACEi/ARBs in patients with 
COVID-19 will be reviewed by drawing on the evidence 
that has accumulated to date; decision-making must be 
reasonable.

ACE2 STRUCTURE, FUNCTION, AND DISTRI-
BUTION 

More than a century after the discovery of renin, ACE2 
was near-simultaneously discovered by two research 
groups in 2000 [1,2]. Its enzymic properties were soon es-
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Figure 1. A schematic of the renin-angiotensin system (RAS) components and their modes of action. Renin converts angioten-
sinogen to angiotensin I (Ang I), which is subsequently cleaved by angiotensin-converting enzyme (ACE) to form Ang II. Ang 
II binds to its cognate G-protein-coupled receptor, angiotensin II type 1 receptor (AT1R), playing as a major effector molecule 
of classic RAS such as water and salt retention, vasoconstriction, and proliferative, proinflammatory, and profibrotic process-
es. ACE2 hydrolyzes Ang I and Ang II to Ang 1–9 and Ang-(1–7), respectively, although the enzyme efficacy for Ang II is 400-
fold greater for Ang I. Angiotensin-converting enzyme 2 (ACE2) cleaves Ang II to generate Ang-(1-7), which binds to another 
G-protein-coupled receptor, Mas receptor (MasR). The activation of MasR is associated with abrogation of pathogenic process-
es medicated by AT1R, in large, counterbalances the classic RAS activation to prevent target organ damage. Ang-(1-7) is also a 
substrate of ACE, which is converted to an inactive metabolite. Both Ang II and Ang-(1-7) are reported to activate angiotensin II 
type 2 receptor (AT2R), resulting in the effect similar to MasR activation. While ACEi/angiotensin II receptor blockers (ARBs) 
blocks ACE and AT1R, respectively, either of ACE2, MasR, or AT2R is not inhibited by conventional inhibitors of RAS. 
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tablished [22] and the ACE2-Ang-(1-7)-MasR axis defined 
[23]. The human ACE2 gene is located in chromosome 
Xp22 and is 40 kb in size. The gene features 18 exons, 
most of which resemble those of ACE [2]. As is true of 
ACE, the N-terminus of ACE2 is a zinc metalloprotease 
domain exposed to the extracellular surface. Structural-
ly, ACE exhibits two enzymatically active sites, whereas 
ACE2 has only one (Fig. 2). A major difference between 
ACE and ACE2 lies in the distinct substrate specifici-
ties of the N-terminal domains. ACE cleaves C-terminal 
dipeptide residues from susceptible substrates (and is 
thus a peptidyl dipeptidase), converting Ang I to Ang II 
[22,24] and bradykinin to inactive metabolites [25]. Ang-

(1-7) is also a substrate of ACE, and is converted to an 
inactive metabolite, Ang-(1-5), by the enzyme [26,27]. In 
contrast, ACE2 is a simple carboxypeptidase that hydro-
lyzes Ang I and Ang II to Ang 1-9 and Ang-(1-7), respec-
tively, although the affinity for Ang II is 400-fold greater 
than that for Ang I [24]. ACE2 does not cleave bradyki-
nin. Conventional inhibitors of ACE, including rami-
pril, block the enzymatic activity, but ACE2 is insensitive 
to this class of agents [22]. The C-terminus of ACE2 is 
a transmembrane domain with a cytosolic tail lacking 
any similarity to ACE. This is termed the collectrin-like 
domain, being a homolog of collectrin, a protein ex-
pressed in the kidney, and regulates the trafficking of 
amino acid transporters to the cell surface, conferring a 
unique function on ACE2. Unexpectedly, ACE2 serves as 
the host receptor for coronavirus. Interaction between 
the receptor-binding domain of the viral spike protein 
and the protease domain of the host ACE2 was shown, 
in the early 2000s, to be essential for entry of the SARS-
CoV virus and, more recently, SARS-CoV-2 [16,17,28,29]. 
Compared to SARS-CoV, several mutations in amino 
acid residues in the interface between SARS-CoV-2 and 
ACE2 are evident; some may strengthen the interactions 
between SARS-CoV-2 and ACE2 but others may reduce 
the affinity by negatively affecting hydrophobic interac-
tions and salt bridge formation [17], although the overall 
binding affinity of SARS-CoV-2 to ACE2 is 10- to 20-fold 
higher than that of SARS-CoV [29], which may partly ex-
plain the persistence of COVID-19.

