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Mesenchymal stem cells: amazing remedies

for bone and cartilage defects
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Abstract

Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of
stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders.
Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells
are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and
regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and
response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose
tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton’s jelly (WJ), and amniotic
fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro.
MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors,
and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of
repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs’ secretome
enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and
compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
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Introduction
Diseases of skeletal system are extensively widespread in
aged population and are considered to be one of the
main causes of disability and morbidity [1]. The most
common disorders of the skeletal system include inter-
vertebral discs (IVDs), osteoporosis, bone fractures,
osteogenesis imperfecta (OI), osteoarthritis (OA), and
rheumatoid arthritis (RA) [2] (Table 1). Among various
therapeutic approaches for the treatment of these dis-
eases, stem cell therapy seems to be more promising.
Stem cells are introduced into tissues to repair, replace,
and treat a defect with or without the addition of
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external gene. The origin of the stem cells can be from
autologous or allogeneic sources. They can be used ei-
ther as naive or primed of the desired lineage [17].
Stem cells are undifferentiated biological entities with

the capacity to self-renew and differentiate into special-
ized cell types. Based on differentiation potential, they
are classified as totipotent, pluripotent, multipotent, oli-
gopotent, and finally, unipotent cells [18]. Mesenchymal
stem cells (MSCs) are multipotent stromal cells with
mesodermal and neural crest origin [19, 20]. They are
the most commonly used stem cells in the current pre-
clinical and clinical studies on skeletal diseases [21]
(Table 2) either through direct injection or along with
scaffolds (a range of natural gels and hydrogels based on
collagen, hyaluronic acid (HA), glycosaminoglycans
(GAGs), agarose, gelatin and alginate) [37–39] (Fig. 1).
These cells are isolated from a variety of tissues like
bone marrow (BM), adipose tissue, fetal liver, umbilical
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Table 1 List of the main skeletal diseases, their clinical description and molecular features

Bone diseases Clinical description Molecular features

Intervertebral disc (IVD)
degeneration

Increased extracellular matrix breakdown and abnormal
matrix synthesis leading to reduced hydration, loss of
disc height, and decreased ability to absorb load, disc
herniation, vertebral instability and spinal stenosis, back
and neck pain [3]

Collagen I (COL1A1/A2), Collagen IX (COL9A1/A2/A3),
CollagenXI (COL11A1/A2/A3),VDR genes (TaqI, ApaI),
Col I (COLIA1, Aggrecan (CS1), MMP-3(5A/6A) [4, 5]

Osteoporosis Acute back pain caused by a pathologic vertebral
compression fracture as the earliest symptom, decreased
density (mass/volume) of normally mineralized bone,
decreased mechanical strength, making the skeleton
more likely to fracture [6]

Col I (COL1A1/A2), PTH, PTHR, VDR, BMPs (BMP2,4,7,
OP1LRP5), LRP6, RANK, RANKL [7]

Osteogenesis imperfecta (OI) Progressive skeletal deformation, loss of BMD, frequent
fractures, short stature, joint hypermobility and pain [8, 9]

mutations in the type I collagen genes COL1A1/A2,
collagen modification (CRTAP, LEPRE1, PPIB), processing
(BMP1), or folding (SERPINH1, FKBP10 [8, 10]

Osteoarthritis (OA) Joint inflammation, joint pain, stiffness, swelling and
restriction of joint function [11]

COL2A1, COL9A3, COL11A1, CRTM, VDR, ESR1, BMP5,
ALDH1A2, MCF2L, CHADL, GDF5 and FILIP1, GLIS3,
TGFB1, TNC and WWP2 [12–14]

Rheumatoid arthritis (RA) Joint degeneration, loss of cartilage, and alterations of
subchondral bone, abnormalities of weight-bearing joints
and hands, including knees and hips, symptoms of OA
including pain, stiffness, and altered function in knee
and hips [15]

HLA-DR, PTPN22, IL6R, TRAF1/C5, STAT4, PADI4, FCGR,
CD40, CCL21, CCR6 [16]

COL collagen, VDR vitamin D receptor, MMP matrix metalloproteinase, PTH parathyroid hormone, PTHR parathyroid hormone receptor, BMP bone morphogenetic
protein, LPR low-density lipoprotein receptor-related protein, RANK receptor activator of nuclear factor kappa B, RANKL RANK ligand, BMD bone mineral density,
CRTM cartilage matrix protein, ESR estrogen receptor, CRTAP cartilage-associated protein, LEPRE1 leucine proline-enriched proteoglycan1, PPIB peptidyl-prolyl
isomerase 1 (cyclophylin B), SERPINH1 serpin peptidase inhibitor, clade H, FKBP10 Fk506-binding protein 10, ALDH aldehyde dehydrogenase, MCFL2 MCF.2 cell line
derived transforming sequence-like protein, CHADL chondroadherin like, GDF5 growth differentiation factor 5, FILIP1 filamin-A-interacting protein 1, GLIS3 GLI-
similar 3, TGFB1 transforming growth factor beta 1, TNC tenascin C, WWP2 WW domain containing E3 ubiquitin protein ligase 2, HLA-DR human leukocyte antigen
– DR isotype, PTPN22 protein tyrosine phosphatase, non-receptor type 22, IL6R interleukin-6 receptor, TRAF1/C5 tumor necrosis factor receptor-associated factor-1,
STAT4 signal transducer and activator of transcription 4, PADI4 peptidylarginine deiminase 4, FCGR Fc gamma receptor, CCL21 CC chemokine ligand 21, CCR6 CC
chemokine receptor 6
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cord (UC), muscle, endometrial polyps, dental tissue,
synovial fluid, skin, foreskin, Wharton’s jelly (WJ), pla-
centa, dental pulp (DP), breast milk, gingiva, amnion,
and menstrual blood [40–54]. MSCs are characterized as
plastic adherent cells with fibroblastic morphology in
culture. These cells lack the expression of hematopoietic
markers such as CD45, CD34, and CD14, but express
mesenchymal specific markers including CD73, CD90,
and CD105 [55]. A list of positive and negative markers
on MSCs from various sources is presented in Table 3.
Human MSCs (hMSCs) usually express low levels of
MHC class I, with no expression of MHC class II [64].
These cells demonstrate three distinct biological charac-
teristics (potential of differentiation, secretion of trophic
factors and immunoregulatory properties) which make
them an excellent candidate for cell therapy [65]. MSCs
possess the capacity to differentiate into a wide variety
of cell types including adipocytes, osteoblasts, chondro-
cytes, and myocytes. Also, they are capable of trans-
differentiating into ectodermal lineages such as neuronal
cells and endodermal lineages such as hepatocytes and
pancreatic islet cells [39, 65, 66]. MSCs are of great
importance because of their paracrine effects through
secreting growth factors and cytokines, such as vascu-
lar endothelial growth factor (VEGF), transforming
growth factor beta (TGF-β), and interleukins (IL-1β,
IL-6, and IL-8) [67]. Moreover, MSCs have an add-
itional ability to modulate immune responses through
repressing T cell proliferation, dendritic cell (DC)
maturation, B cell activation, and cytotoxic activation
of resting NK cells [68–73].