Renin converts angiotensinogen to Ang I, which is 
subsequently cleaved by ACE to form Ang II (Fig. 1). Ang 
II is a major effector molecule of the classic RAS, and 
binds to its cognate G-protein-coupled receptor (GPCR), 
termed AT1R. As AT1R activation mediates vasocon-
strictive, proliferative, proinflammatory, and profibrotic 
processes, receptor antagonists such as ACEi/ARBs have 
become the cornerstone of kidney and cardiovascu-
lar disease therapeutics [4-6,30]. ACE2 cleaves Ang II to 
Ang-(1-7), which binds to another GPCR (MasR) [7,23,31]. 
As MasR activation abrogates the pathogenic processes 
mediated by AT1R, the ACE2-Ang-(1-7)-MasR axis essen-
tially counterbalances the actions of the classical RAS, 
preventing the organ damage that will be discussed lat-
er. Conversely, RAS blockade by ACEi/ARBs upregulates 
ACE2 expression, although the precise mechanism was 
long elusive despite robust evidence from several animal 
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Figure 2. A schematic showing the molecular structures of 
angiotensin-converting enzyme (ACE), angiotensin-con-
verting enzyme 2 (ACE2), and the ACE2-severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) complex. 
Although ACE2 is homologous to ACE. But, ACE2 has only 
a single active site, whereas ACE possesses 2 enzymatically 
active sites. Similar to ACE, the N-terminus of ACE2 is a 
protease domain (PD, colored in green) that is exposed to 
extracellular surfaces, acting as a zinc metalloprotease. The 
C-terminus of ACE2 is a transmembrane domain with a 
cytosolic tail that has no similarity with ACE. It is referred 
to as collectrin-like domain (colored in purple), as it is a ho-
molog of collectrin, a protein expressed in the kidney. The 
interaction between receptor binding domain of viral spike 
protein and PD of host ACE2 is known to be crucial for viral 
entry of SARS-CoV in early 2000s, and more recently, SARS-
CoV-2. Compared to SARS-CoV, several mutations in amino 
acid residues in the interface between SARS-CoV-2 and 
ACE2 were reported, resulting in the increase of binding 
affinity. RBD, receptor binding domain.
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studies [15,32-34]. However, the role played by the TNF-α 
converting enzyme (TACE) in cleavage of the ACE2 ect-
odomain was then discovered [35]. Using p47phox-/- mice, 
in which the p47phox subunit of nicotinamide adenine 
dinucleotide phosphate plays a crucial role in the super-
oxide generation induced by Ang II, it was found that 
oxidative stress followed by RAS activation enhanced 
TACE expression/activity via phosphorylation of p38 
mitogen-activated protein kinase, to cleave ACE2 from 
cardiomyocytes (Fig. 3). Specific deletion of Tace from 
the myocardium prevented ACE2 shedding despite Ang 
II infusion [35]. 

The role of the angiotensin type 2 receptor (AT2R) is 
related to that of the ACE2-Ang-(1-7)-MasR axis, but is 
poorly understood (Fig. 1). AT2R is a receptor for Ang 
II, but the consequences of AT2R activation are oppo-
site to those of AT1R activation. The anti-inflammatory 
vasoprotective effect of AT1R blockade by valsartan was 
significantly attenuated in AT2R knockout (KO) mice, 
implying that AT2R stimulation after AT1 blockade is 

important in terms of vascular protection [36]. Further-
more, Ang-(1-7) seems to act as an AT2R agonist, as best 
illustrated by the report that the anti-atherosclerotic ef-
fect of Ang-(1-7) in ApoE-/- mice was abolished by chemi-
cal inhibition of AT2R. AT2R blockade also revealed that 
the anti-hypertensive effect of Ang-(1-7) was largely me-
diated by AT2R rather than MasR [37,38]. More recently, 
an organ-specific protective role for ATR2 has been im-
plied by a series of studies using a non-peptide AT2R 
agonist [39-42]. AT2R activation in the proximal tubules 
prevented sodium retention via internalization/inactiva-
tion of the major sodium transporters, and reduced the 
blood pressure of hypertensive rats [42]. As AT2R also 
exerts anti-inflammatory effects in the kidney [41], AT2R 
stimulation significantly ameliorated renal pathology 
in a rodent model of type 1 diabetes mellitus (T1DM). 
Thus, together with MasR, AT2R seems to be the prin-
cipal receptor of an alternative, counterbalancing arm 
of the RAS. Organ-specific functions by the site of AT2R 
expression, and AT2R functions that differ from those 
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Figure 3. A schematic of proteolytic angiotensin-converting enzyme 2 (ACE2) ectodomain shedding after angiotensin II (Ang 
II)-induced TNF-α converting enzyme (TACE) activation. Activation of angiotensin II type 1 receptor (AT1R) by Ang II leads to 
superoxide generation, which in turn enhances phosphorylation of p38-mitogen-activated protein kinase (MAPK). Phosphory-
lated p38 MAPK is critical for the activation of TACE, via phosphorylation of a cytosolic residue. Activated TACE cleaved ACE2 
from extracelluar surface, resuling in the shedding of ACE2 ectodomain. Ang-(1-7), angiotensin-(1-7); MasR, Mas receptor; 
ROS, reactive oxygen species. 
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of MasR, require further study. 
Northern blotting initially implied that ACE2 expres-

sion was restricted to the heart, kidney, and testis [2]. 
However, later studies expanded the anatomical distri-
bution. Lung type 2 pneumocytes and the endothelial 
cells (ECs) and vascular smooth muscle cells (VSMCs) of 
various organs express ACE2 [43]. The epithelial cells of 
intestinal villi also express ACE2, which regulates amino 
acid transport [44]. ACE2 is normally expressed by the 
hepatocytes of healthy humans, and also in bile duct 
epithelial cells and sinusoidal ECs of patients with cir-
rhotic liver disease [45]. In contrast, direct evidence of 
ACE2 expression in the human brain remains lacking, 
although ACE2 expression was reported in a subset of 
mouse paraventricular neurons [46]. Most importantly, 
with the emergence of COVID-19, data based on sin-
gle-cell transcriptome analysis of ACE2 expression are 
growing explosively [47-49], yielding many high-quality 
insights that will revolutionize our knowledge of ACE2 
expression.

ACE2 IN KIDNEY DISEASES

Results from animal studies
The role of ACE2 in kidney diseases has been best-es-
tablished in animal models of diabetic nephropathy. It 
is now widely accepted that intra-renal RAS activation is 
of particular importance in terms of the pathogenesis 
of such nephropathy [50]. Paradoxically, systemic RAS 
components are downregulated despite the robust ac-
tivation of intra-renal RAS components in patients with 
diabetic nephropathy; this has spawned a great deal of 
debate [51]. T1DM induction with streptozotocin (STZ) 
downregulates ACE2 expression in mouse proximal tu-
bular epithelial cells [52]. Compared to wild-type T1DM 
mice, deletion of Ace2 in STZ-induced T1DM mice ac-
celerated the decline in renal function and increased the 
extents of glomerular and tubulointerstitial damage in a 
time-dependent manner [53]. Loss of Ace2 was associated 
with aggravated albuminuria and blood pressure eleva-
tion [52]; the responsiveness to perindopril was mark-
edly attenuated by genetic deletion of Ace2 or treatment 
with an ACE2 inhibitor. Exacerbation of renal histology 
and albuminuria after Ace2 gene deletion has also been 
demonstrated in Akita mice, another animal model of 

T1DM [46]. 
The results from animal models of type 2 diabetes mel-

litus (T2DM) are rather complicated. Compared to wild-
type mice, ACE2 expression was significantly higher in 
the kidney of db/db mice, a model of T2DM, with con-
current elevation of the ACE2 level in urine but not plas-
ma [54,55]. This may reflect TACE-mediated shedding of 
the ACE2 ectodomain [56], which is activated by high 
glucose levels in various cells, including kidney, prox-
imal tubular epithelial cells [57,58]. TACE, also known 
as a disintegrin and metalloproteinase 17 (ADAM17), is 
a metalloproteinase that can shed the ACE2 ectodomain 
upregulated in the kidneys of diabetic mice when its en-
dogenous inhibitor, tissue inhibitor of metalloprotein-
ase 3, is downregulated [55]. Together with observations 
from mouse models of T1DM, it has been speculated 
that upregulation of tubular ACE2 expression and activ-
ity may be an early event during the natural course of 
disease, but these features seem to decay on TACE up-
regulation as diabetic nephropathy progresses, although 
further studies are required to reveal the precise link be-
tween time-dependent glucose signaling and intra-renal 
regulation of ACE2. Changes in ACE2 expression have 
also been reported in Col4a3-/- mice, an animal model of 
Alport syndrome [59], characterized by a genetic defect 
in the glomerular basement membrane. The mice are 
normal at birth, but soon develop proteinuria and pro-
gressive, glomerular tubulointerstitial injuries. ACE2 
expression is inversely correlated with the progression 
of renal injury in such mice, with a resultant rise in the 
Ang II level and a decline in the Ang-(1-7) level.