Bone structure
As the main part of the skeletal system, the bone con-
tributes to the locomotion, soft tissue protection, har-
boring of BM, blood production, progenitor cell
(mesenchymal and hematopoietic) housing, regulation of
blood pH and maintenance of calcium, and phosphate
homeostasis [74, 75]. Macroscopic examinations show
that bone tissue is a heterogeneous and porous structure
comprising two bone types including cortical (compact)
and cancellous (spongy). Comparison of cortical and
cancellous bones reveals significant different masses, so
that the former has major mass-to-volume ratio [76, 77].
Owing to be a dynamic connective tissue, the bone has
cells and extracellular matrix (ECM) which consists of
organic and inorganic phases. Collagen fibers are the
main makeup in the organic phase while inorganic phase
is mainly composed of hydroxyapatite [76, 78, 79]. The
cellular components are osteoprogenitors, osteoblasts,
bone lining cells, osteocytes, and osteoclasts. Osteoblasts
are one of the most important differentiated cells in the



Table 2 Preclinical and clinical studies of MSCs for the treatment of skeletal diseases

Defect type Model MSC type Findings

IVD Porcine Autologous BM-MSCs Reduction in COL1 expression as a marker for fibrosis, reduction of inflammation
marker IL1β and elevation of trophic factor BMP2, reducing disc degeneration [22]

Rat Xenogeneic hAD-MSCs Viability and proliferative potentiate of AD-MSC transplanted within the rat IVD,
contribution in the maintenance of disc height after the operation [23]

Human (n = 5) Autologous BM-MSCs Improvement in strength and mobility post stem cell treatment [24]

Human (n = 10) Autologous BM-MSCs Feasible and safe, rapid improvement of pain and disability (85% of maximum in
3months) [25]

Osteoporosis Goat Autologous BM-MSCs Improvement of bone formation in the osteoporotic model in vivo [26]

Rat Xenogeneic hUCB-MSCs Enhancement of bone formation abilities in osteoporotic rat model similar to no
osteoporotic bone regeneration [27]

OI Mouse Human fetal e-CSCs Reduction of fractures, increasing bone ductility and BV by directly differentiating to
osteoblasts, stimulating host chondrogenesis and osteogenesis [28]

Human (n = 3) Allogeneic BM-MSCs Increase in total body bone mineral content and new dense bone formation [29]

Bone fractures Rabbit Autologous AD-MSCs Improvement of healing process in tibial defects compared to using hydroxyapatite
alone [30]

Rat Xenogeneic hDP-MSCs Increased callus homogeneity, decline callus earlier size, increased percentage of
lamellar in newly formed bone, lower incidence of fibrous tissue in the experimental
group, advanced and more efficient bone healing in the cell-treated group compared
to the control [31]

Human (n = 18) BMAC Faster healing in BMAC cancellous bone allograft transplanted group compared to an
autologous bone graft, efficacy of BMAC for treatment of nonunion [32]

OA Rat Allogeneic BM-MSCs Chondroprotection and reduced subchondral bone mineral density in the
transplantation [33]

Human (n = 4) Autologous BM-MSCs Positive changes in all patients, clear bone formation in osteonecrosis patients,
cartilage regeneration in the OA patients [34]

Human (n = 6) Autologous BM-MSCs Improvement of pain, functional status of the knee and walking distance, increase in
cartilage thickness, extension of the repair tissue and a considerable decrease in the
size of edematous subchondral patches [35]

Human (n = 18) Autologous AD-MSCs Reduced cartilage defects by regeneration of hyaline-like articular cartilage and
improvement of function and pain of the knee joint without causing adverse
events [36]

IVD intervertebral disc, BM-MSCs bone marrow-derived mesenchymal stem cells, COL1 collagen typ1, IL1β interleukin1 β, BMP2 bone morphogenetic protein, hAD-MSCs
human adipose-derived mesenchymal stem cells, hUCB-MSCs human umbilical cord blood-derived mesenchymal stem cells, OI osteogenesis imperfecta, e-CSCs human fetal
early chorionic stem cells, BV bone volume, BMAC bone marrow aspiration concentrate, OA osteoarthritis, hDP-MCs human dental pulp-derived mesenchymal stem cells

Kangari et al. Stem Cell Research & Therapy          (2020) 11:492 Page 3 of 21
bone originating from bone marrow mesenchymal stem
cells (BM-MSCs). Osteoblasts play critical roles in the
synthesis of ECM components including type I collagen,
proteoglycans, and non-collagenous proteins and also
participate in matrix mineralization and blood-calcium
homeostasis. Osteocytes, as the most abundant and
long-lived cells, are the mature trapped osteoblasts in
the lacunae. Osteoclasts are large multinucleated cells
that originate from mononuclear cells and participate in
the absorption of bone, calcium and phosphate excre-
tion, bone healing, and remodeling [78, 80–83].
Bone diseases are one of the most common body in-

juries, and are associated with high health expenses ex-
ceeding billions of dollars annually [84]. Prevalence of
such defects is increasing; thereby, they are considered
an epidemic health challenge [85]. The bone benefits
from the ability to repair itself throughout the life. Bone
regeneration is a process in which osteoclasts and osteo-
blasts are tightly involved [80]. Despite spontaneous
regeneration potential, there are several different reasons
such as bone defect size and infection that cause dam-
aged bone not to be able to restore itself [86]. In the fol-
lowing sections, common approaches and new therapies
in restoring and treating bone defects will be discussed.

Bone diseases and MSC therapy
Intervertebral disc (IVD) degeneration
Intervertebral discs (IVDs) are circular pieces of gelly
fibrocartilage tissue between vertebral of the spine func-
tioning for shock-absorption. They are the reason of
flexibility in the neck and lumbar regions and thus con-
tribute to motion. Anatomically, they have three import-
ant substructures: nucleus pulposus (NP), anulus
fibrosus (AF), and cartilaginous end plates (CEPs) [87–
89]. One of the highest risk factors for disc degeneration
is aging [90]. As age increases, cellular and structural
changes in NP, AF, and CEP lead to IVD [91]. Findings
showed that IVD alterations during aging start cleft



Fig. 1 Mesenchymal stem cell (MSC) sources and applications. MSCs are originated from various sources such as bone marrow, adipose tissue,
placenta, umbilical cord, Wharton’s jelly, muscle, and dental tissues. They may be used either by loading within scaffold or as cell suspensions for
regenerative purposes including cartilage and bone defects
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formation in NP [92]. Meanwhile, AF becomes disorga-
nized, stiffer, and weaker [93].
One of the main symptoms of disk degeneration is

back and neck pain which can terminate into several dis-
abilities [93]. Treatment approaches for degenerative
disc disease (DDD) are physiotherapy, pharmacotherapy,
and surgery. However, they are only pain-relieving strat-
egies in most cases and do not eliminate the underlying
reason or restore the lost functions. Therefore,
researchers are looking for novel therapeutics in order
to regenerate DDD [88, 94, 95]. The best defining char-
acteristics of DDD are the accumulation of senescent
cells as well as reduction in the number of functional
cells [95]. Several in vitro and in vivo studies on the de-
generation of the IVD both in animal models and in
clinical trials indicated that NP, AF, and CEPs contain
cells with surface markers, morphology, proliferation
rate, and multilineage differentiation capability similar to