The effect of ACE2 administration has been examined 
in several animal models of kidney injury. Recombi-
nant human ACE2 (rhACE2) effectively attenuated Ang 
II-mediated hypertension and renal injury [10,11], de-
layed progression of diabetic nephropathy in Akita mice 
(with a reduction in albuminuria) [60], and suppressed 
tubulointerstitial fibrosis in ApoE-/- animals (a model 
of atherosclerosis with progressive kidney lesions) by 
abrogating phosphorylation of AKT [61]. Recombinant 
murine ACE2 (rmACE2) has been given to mice with 
STZ-induced diabetic nephropathy, thus db/db mice 
and Col4a3-/- mice [62,63]. Surprisingly, a protective effect 
of rmACE2 was evident only in Col4a3-/- mice [62,63], re-
gardless of the route of delivery; rmACE2 was delivered 
by an osmotic mini-pump in one study [62] and Ace2 
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minicircle DNA was injected once in the other study [63]. 
Thus, the differences in rmACE2 treatment efficacy may 
be primarily attributable to the ACE2 level/activity in the 
kidney tissue or urine, as urinary ACE2 activity increased 
significantly only in Col4a3-/- mice, despite striking rises 
in the serum activities of all STZ-injected mice, db/db 
mice, and Col4a3-/- mice [63]. One possible explanation is 
that rmACE2 can pass through the glomerular filtration 
barrier only when overt proteinuria is in play (e.g., in 
Col4a3-/- mice), and thus, the efficacy of systemic ACE2 
delivery may be limited in mice with mild proteinuria 
(e.g., STZ-injected mice, db/db mice) [63].

Based on the role played by ACE2 in kidney homeo-
stasis, several pharmacological interventions seeking to 
upregulate ACE2 expression have been tested in various 
disease models; the most consistent results are those of 
studies using ACEi/ARBs. One study on normotensive 
rats reported that lisinopril or losartan significantly aug-
mented ACE2 activity in the renal cortex, and increased 
urinary excretion of Ang-(1-7) [34]. A 2-week telmisartan 
treatment of mice upregulated ACE2 and downregulat-
ed ACE expression in the tunica media and endothelial 
layer of the kidney arterioles, respectively [64]. In db/db 
mice given candesartan, renal tubular damage and al-
buminuria were ameliorated; the expression levels of 
ACE2, AT2R, and MasR increased; and ACE2 activity 
enhanced, with a reduction in extracellular signal-reg-
ulated protein kinase (ERK) 1/2 phosphorylation [12], al-
though ultra-high doses of candesartan promoted renal 
injury and increased renal ERK1/2 activation. Olmesar-
tan treatment of Col4a3-/- mice ameliorated both the glo-
merular and tubulointerstitial (pathological) histology, 
with upregulation of ACE2 expression and subsequent 
activation of the ACE2-Ang-(1-7)-MasR axis, despite per-
sistence of the genetic defect [65]. 

Other pharmacological interventions seeking to ac-
tivate the ACE2-Ang-(1-7)-MasR axis have yielded less 
consistent results or require further validation [66-72]. 
The results of treatment with diminazene aceturate 
(DIZE), a known ACE2 activator, are somewhat conflict-
ing, and seem to depend on the experimental model 
chosen [66,67]. DIZE restored glomerular ACE2 expres-
sion and normalized whole-kidney Ang II and Ang-(1–7) 
levels in STZ-induced diabetic rats [66], but had no ef-
fect on blood pressure in indole-3-carbinol-induced 
Cyp1a1-Ren-2 transgenic rats with malignant hyperten-

sion, despite significant induction of kidney ACE2 ac-
tivity and Ang-(1-7) expression [67]. This may mean that 
the genetic overexpression of renin was not overcome 
via pharmacological activation of ACE2. The fact that vi-
tamin D is a negative regulator of renin transcription 
[69] has encouraged investigations of the effects of active 
vitamin D on kidney ACE2 expression. Calcitriol up-
regulated ACE2, but downregulated ACE expression in 
the kidney of STZ-induced diabetic rats; kidney phos-
phorylation of p38 and ERK was mitigated [70]. Howev-
er, paricalcitol alone or in combination with aliskiren, a 
direct renin inhibitor, did not reduce urinary albumin 
excretion in non-obese diabetic mice, despite a reduc-
tion in serum ACE2 activity and enhanced cortical ACE2 
expression [71]. Conversely, a role for fibroblast growth 
factor 23 (FGF23) in negative modulation of ACE2 ex-
pression has been suggested [73-75]. Indeed, combina-
tion FGF23/losartan compromised the effect of losartan 
on Ace2 mRNA upregulation in the contralateral kidney 
of the unilateral ureter obstruction model [72]; FGF23 
alone did not affect the Ace2 mRNA level.

Together, the experimental evidence indicates that 
ACE2 plays a protective role in several kidney disease 
models, especially when activation is local rather than 
systemic. Pharmacological interventions enhance local 
ACE2 expression and activity. ACEi/ARBs have shown 
promising, but not fully consistent, results. Further 
studies on the local actions of ACE2 in kidney diseases 
should focus on context-dependent tailoring of thera-
peutics.

Results from patients with kidney diseases
Most studies on ACE2 in humans with kidney diseas-
es are observational. In the human kidney, ACE2 has 
been observed in proximal tubular epithelial cells and, 
to a lesser degree, in glomeruli, where concurrent ACE2 
downregulation and ACE upregulation have been re-
ported in patients with T2DM and overt diabetic ne-
phropathy [76,77], suggestive of changes in the ACE/ACE2 
ratios. ACE2 downregulation in kidney tissue has been 
consistently reported in other studies on patients with 
T2DM and nodular glomerulosclerosis [78], although 
ACE was also downregulated; the ACE/ACE2 ratio was 
not measured. Analysis of urinary ACE2 protein level/ac-
tivity is non-invasive and has provided valuable insights 
into intra-renal ACE2-Ang-(1-7)-MasR axis activity. Uri-
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nary ACE2 levels independently predict the risk of mi-
croalbuminuria, and reflect the stages and progression 
of chronic kidney disease (CKD) [79]. Diabetes further 
increases urinary ACE2 levels in such patients [80]. In-
triguingly, urinary ACE2 protein excretion and activity 
were elevated in adolescents with uncomplicated T1DM 
compared to healthy controls, correlating with higher 
hemoglobin A1c levels, but not with the estimated glo-
merular filtration rate, blood pressure, or albuminuria 
[81], strongly suggesting that urinary ACE2 may be an 
early (and sensitive) biomarker of diabetic nephropa-
thy, thus reflecting the severity of renal injury, given the 
mechanism of ACE2 shedding by proximal tubular epi-
thelial cells after high-glucose exposure [56-58,82].

ACE2 IN CARDIOVASCULAR AND PULMONARY 
DISEASES

ACE2 in cardiovascular diseases
ACE2 is normally found in the cardiomyocytes, fibro-
blasts, epicardial adipocytes, and ECs of coronary vessels 
[35,83,84]; Ang-(1-7)/MasR is expressed in the cardiomyo-
cytes, fibroblasts, ECs, and VSMCs of coronary vessels 
[85-88]. The role of the ACE2-Ang-(1-7)-MasR axis has 
been intensively explored in various animal models of 
cardiovascular disease as well as in humans. Immuno-
histochemistry for ACE2 in human and rat hearts re-
vealed that ischemic injury upregulates ACE expression, 
principally in the vascular endothelium and smooth 
muscle, and less so in cardiomyocytes [89]. This seems 
to be a compensatory response to ischemia, rather than 
a mediator of tissue injury, as loss of Ace2 further ac-
celerates maladaptive, left ventricular remodeling after 
myocardial infarction (MI), which was prevented by 
treatment with an ARB [90,91]. Overexpression of ACE2 
[92] or systemic administration of Ang-(1-7) [93] also pre-
served cardiac function and attenuated inflammation 
after MI. A study of patients with idiopathic dilated car-
diomyopathy revealed that heterozygotic loss of ACE2 
was sufficient to promote adverse myocardial remod-
eling in response to pressure overload [94], implying a 
protective role for ACE2 in heart failure (HF). HF with 
a preserved ejection fraction is closely linked to obesi-
ty, and is characterized by inflammation of epicardial 
adipose tissue [84,95,96], which is further augmented by 