Table 3 Characterization of MSC from various tissues based on surface markers

Tissue Positive markers Negative markers

Bone marrow CD29, CD31, CD44, CD49a, CD49b, CD49c, CD49d, CD49e, CD51, CD54,
CD58, CD61, CD71, CD73, CD90, CD102, CD104, CD105, CD106, CD120a,
CD120b, CD121a, CD124, CD146, CD166, CD221, CD271, SSEA-4,
STRO-1 [56]

CD11a, CD11b, CD13, CD14, CD19,CD34, CD45,
CD133 [56]

Adipose tissue CD105, CD73, CD36, CD90, CD44, CD29, CD151, CD49d, CD44 [55, 57, 58] CD45, CD34, CD14, CD11b, CD19, HLA-DR, CD34,
CD38, CD31, CD106 [55, 57, 58]

Synovial fluid CD9, CD10, CD13, CD44, CD54, CD55, CD90, CD105, CD166, D7-FIB, CD49a,
CD147, CD73, PDGFRα (CD140a) [59]

CD14, CD45, CD34, CD117, CD62e, CD20, CD113,
HLA-DR, CD68, CD31, ALP [59]

Dental pulp CD29, CD44, CD105, CD146, CD117 and STRO-1 [60], SSEA-4, CD146, CD73,
CD44, CD10, CD123 [61]

HLA-DR, CD106, CD34,CD7,CD31 [61]

Amnion CD73, CD29, CD49f, Oct4, Nanog, Sox2, SSEA-3, SSEA-4, Rex1 [62] CD14, CD20, CD34, CD45 [63]
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stem cells. This evidence suggests that IVDs possess
stem cells that may provide cell candidates for cell-based
regenerative medicine and tissue engineering [96–100].
On the other hand, studies on human degenerative IVD
tissue demonstrated the existence of progenitor cells
similar to BM-MSCs. As an endogenous source, they
can be activated in situ after exposure to some growth
factors involved in the repair of degenerative IVD [101,
102]. Regeneration is aimed to replace damaged with
new functional cells that can be supplied by resident
stem cells proliferation or division of differentiated cells.
Therefore, these cells should be infiltrated into the tissue
following by exposure to the growth factors until enab-
ling to reconstruct lost structures [103–105]. Despite
avascular nature of the IVD, it has been demonstrated
that stem cells are capable of migrating from their niche
throughout the body toward all three IVD constituent
layers and they have more tendency to home at the
vascular tissues such as CEPs and outer layer of AF
[106–108]. Due to the absence of the active cell popula-
tion in IVD, it needs to introduce stem cells in IVD for
tissue regeneration. Findings from several preclinical and
clinical studies demonstrated that MSCs are attractive
candidates for regeneration of diseased disk [25, 109–
111]. These cells should be isolated from an appropriate
tissue and expanded in vitro and then, either intact or
manipulated, implanted in the injured site [37, 112–
114]. Multiple factors should be considered for choosing
the appropriate cell source such as abundance, ease of
obtaining, the capacity to differentiate into NP and AF
cells, cell viability under hypoxic condition, cell viability
under hypoglycemic condition, and non-tumorigenicity
[109]. The investigations showed that scaffolds are cap-
able of inducing MSC differentiation into a chondro-
genic lineage such as NP-like cells under hypoxic or
physiological conditions [115–117]. In an ex vivo study
on degenerative IVD of bovine origin, it is demonstrated
that human BM-MSCs (hBM-MSC) have immunomodu-
latory and anti-inflammatory effects through reduction
of pro-inflammatory cytokines such as IL-6, IL-8, and
tumor necrosis factor alpha (TNF-α) [118]. Transplant-
ation of autologous BM-MSCs in a porcine model led to
the elevation of trophic factor, bone morphogenetic
protein-2 (BMP-2) in the NP, whereas the inflammation
marker, IL-1β, was reduced in the AF [22]. On the other
hand, Sun and co-workers, in an in vitro study first
showed the impact of adipose-derived mesenchymal
stem cells (AD-MSCs) for protecting human NP cells,
through inhibiting caspase-9 and caspase-3 activity. Also,
they revealed the suppression of pro-inflammatory fac-
tors, thereby preventing apoptosis and degeneration of
NP cells. It was concluded that AD-MSCs may be a
promising treatment strategy for DDD [119]. Recently,
numerous clinical trials on regeneration of disk disease
by MSC therapy are ongoing [25, 120, 121]. Yoshikawa
et al. explored the role of autologous BM-MSCs in 2 pa-
tients with low back pain, leg pain, and numbness. They
observed improvement of pain and disability during 3
months beside augmentation of hydration within one
year after MSCs injection [121]. In addition to BM-
MSCs and AD-MSCs [122–124], there are other major
cell sources used for DDD regeneration including
muscle-derived stem cells (MdSCs) [125], olfactory
membrane stem cells [126], and synovial stem cells
[127]. However, AD-MSCs and BM-MSCs are common
sources for IVD regenerative therapy and BM-MSCs are
widely applicable in human trials.

Osteoporosis
Osteoporosis, as a systematic skeletal disorder, is a com-
mon age-related bone defect which affects women more
than men. Osteoporosis cause bone mineral density
(BMD) loss and the degradation of the bone microstruc-
ture due to an abnormal imbalance between bone for-
mation by osteoblasts and bone resorption by osteoclasts
[128, 129]. Additionally, MSCs population in the BM are
declined with aging; thus, their function will be limited
and they cannot contribute to bone formation any lon-
ger [130]. Osteoporosis is of great importance mostly be-
cause of its effect on bone fragility. It also causes back
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pain and decreased quality of life which are collectively
associated to high economic burden. Accordingly, suit-
able treatment strategies are essential for preventing dis-
ease and improving quality of life [131, 132]. Current
osteoporosis treatments are principally using drug-based
agents that usually stimulate apoptosis in osteoclasts and
prevent the bone resorption [133]. However, they are as-
sociated with some side effects and therefore do not pro-
vide patient satisfaction [134–138].
During the last decade, stem cell therapy, as a new