loss of ACE2 and increased macrophage polarization to 
the pro-inflammatory M1 phenotype. Ang-(1-7) attenu-
ated M1 macrophage polarization in epicardial adipose 
tissue of obese Ace2 KO mice, preventing HF progres-
sion [84,97]. 

Activation of the ACE2-Ang-(1-7)-MasR axis assists 
blood pressure control. Renal Ace2 mRNA levels de-
creased in spontaneously hypertensive rats (SHRs) and 
stroke-prone SHRs [98], and lentiviral overexpression 
of ACE2 [99,100] or pretreatment with rhACE2 [10] at-
tenuated blood pressure elevation in SHRs and Ang 
II-induced hypertensive mice, respectively. Diabetic ret-
inopathy is another pro-inflammatory condition that is 
curtailed by activation of the ACE2-Ang-(1-7)-MasR axis 
[101,102]. Of note, ACE2 mRNA levels strongly predict 
microvascular disease in diabetic patients; such patients 
who remained free of retinopathy despite > 40 years of 
poor glycemic control exhibited higher levels of mRNAs 
transcribed from the genes of the ACE2-Ang-(1-7)-MasR 
axis than did age-, sex-, and glycemia-matched diabetics 
with retinopathy [103]. Specifically, Ang-(1-7) treatment 
restored the in vivo function of CD34+ bone marrow-de-
rived vascular reparative cells and the circulating an-
giogenic cells that are dysfunctional in diabetics, pre-
venting vascular injury inflicted by oxidative stress [103]. 
Intraocular administration of AAV-ACE2 or Ang-(1–7) 
reduced diabetes-induced retinal vascular leakage and 
inflammation, thus preventing retinopathy [102].

The efficacy of various ACEi/ARBs in terms of enhanc-
ing ACE2 expression/activity in the heart and vessels has 
been intensely examined, yielding quite promising and 
consistent results [13-15,80,104-106]. For example, olme-
sartan upregulated ACE2 and Ang-(1-7) expression in the 
aorta of SHRs [104]. Blood pressure was controlled by 
either lisinopril or losartan, accompanied by an increase 
in cardiac Ace2 mRNA levels [105]. It seems likely that the 
effects of ACEi/ARBs on the ACE2-Ang-(1-7)-MasR axis 
will further reinforce the appropriateness of ACEi/ARBs 
for patients with cardiovascular diseases.

ACE2 in pulmonary diseases
ACE2 is abundantly expressed by the alveolar and 
bronchiolar epithelium, the endothelium, and smooth 
muscle cells of the pulmonary vessels of rats, but not 
in bronchiolar smooth muscle cells [90]. ACE2 expres-
sion falls dramatically with aging in both sexes; female 
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rats retain more ACE2 expression than do males. Acute 
lung injury induced by smoking downregulates lung 
ACE2 and upregulates ACE [107]. A precise role for ACE2 
during acute lung injury has been implied by studies on 
Ace2 KO mice. Lung injury in such mice was induced 
by acid inhalation or sepsis [108], SARS-CoV infection 
[109], and bleomycin [110], and was more severe than in 
wild-type mice. rhACE2 ameliorated the histological 
and lung function changes in sepsis-induced [108] and 
pulmonary hypertension (PH) models of lung injury, 
and fibrosis in a bleomycin-induced model [110]. Nota-
bly, intravenous rhACE2 injection into patients with PH 
improved pulmonary hemodynamics and reduced the 
levels of oxidative and inflammatory markers [111]. Elev-
en patients with heritable or idiopathic PH exhibited 
lower ACE2 activity than healthy controls. This was the 
first study to explore the therapeutic efficacy of rhACE2 
in humans, emphasizing the potential utility of ACE2 as 
a novel therapeutic. DIZE [112] and losartan [108,109,113] 
attenuated mouse lung injury with preservation of ACE2 
expression [113], although their efficacies have not been 
proven in humans with pulmonary diseases.