technology, is widely developed for bone regeneration in
patients with osteoporosis. MSCs are the most exten-
sively used stem cell type for this disease [128]. Studies
in animal models have revealed that both allogeneic and
autologous BM-MSCs transplantation are applicable for
the treatment of osteoporosis [26, 139–142]. Allogeneic
BM-MSCs therapy in glucocorticoid-induced osteopor-
osis in mice models showed osteoblastogenesis and pro-
moted bone formation [143]. In a clinical trial by
Lozano-Rivas and co-workers on new osteoporotic frac-
tures, reduced pain was seen in patients with osteopor-
osis following autologous intravenous (IV) infusion of
fucosylated BM-MSCs [144]. MSCs from perinatal tis-
sues like human umbilical cord (hUC), human umbilical
cord blood (hUCB), amnion, and chorion, have attracted
special attention for osteoporosis improvement and pre-
venting bone loss [145–147]. Recently, ovariectomy-
induced osteoporosis was established in the rats along
with reduction in estradiol level, bone mass, and colla-
gen content. These rats received definitive number of
human umbilical cord-derived mesenchymal stem cells
(hUC-MSCs) and showed higher bone mass, collagen
content, and osteoblasts number, while the number of
osteoclasts decreased in the hUC-MSCs implantation
site. Also, an in vitro study confirmed that hUC-MSCs
promote osteoblasts formation while preventing the cel-
lular activity of osteoclasts. This research showed that
transplanted hUC-MSCs in the injured site in ovariecto-
mized rats are capable of differentiating to osteoblasts
and elevating collagen and osteocalcin levels as the main
bone markers [148]. Hendrijantini and co-workers ob-
served increase in the number of osteoblasts and overex-
pression of both TGF-β1 and runt-related transcription
factor 2 (Runx2) after injection of hUC-MSCs in osteo-
porotic rat models [149]. Increased expression of TGF-
β1 contributes to MSCs mobilization to the defect site,
osteoblast differentiation, and ultimately bone formation
[150, 151]. The osteogenic transcription factor, Runx2,
prevents MSC differentiation into the other lineages ex-
cept osteoblasts and enhances osteocalcin expression as
a bone formation marker [151, 152]. These findings pro-
vide a new therapeutic strategy and demonstrate that
hUC-MSCs can clinically resolve bone-related medical
conditions such as osteoporosis.
AD-MSCs are more abundant and easily available in
comparison with BM-MSCs. Indeed, their number is not
affected by age making them more applicable in cell
based therapeutics and tissue repair like osteoporotic
bone regeneration [153, 154]. Comparing systemic
injection of osteoporotic donor-derived AD-MSCs and
BM-MSCs to ovariectomized mice indicated that AD-
MSCs retained their anti-inflammatory potential and
caused the maintenance of bone homeostasis in recipi-
ents with osteoporosis. AD-MSCs but not BM-MSCs
showed the ability to resist in damaged microenviron-
ment and maintain many properties including stemness
and regulation of T cell viability. These results may show
the priority of AD-MSCs over BM-MSCs for osteopor-
otic cytotherapy [155]. Oommen and co-workers
suggested that AD-MSCs are useful treatment options
for osteoporosis since these cells caused osteogenic in-
duction by osteoblast differentiation and osteoid forma-
tion in ovariectomized rats [156]. In another study, Saito
and his colleagues observed that autologous transplant-
ation of BM-MSCs derived from osteoporotic rat models
was associated with decreased osteoclast proliferation
and mobilization, while adding UC extract improved the
functionality of BM-MSCs regarding excessive osteolytic
properties of osteoclasts [146]. Although BM-MSCs play
key roles in maintaining bone metabolism, homeostasis,
bone repair, and homing after systemic injection, their
regenerative ability may be weak in the case of patients
with postmenopausal osteoporosis [146, 157, 158].
Comparative study between different hMSCs sources
including BM, AT, WJ, and placenta (PL) indicated that
WJ-MSCs are the strongest inhibitors of T cell prolif-
eration with less immunogenic effects compared with
AD-MSCs, BM-MSCs, and PL-MSCs. Nevertheless,
hWJ-MSCs had the lowest potential in osteogenesis
than that of the PL-MSCs, AD-MSCs and BM-MSCs
[159]. Due to the similar features to BM-MSCs including
phenotypic characteristics, growth properties, differenti-
ation capacities, secretory protein profiles, and low
immunogenicity, perinatal derived MSCs are known as
appropriate alternative sources for bone defect repair in
patients with osteoporosis [160]. Overall, much more
work seems to be needed to identify the appropriate stem
cell source for clinical applications in osteoporosis.

Osteogenesis imperfecta (OI)
Osteogenesis imperfecta (OI) is a heterogeneous pre-
natal genetic disorder due to mutations in procollagen
type I genes (COL1A1/A2) encoding the alpha1 and
alpha2 chains of collagen type I which deteriorate the
synthesis of this protein by osteoblasts. OI is character-
ized by progressive skeletal deformation, loss of BMD,
frequent fractures, short stature, joint hypermobility, and
pain [8, 9]. There is no definitive cure for OI at present,
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and current therapies are most effective in reducing dis-
ease severity. A favorable therapeutic method should re-
place dysfunctional cells with normal osteoblasts along
with prohibition of osteoclast activity for the healthy
bone formation [9]. Recently, the preclinical and clinical
studies have indicated the successful intrauterine or
multi-local engraftment of human fetal (HF) and adult
MSCs in both mouse and human model of OI and
successful differentiation of transplanted cells into func-
tional osteoblasts [161–163]. Jones et al. suggested the
PL as a practical source of stem cells for the treatment
of OI based on their study showing that intraperitoneal
(IP) injection of human fetal early chorionic stem cells
(e-CSCs) in mice models caused the creation of osteo-
blasts and production of main proteins such as collagen
as well as an increase in bone thickness and bone
strength [28]. In a mouse model of OI, intrauterine
transplantation of human fetal blood MSCs led to an en-
hancement of osteogenic genes expression such as
osteocalcin, osteoprotegerins (OPG), osterix (OSX), and
BMP2. The majority of donor cells have tended to mi-
grate to the damaged area in bone and differentiate into
collagen type Iα2 producing mature osteoblasts [164]. Le
Blanc et al. used allogeneic male human fetal mesenchy-
mal stem cells (hf-MSCs) to treat severe OI through
intrauterine (IA) MSCs transplantation in female fetus
in the 32nd week of gestation. Based on the results,
engrafted hf-MSCs were able to differentiate into bone
in a human fetus [163]. Transplantation of allogeneic
BM-MSCs to children with OI demonstrated retention
in one or more sites, including bone, skin, and marrow
stroma, and acceleration of growth velocity during the
first 6 months after transplantation [162]. Recent re-
search showed that the clinical application of fetal MSCs
is constrained due to their limited number and low
availability. In contrast, e-CSCs are isolated in high
numbers from the placenta during ongoing pregnancy
without ethical restrictions [28]. Therefore, adult stem
cells are safe for using in clinical trials without inherent
limitations pertinent to embryonic stem cells.