ACEi/ARBs IN THE ERA OF COVID-19

The SARS-CoV-2 was first identified in late 2019, but 
lies on a continuum shared by two other highly patho-
genic human coronaviruses (CoVs) described during the 
past two decades, thus SARS-CoV and Middle East re-
spiratory syndrome (MERS)-CoV [114]. During the first 
SARS-CoV epidemic, human ACE2 was identified as 
the receptor for the surface spike protein (S protein) of 
SARS-CoV [108,109]. It remains unclear whether SARS-
CoV-2 infection changes ACE2 expression; recent stud-
ies found that ACE2 expression increased after infection 
[115], and suggested that this was triggered by induction 
of interferons when the cell detected viral entry [49]. Any 
concern that ACEi/ARBs use might increase vulnerabili-
ty to SARS-CoV by upregulating the viral ACE2 receptor 
was not marked prior to the emergence of COVID-19, 
probably because most studies on the effects of ACEi/
ARBs on ACE2 expression were reported thereafter. 

Initial reports indicate that comorbidities are very 
common in patients infected with COVID-19; these in-
clude hypertension, diabetes, coronary artery disease, 

and CKD [116-118]. Moreover, the frequency of pre-ex-
isting underlying conditions is considerably higher 
in patients exhibiting more severe clinical courses of 
COVID-19 infection, compared to patients with mild 
clinical courses [119]. Soon after identification of ACE2 
as the receptor for SARS-CoV-2 [16-18], it was suggested 
that continued use of ACEi/ARBs in patients with un-
derlying diseases would facilitate SARS-CoV-2 infection 
and increase the risk of severe disease and a fatal outcome 
[19]. Others later raised similar concerns [20,21,120], trig-
gering an intense debate on continued use or cessation 
of ACEi/ARBs in patients with COVID-19 and underly-
ing cardiovascular or kidney diseases. In fact, a recent 
letter reported that many patients from South America, 
Central America, and Spain, have already stopped or in-
tend to interrupt their treatments with such drugs [121].

It should be emphasized; however, that, although these 
concerns have been (mostly) expressed by experts, they 
are grounded on very weak scientific evidence (Table 1) 
[122-129]. To date, no clinical evidence strongly recom-
mends either the cessation or continued use of ACEi/
ARBs in patients infected with COVID-19 [28,130-132]. 
Rather, the evidence that is available favors continued 
use of ACEi/ARBs in patients with COVID-19 (Table 2) 
[133-135], although one study suggested that ACEi/ARBs 
increased the risk of acute kidney injury in patients with 
severe COVID-19 infections [136]. For example, inhibi-
tion of AT1R by losartan attenuated SARS-CoV-induced 
acute lung injury in mice [108], and SARS-CoV infection 
downregulated ACE2 expression in mouse lungs and 
cultured cells, implying that uncontrolled RAS activa-
tion plays a crucial role in the pathogenesis of SARS-
CoV-induced acute lung injury. One study enrolling a 
small number of COVID-19 patients reported that Ang 
II plasma levels were linearly associated with the viral 
load and extent of lung injury, and the authors even 
suggested that ARBs should be repurposed to treat 
COVID-19 [137]. More recently, a large retrospective 
multicenter study including 1,128 COVID-19 patients 
with hypertension on ACEi/ARBs showed that inpatient 
use by COVID-19 patients lowered all-cause mortality 
[133]. Despite potential biases attributable to extrapola-
tion of data from mice infected with SARS-CoV, those of 
studies with limited numbers of patients, and those of 
retrospective analyses, the evidence that ACEi/ARB ther-
apies are dangerous seems to be balanced by evidence 
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Table 1. A summary of the results of recent studies revealing no clear association between ACEi/ARB use and COVID-19 
infection status

Study Date of release Study design Population Key findings

Mehta et al. [123] May 5, 2020 Retrospective 
 cohort study

18,472 Patients tested 
for COVID-19.

No association between ACEi/ARB use 
and COVID-19 test positivity

Jung et al. [124] May 22, 2020 Nationwide 
 population-based 
 cohort study

5,179 Confirmed  
COVID-19 cases

Prior use of RAAS inhibitors was 
not independently associated with 
mortality among COVID-19 patients in 
Korea.