Bone fractures
A bone fracture or an osteotomy is one of the most
common injuries among all people particularly elders
and children. Every fracture in each site causes individ-
ual physical disability, low social efficiency, and imposing
financial pressure [165, 166]. Bone fracture occurs under
the circumstances of continuous mechanical stress,
trauma, and some diseases such as osteoporosis and
cancer [74]. Healing of this type of injury is a complex
regenerative process with the involvement of numerous
cell types including progenitor, inflammatory, endothe-
lial, and hematopoietic cells as well as growth factors
such as TGF-β [166, 167]. An effective treatment
method for bone repair requires three biological proper-
ties: osteoinduction, osteoconduction, and osteointegra-
tion [168]. There are numerous therapeutic strategies
such as natural bone grafts, using synthetic inorganic
substitutes like calcium sulfate, calcium phosphate
cements (CPCs), β-tri-calcium phosphate (β-TCP), and
polymer-based bone substitutes (e.g., polylactic acid
(PLA), poly(ε-caprolactone) (PCL)) for bone fracture
repair. These methods are associated with some limita-
tions like invasive surgical procedures, pain, and subse-
quent complications [169–172]. Researchers investigated
new therapeutic approaches for overcoming these chal-
lenges and providing higher osteoconductivity. They
suggested cell therapy as the best alternative for healing
of fractured bone. In this regard, MSCs are one of the
most available stem cell sources in bone repair [173,
174]. Generally, safety and efficacy of MSCs from differ-
ent tissue sources including adipose tissue [30, 175], BM
[176, 177], UCB [178], DP [31], and periosteum [179]
for fracture regeneration were investigated in animal
models. These studies reinforced the beneficial
contribution of MSCs from different sources in the bone
fracture repair either by differentiation into osteoblasts
or through inhibition of inflammatory mediators. Accel-
eration of bone repair has initially been observed after
IV injection of BM stem cells in a mouse model [180]. It
is indicated that the controlled delivery of MSCs through
biodegradable scaffolds can increase and accelerate the
formation of functional new bone [181]. The scaffolds
are 3D structures that promote cell adhesion, survival,
migration and proliferation, accelerate bone remodeling,
provide osteoconductive structural guidance, and in
some cases act as the carrier [182]. Marcacci and co-
workers were the first to report promising results using
autologous in vitro expanded MSCs seeded onto a por-
ous ceramic scaffold of hydroxyapatite (HA), which per-
fectly fitted the bone injured areas of four patients
suffering from large bone diaphysis defects [183].
In addition, several clinical trials at different phases (I,

II, or III) have been registered for bone fracture repair
using BM-MSCs, AD-MSCs, hUC-MSCs, and human
amniotic epithelial cells (ClinicalTrials.gov) which were
implanted either via direct injection or after seeding
them onto an osteogenic matrix. The required number
of cells needed for fracture repair depends on the spe-
cific fracture characteristics, cell source, stimulation
method, differentiation state, and using biomaterials. A
comparison between three main sources of stem cells
used to repair bone fractures suggested that isolation ef-
ficiency was higher from adipose tissue compared to
other sources with respect to cell yield and feasibility.
Although the ability for osteogenic differentiation seems
to be higher in periosteum-derived mesenchymal stem
cells (PD-MSCs), the most widely used cell source is yet
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allocated to BM for bone fracture repair strategies in re-
cent clinical trials [166].

Cartilage disorders and cell therapy
Cartilage as a strong supportive connective tissue is
found in many areas of the human body including ribs,
nose, ear, trachea, and IVD and is an important compo-
nent of the joints [184–186]. It has dense and highly
organized ECM embedding chondrocytes. Collagen type
II is the main structural protein in cartilage and forms a
meshwork for entrapping proteoglycans such as aggre-
can, decorin, and sendycan [187, 188]. Aggrecan and
other proteoglycans cause this framework to bound to
the water and provide cartilage with tensile strength and
flexible construct through which it can act as a support-
ive structure, maintain the shape, or absorb shock dur-
ing physical exercise [189]. Three types of cartilages are
hyaline (articular), elastic, and fibrocartilage that possess
an avascular structure leading to a hypoxic environment
with little capacity for self-repair, especially in the case
of severe damage due to trauma or age-related degener-
ation [138, 142]. Hyaline cartilage is the most abundant
type present on the articular surfaces of synovial joints
providing a smooth, lubricated surface for articulation
and facilitating the transmission of loads with a low fric-
tional coefficient [136, 139]. Chondrocytes are spherical
cells in a lacuna within matrix that produce and main-
tain cartilage architecture and remodel biochemical
composition in response to changes in their chemical
and mechanical environment in order to regulate cartil-
age homeostasis [140]. With age, chondrocytes naturally
undergo senescent phenotypes and their responsiveness
to growth factors reduces which results in accelerating
cartilage disruption, cartilage matrix damage, and corre-
sponding diseases [190]. Also, trauma, some diseases,
and continual mechanical loading are other important
factors for cartilage damage [142]. Due to the limited
self-healing capacity of human cartilage, the repair of
cartilage defects gives rise to a challenging clinical prob-
lem and cartilage regeneration has always been a key
therapeutic target for treating articular cartilage damage
in particular [139]. In the following sections, common
approaches and new therapeutic strategies will be dis-
cussed in restoring and treating cartilage defects.

Osteoarthritis (OA)
Osteoarthritis (OA) is one of the most common
arthritis-related chronic disorders characterized by ar-
ticular cartilage degeneration, thickening of subchondral
bone, and osteophyte formation [191–193]. Disability of
chondrocytes to produce sufficient functional matrix in
order to repair damaged matrix is one of the prominent
features of osteoarthritis [194]. OA can be established by
activation of matrix proteases which affect joints in the
knees and elbow, leading to joint pain, stiffness, swelling,
and limitation of joint function [11, 189]. Studies have
shown that aging, female gender, obesity, and osteopor-
osis are significant risk factors associated with OA [195].
Because of the limitation of self-healing capacity of ar-

ticular cartilage, OA is one of the most challenging joint
diseases. Most conventional treatments for OA such as
physical therapy, drug therapy, and surgery are essential
to manage the pain, stiffness, and swelling but are not
effective to prevent the OA progression [196, 197].
Modern advances in regenerative medicine offer novel
methods to treat OA. In recent years, cell therapy, espe-
cially with stem cells, is applied for the regeneration of
OA damages [198]. By virtue of high proliferative cap-
acity, chondrogenic differentiation capability, and im-
munosuppressive activities of stem cells, MSC-based
therapies have demonstrated acceptable efficacy in cartil-
age repair in animal and clinical studies [199]. MSCs
from various tissues such as adipose tissue [200], BM
[201], synovial membrane [202], hUCB [203], and WJ
[204] have been considered in different animal models.
Overall, the results of investigations demonstrated that
MSC-based therapy encourages pain reduction and OA
improvement [194] mostly due to the differentiation
capability of MSCs. It is demonstrated that both TGF-β1
and insulin-like growth factor 1 (IGF-1) act synergistic-
ally to stimulate MSCs’ chondrogenic differentiation
[205].
BM and adipose tissue are common sources of multi-

potent cells for regenerating and repairing of an injured
tissue. In order to evaluate the repair potential of BM-
MSCs in OA, researchers showed that intra-articular
(IA) injection of BM-MSCs in focal cartilage defects in
immunocompetent transgenic rat can lead to collagen
and matrix formation [206]. A phase I/II trial indicated
that BM-MSCs injection in patients with knee osteoarth-
ritis was associated with cartilage biomarker expression,
reducing synovial inflammation, pain, and symptom
mitigation, along with no serious adverse events [207].
Also, BM-MSCs exposed to bioactive factors loaded into
a sponge composed of a hyaluronan derivative showed
chondrogenic differentiation [208]. On the other hand,
AD-MSC transplantation in the knee increased the syn-
thesis of glycosaminoglycan, endogenous chondrogenesis
supplemented by inflammation reduction, improvement
in pain, function, and cartilage volume [209, 210]. MSCs
from WJ and hUCB compared to AD-MSCs and BM-
MSCs have many advantages such as higher proliferation
rates, greater expansion ability, higher purity, abundant
supply, and inexhaustibility for therapy [211–213]. ECM
components in WJ are very similar to those of cartilage
ECM. hWJ-MSCs express aggrecan, type II collagen, and
SOX-9 as chondrocytes do [213]. Also, hWJ-MSCs
express cell growth factors, chemokines, and cytokines
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at similar levels to those of cartilage. These results suggest
hWJ-MSCs as appropriate cell candidates for OA’s cell
therapy [214]. Moreover, the results of xeno-
transplantation studies showed that human umbilical cord
blood-derived mesenchymal stem cells (hUCB-MSCs) are
less immunogenic and have higher chondrogenic differen-
tiation potential, therefore promoting cartilage repair
without bone formation for a long time [81, 84, 203, 215].

Rheumatoid arthritis (RA)
Rheumatoid arthritis (RA) is one of the autoimmune in-
flammatory diseases of the joints presented with an im-
balance of both the innate and adaptive immune
systems. This disease leads to cartilage and bone degra-
dations, causing pain and stiffness and may occur in
other sites including tendon sheaths and bursae. The
prevalence of this disease is approximately 0.5–1% in
adults aged 40–50 years and is more common among
women than men [216, 217]. Recently, MSC-based ther-
apies have been suggested as favorable therapeutic
approaches for inflammatory cartilage injuries such as
RA. MSCs participate in cartilage regeneration after im-
plantation into the injury site and differentiate into
chondrocytes [218]. Moreover, MSC therapy reduces
pathogenic T cell subsets such as Th1/Th17 cells in the
collagen-induced arthritis (CIA) model [219, 220]. Stud-
ies showed that MSCs play an important role in indu-
cing apoptosis of activated T cells via the Fas ligand
(FasL)/Fas signaling pathway in arthritis disease [221].
Also, these cells promote immune modulation in RA
by suppressing the expression of pro-inflammatory cy-
tokines such as interferon gamma (IFN-γ), TNF-α,
and matrix-degrading enzymes such as collagenase
and gelatinase [222]. Evaluation of BM-MSC therapy
on the healing of joints in animals with induced RA
demonstrated that inflammation, joint swelling, and
destruction of cartilage reduced significantly com-
pared with an arthritic non-treated group [223]. Park
and coworkers in the first human trial of hUCB-
MSCs in patients with RA observed no major toxicity,
serious adverse event, or major abnormalities in
serum chemicals or hematologic profiles, both during
and after the treatment [224]. Allogenic UC-MSCs
transplantation in mice model of RA prevented arth-
ritis progression by suppressing T follicular helper
(Tfh) cells proliferation [220].
The investigations showed increased osteoclastic bone

resorption as an important factor in the pathogenesis of
RA [225]. An experimental study indicated that human
gingival tissue-derived MSCs (G-MSCs) inhibit osteo-
clastogenesis in vitro and in vivo partially via CD39-
CD73-adenosine signals and have therapeutic effects on
bone erosion during CIA in vivo [226]. IV injection of
hAD-MSCs in mice with RA reduced the level of pro-
inflammatory cytokines while increased the level of anti-
inflammatory cytokines with an induction in the number
and function of regulatory T cells (Tregs) both in the
peripheral blood and in the spleen [227]. Recently, a
meta-analysis study compared the effects of MSCs de-
rived from different tissue sources showing that hUC-
MSCs, hAD-MSCs, and G-MSCs have better treatment
effects on RA compared with stem cells from other ori-
gins, such as BM [228].

Regeneration mechanisms of mesenchymal stem cells in
defected bone and cartilage
Several in vitro and in vivo studies indicated that MSCs,
as the most commonly used stem cells in regenerative
medicine, involve in the bone healing process because of
their potential to increase osteoinduction and osteogen-
esis [229, 230]. These cells can play crucial roles in bone
repair and regeneration by several mechanisms (Fig. 2)
including facilitating cell migration, homing, angiogen-
esis, response to inflammation, and differentiation [231].
MSCs have the migration and homing ability into in-

jured sites that are considered as the primary steps for
bone formation and defect repair in MSC-based therapy.
The recruitment of MSCs is initiated by the response of
MSCs to inflammatory factors released from the bone
fracture site. These processes are affected by intracellular
signaling and interaction between chemokines, chemo-
kine receptors, adhesion molecules, and proteases [232,
233]. Platelet-derived growth factors (PDGFs) and bone
morphogenetic proteins (BMPs) play critical roles in
bone development and bone fracture healing [234].
PDGF-AA is able to activate BMP-Smad1/5/8 signaling
through downregulating platelet-derived growth factor
receptor-alpha (PDGFRα) and promotes MSC migration
via BMP-Smad1/5/8-Twist1/Atf4 [235]. Due to vascular
damage and hypoxic condition in the injured site, ex-
pression of some growth factors such as hypoxia-
inducible factor 1-α (HIF-1α) increases the production
of the stromal cell-derived factor-1 (SDF-1) in the cells
of damaged bone. Also, it mediates the expression of its
receptor CXC chemokine receptor 4 (CXCR4) in MSCs
[236–239]. Therefore, SDF-1/CXCR4 axis promotes the
mobilization of MSCs to the defect site and enhances
bone regeneration [240]. Expression of CXCR4 and
Cbfa1 (core binding factor alpha 1, also called Runx2)
increased MSC homing and promoted bone formation
after four weeks of transplantation [158]. In vitro and
in vivo studies showed that TNF-α, as one of the
main proinflammatory cytokines, induces the expres-
sion of LRG1 through p38 and nuclear factor kappa-B
(NF-κB) signaling to promote angiogenesis and MSC
migration [241].
Transplanted MSCs can contribute to bone regener-

ation through angiogenesis stimulation [242]. hMSCs



Fig. 2 Schematic summarizing the mechanisms of repairing bone by MSCs. The figure was designed using the web-based tool BioRender.
Mesenchymal stem cells (MSCs) contribute to bone regeneration by several mechanisms including migration, angiogenesis, response to
inflammation condition, and differentiation through production of a variety of mediators. Hypoxia-inducible factor 1-α (HIF-1α), stem cell factor
(SCF), transforming growth factor-beta (TGF-β), vascular endothelial growth factor(VEGF), stromal cell-derived factor (SDF)-1, and CXC chemokine
receptor (CXCR) 4, platelet-derived growth factor (PDGF-AA), platelet-derived growth factor receptor-alpha (PDGFRα), Toll-like receptors (TLRs),
nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), regulatory T cell (T reg), nuclear factor kappa-B (NF-κB), signal transducer and activator of
transcription 3 (STAT-3), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant proteins-1 (MCP-1),
macrophage inflammatory protein-1(MIP-1), Dickkopf 1(DKK1), runt-related transcription factor 2 (RUNX2), M2 type of macrophage (M2MQ)
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reside in hypoxic perivascular niches [243], express HIF-
1α in response to hypoxic condition in defect site [244–
247], and induce the expression of angiogenic factors
such as VEGF, TGF-β, SDF-1, and stem cell factor (SCF)
[248]. The studies showed that VEGF plays an important
role in neovascularization and angiogenesis during the
development of most tissues including bone [249, 250].
Inflammation in damaged tissue stimulates macro-