Raisi-Estabragh 
et al. [125]

July 14, 2020 Prospective cohort 
study

7,099 Participants from 
the UK Biobank tested 
for COVID-19

ACE/ARB use did not associate with 
COVID-19 status.

De Spiegeleer et 
al. [126]

Jul 18, 2020 Retrospective 
multicenter cohort 
study

154 COVID-19-positive 
subjects

No statistically significant association 
between ACEi/ARB and asymptomatic 
status or serious clinical outcome

Zhang et al. [127] August 4, 2020 Multicenter  
retrospective study

13,981 Patients with 
COVID-19  in Hubei 
Province, China

No significant association between 
ACEi/ARB therapy and 28-day 
mortality in individuals with 
hypertension and statin treatment

Bean et al. [128] June 2, 2020 Multicenter 
 retrospective study

1,200 Acute inpatients  
with COVID-19

No evidence for increased severity of 
COVID-19 in hospitalized patients on 
chronic treatment with ACEi/ARBs

Fosbol et al. [129] June 19, 2020 Retrospective 
 cohort study

4,480 Patients with  
COVID-19

Taking ACEi/ARBs did not result in 
more diagnoses of COVID-19, nor did 
they have a higher mortality rate.

Mackey et al. [122] August 4, 2020 Meta-analysis NA High-certainty evidence suggests that 
ACEi/ARB use is not associated with 
more severe COVID-19 disease.

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin type 1 receptor blocker; COVID-19, coronavirus disease 
2019; RAAS, renin-angiotensin-aldosterone system; NA, not applicable.

Table 2. A summary of the results of recent studies revealing favorable outcomes of patients with COVID-19 infections who 
continued to use ACEi/ARBs

Study Date of release Study design Population Key findings

Zhang et al. [133] June 5, 2020 Retrospective, 
multi-center  
study

1,128 Adult patients 
with HTN diagnosed 
with COVID-19

Inpatient use of ACEi/ARB was associated 
with lower risk of all-cause mortality 
compared with ACEi/ARB nonusers.

Grover et al. [134] June 15, 2020 Meta analysis NA ACEi/ARBs should be continued in 
COVID-19 patients. ACE2 polymorphisms 
which might confer higher risk of adverse 
outcomes.

Lam et al. [135] July 23, 2020 Retrospective  
 single-center  
 study

614 Hypertensive  
laboratory-confirmed 
COVID-19 patients

Continued ACEi/ARB use in hypertensive 
COVID-19 patients yields better clinical 
outcomes.

COVID-19, coronavirus disease 2019; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin type 1 receptor block-
er; HTN, hypertension; NA, not applicable; ACE2, angiotensin-converting enzyme 2. 
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for the opposite view. The fears are groundless. Appro-
priately, learned societies have recommended continu-
ation of RAS antagonist therapies in COVID-19 patients 
with underlying conditions such as HF, hypertension, 
ischemic heart disease, or kidney disease. Unless con-
crete evidence supporting ACEi/ARB cessation is avail-
able; treatment should be individualized by reference to 
patient hemodynamic status and clinical presentation 
[131,132].

CONCLUSIONS

In the time since ACE2 was discovered, our understand-
ing of how the RAS affects kidney and cardiovascular 
disease progression has expanded. Over the last two de-
cades, the protective role played by ACE2 (in terms of an-
tagonizing activation of the classical RAS axis) has been 
demonstrated in many clinical and experimental set-
tings. The positive effects of ACEi/ARBs on ACE2-Ang-
(1-7)-MasR axis activation encouraged their prescription 
for patients with kidney and cardiovascular diseases, 
until COVID-19 appeared. The human virus receptor 
is ACE2; the previously unchallenged utilities of ACEi/
ARBs have thus been challenged. It has been suggest-
ed that ACEi/ARB use may increase the risk of SARS-
CoV-2 infection by upregulation of the ACE2 receptor; 
however, the scientific evidence is minimal. Much ac-
cumulated evidence to date indicates that SARS-CoV-2 
infection does not imply that ACEi/ARB therapy should 
cease in patients conventionally indicated for such 
drugs. Planned directed trials [122,138] will soon guide 
clinical decision-making in the ACEi/ARB context in 
COVID-19-infected patients. 
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