phages and T lymphocytes for necrotic tissue
phagocytosis and also induces inflammatory cytokines
such as IL-1, IL-6, TNF-α, IFN-γ, monocyte chemo-
attractant proteins-1 (MCP-1), macrophage inflamma-
tory protein-1 (MIP-1), and IL-17 [251, 252]. Although
the inflammatory responses contribute substantially to
bone regeneration, prolonged inflammation is harmful
and retards the bone healing process [181]. BM, adipose
tissue, CB, and WJ-derived MSCs cause reduction in
IFN-γ and/or TNF-α secretion from T cells and suppress
T cell proliferation [253]. In addition, MSCs significantly
suppress the production of the inflammatory cytokines
IL-6, IL-12p70, and IFN-γ while increase the production
of anti-inflammatory cytokines IL-10 and IL-12p40
[254]. In response to inflammation and high levels of
pro-inflammatory factors such as IFN-γ, TNF-α, and IL-
1β, MSCs are stimulated to start producing anti-
inflammatory factors such as nitric oxide (NO), indolea-
mine 2,3-dioxygenase (IDO), and anti-inflammatory cy-
tokines and chemokines, which is followed by
immunosuppression [255]. Three days after bone frac-
ture, transplanted MSCs are capable of limiting tissue
injury by significant reduction in IL-6, TNF-α, and IL-1β
levels and preventing the progression of fibrosis and thus
improve bone regeneration [256].
Another immunomodulatory mechanism of MSCs is

inducing the polarization of monocytes into anti-
inflammatory M2 macrophages through signal trans-
ducer and activator of transcription 3 (STAT-3), and
NF-κB leading to indirectly suppression of T cell prolif-
eration [257–259].
Toll-like receptors (TLRs) are highly expressed on

MSCs and have profound effects on proliferation, migra-
tion, immunomodulatory functions, and survival of
MSCs [229, 231, 260, 261]. TLR4 polarizes MSCs toward
a pro-inflammatory phenotype (MSC1) which has
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critical role in early injury responses and lead to collagen
deposition, expression of pro-inflammatory mediators,
and reversal of the T cell suppressive mechanism [262].
In contrast, TLR3 supports the immune suppression and
anti-inflammatory phenotype in MSCs, named MSC2
[263], which can suppress the T lymphocyte prolifera-
tion and induce regulatory T cell (Treg) generation by
secreting soluble factors such as IDO, TGF-β1, and IL-6
[264]. In hAD-MSCs, activation of TLR2, TLR3, TLR4,
and TLR9 leads to manganese superoxide dismutase
(MnSOD) expression with an eminent impact on en-
graftment and survival of AD-MSCs in inflammatory
conditions or injured tissues [265].
The most common therapeutic effects of MSCs are

their incorporation into the host tissue and osteogenesis
differentiation ability which are influenced by numerous
cytokines and growth factors such as TGFβ-1 and WNT
[266, 267]. Also, matrix metalloproteinases (MMPs) have
critical role in the differentiation of MSCs to adipocytes,
osteocytes, and chondrocytes. The MMP-1, MMP-13
(collagenase), and MMP-3 (Stromelysin-1) cleave ECM
proteins [268]. The lowest production of MMP-1 and
MMP-3 and no secretion of MMP-13 by BM-MSCs
make them as suitable candidates for bone, cartilage,
and tendon regeneration [269].
TNF-α, as a pro-inflammatory cytokine, is highly

expressed in inflammatory sites of bone and causes
tumor necrosis factor receptor1 (TNFR1) activation
[270, 271] and receptor activator of nuclear factor
kappa-Β ligand (RANKL) upregulation in osteoblasts
[271]. Subsequently, NF-κB pathway is activated by re-
ceptor activator of nuclear factor kappa-Β (RANK)/
RANKL signaling [272] which activates apoptotic factors
including p21 and p53 [273, 274] and, as a result, in-
hibits MSC differentiation and increases apoptosis of os-
teoblasts and their progenitors [273]. Another important
effect of TNF-α in inflammatory conditions is inhibition
of two essential osteogenic differentiation factors includ-
ing RUNX2 and osterix, leading to the suppression of
MSC differentiation [275, 276]. It has been indicated
that commitment of MSCs into the osteoblast lineage is
regulated by Wnt/β-catenin signaling pathway [277]. β-
catenin serves a notable role in the progression of MSC
precursors differentiation into mature osteoblasts by up-
regulating the osteogenic regulators Runx2, Dlx5, and
Osterix [278–280]. During inflammation, TNF-α sup-
presses Wnt/β-catenin signaling by inducing Wnt-
signaling inhibitor, Dickkopf 1 (DKK1), and finally in-
hibits bone formation [281]. TNF-α which is released by
activated immune cells such as T cells interacts with the
TNF receptors on MSCs and leads to the production of
prostaglandin E2 (PGE2), which then is the underlying
reason of the suppression of T lymphocyte proliferation
and consequently prevention of TNF-α expression [282,
283]. Also, IL-1RA released by MSCs induces IL-10 in
stimulated DCs and inhibits TNF-α production by acti-
vated macrophages which results in accelerating bone
healing [245].
Also, MSCs can express BMP-2 in defect site, which

induces the differentiation of these cells into osteoblasts
in an autocrine manner [177, 284]. BMP-2 plays an im-
portant role in bone healing due to the involvement in
new bone tissue formation, increasing osteoblast func-
tion and the maintenance of the dynamic balance of the
newly formed bone tissue [285, 286]. Through interact-
ing with expressed BMP receptors, BMPs trigger two
signal pathways including Smad-dependent pathways
and the mitogen-activated protein kinase (MAPK) path-
way, thereby involving in osteogenesis [287, 288].
The extracellular vesicles (EVs) produced by MSCs

have been indicated as a novel therapeutic method for
bone diseases such as osteoporosis. Exosomes are one of
the most important EVs released by MSCs that can be
directly used as therapeutic agents for various bone dis-
eases [289]. The investigations indicated that exosomes
secreted by MSCs promote osteoblast proliferation, dif-
ferentiation, and bone formation, which improve bone
regeneration in osteoporotic rats [290]. Through increas-
ing the osteogenesis and angiogenesis-related genes ex-
pression, such as COL I, alkaline phosphatase (ALP),
and VEGF, MSC-derived exosomes can promote bone
formation [291]. In addition, exosomes contribute to
bone repair and accelerate fracture healing through their
cytokine content such as MCP-1, MCP-3, and SDF-1
[292].
Numerous studies have demonstrated the successful

MSC transplantation for healing of chondral lesions
and repairing the damaged cartilage (Fig. 3). There are
two main concepts for MSCs contribution to cartilage
disease improvement: first, preventing the degradation
of cartilage through the secretion of bioactive factors,
and second, differentiating potential of MSCs to be-
come chondrocytes [293, 294]. Pro-inflammatory cyto-
kines including TNF-α, IL-6, IL-1β, and IL-17 play
important roles in the development of pathological
conditions in cartilage diseases [295]. MSCs modulate
host immune responses by inhibiting the proliferation
of T lymphocytes and pro-inflammatory cytokine secre-
tion by prostaglandin E2 (PGE2) [296, 297].
MMP-2, MMP-9, and MMP-13 were detected at

higher levels in human OA cartilage [298]. MSCs secrete
high levels of tissue inhibitor of metalloproteinases 2
(TIMP2) and TIMP-1 inhibitors, which inhibit MMP-2
and MMP-9, respectively, and suppress cartilage ECM
destruction [298]. MSCs secret hepatocyte growth factor
(HGF) through which inhibit the fibrosis and apoptosis
of chondrocytes, but stimulate the proliferation of these
cells, and increase ECM synthesis [299]. The EVs



Fig. 3 Mechanisms of MSC-mediated cartilage repair. The figure was designed using the web-based tool BioRender. Mesenchymal stem cells
(MSCs) contribute to cartilage regeneration by several mechanisms including response to inflammation condition and differentiation through
production of a variety of mediators. Matrix metalloproteinase (MMP), tissue inhibitors of metalloproteinases (TIMP), tumor necrosis factor alpha
(TNF-α), prostaglandin E2 (PGE2), interleukin (IL), hepatocyte growth factor (HGF), thrombospondin (TSP2)
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produced by MSCs can reduce arthritis scores and
pathological changes in inflamed cartilage by decreasing
plasma blast population and increasing IL-10 secretion
of regulatory B cells [300]. MSC’s exosomes can cause
an early suppression of local inflammation in OA
through a significantly reduced expression of inflamma-
tory genes especially IL-1β [301, 302]. In vitro studies
demonstrated that exosomes derived from BM-MSCs
are able to stimulate the expression of chondrocyte
markers such as type II collagen and aggrecan while in-
hibit MMP-13 and ADAMTS5 as catabolic markers in
OA-like chondrocytes [303].
Different growth factors, cytokines, and signaling

molecules including TGF-β superfamily regulate
chondrogenic induction and differentiation of MSCs.
TGF-β2, TGF-β1, and TGF-β3 stimulate the synthesis of
collagen type II and proteoglycans and contribute to the
MSC differentiation to chondrocytes [304, 305]. TGF-β
signaling mediates chondrogenesis by activating and
phosphorylating Smad2/3. Phosphorylated Smad translo-
cates into the nucleus and binds to the master chondro-
genic transcription factors such as SOX9 and collagen
type II (COL II) which are expressed in all chondrocyte
progenitors and chondrocytes [306, 307]. Other factors
that influence MSC differentiation and chondrogenesis
are Wnt/β-catenin signaling pathway family and MAP
kinases [308, 309]. Thrombospondin (TSP2), as a regula-
tor of cartilage and bone differentiation, is secreted by
MSCs and promotes chondrogenic differentiation of
progenitor cells by protein kinase C alpha (PKCα), extra-
cellular signal-regulated kinase (ERK), p38/MAPK, and
Notch signaling pathways [310, 311]. Moreover, some
trophic factors such as VEGF, epidermal growth factor
(EGF), and an array of bioactive molecules also affect
chondrogenic differentiation from MSCs and cartilage
matrix formation [312].

Selection of appropriate source of stem cell based on their
protein expression profile
MSC therapy has been used for repairing both the struc-
ture and function of injured bone and cartilage tissues
[158, 313]. In addition to differentiation capacity to the
different cell types, MSCs obtained from various sources
have diverse capabilities of secreting many different cy-
tokines, growth factors, and chemokines and thus differ-
entially influence angiogenesis, inflammation, apoptosis,
stem cell homing, stem cell survival, proliferation poten-
tial, and migration to the damaged areas [314–317].
Amable et al. showed that WJ-MSCs have a higher

proliferation potential, higher production of pro-
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inflammatory cytokines such as IL-6, and higher expres-
sion of some growth factors such as PDGF, HGF, and
TGF-β compared with AD-MSCs and BM-MSCs. WJ-
MSCs also produce a higher concentration of some pro-
angiogenic proteins such as VEGF, ECM components
such as collagen, and MMPs such as MMP1 and MMP3
in AD-MSC supernatants. In contrast, BM-MSCs secrete
the lowest amount of all chemokines in comparison with
stem cells from other sources [269]. Comparison of
cytokine expression profile including macrophage migra-
tion inhibitory factor (MIF), IL-8, Serpin E1, growth-
regulated oncogene α (GROα) and IL-6 in MSCs from
human PL (amnion, decidua), cord blood (CB), and BM
by Hwang et al. represented similar expression pattern
in all three cell types. However, BM-MSCs express
higher MCP-1 and are the only MSC type that produces
SDF-1, but the expression of IL-6 by the CB-MSCs was
comparatively lower [318].
hAD-MSCs, BM-MSCs, and UCB-MSCs express high

levels of TLRs [319–321] compared with WJ-MSCs
[228, 322]. One of the studies reported that human ol-
factory ecto MSCs (OE-MSCs) express high levels of
TLR3 and TLR4 genes, as well as higher levels of cyto-
kines and chemokines including CCL5, IL-8, and TGF-β
in comparison with AD-MSCs [323]. In another study,
perivascular stem cells derived from umbilical arteries
(UCA-PSCs) and PSCs derived from umbilical vein
(UCV-PSCs) showed higher expression of angiogenesis-
related genes, such as CXCL12(SDF-1), HIF-1α, and
ERAP1 in comparison with WJ-MSCs. In addition,
higher expression of angiogenesis related genes such as
CD146 and Jagged1 was detected in UCA-PSCs. Conse-
quently, UCA-PSCs and UCV-PSCs, especially UCA-
PSCs, demonstrated better angiogenic capability than
WJ-MSCs [260].
Based on these investigations, identification of MSCs

in terms of proteins expression and secretory factors has
been of great benefit to appropriate cell source selection
for each disease.

Conclusion
Osteochondral complications promise as significant
cause of disability and pain. Although the degenerative
conditions are progressive, there has been no definitive
therapy and almost all currently therapies try to control
the symptoms. MSC-based therapy is introduced as a
promising treatment strategy with potential ameliorating
effects on disease progression. Despite using various
sources of MSCs for bone defect therapy, BM-MSCs and
AD-MSCs are widely applicable in human trials. Com-
parison of main sources of cellular tissue revealed that
BM remains the most widely used source for bone frac-
ture repair strategies as 14 of the 17 registered clinical
trials have used BM-MSCs. However, both adipose tissue
and bone marrow seem to be promising stem cell
sources for osteoarthritis therapy. In addition, WJ-MSCs
possess similar ECM components with cartilage and ex-
press cell growth factors, chemokines, and cytokines at
levels similar to those of cartilage. Thus, they are appro-
priate cell candidates for osteoarthritis cell therapy.
HUCB-MSCs are less immunogenic and have the chon-
drogenic differentiation potential, therefore promoting
cartilage repair without bone formation in a long period
of time. All in all, clinical trials have confirmed a relative
safety of using MSCs in the treatment of osteochondral
defects with both reparative and preventative effects ra-
ther than generally accepted pain managements. How-
ever, culturing and expanding these cells should be
carried out with further caution and in controlled
ex vivo preparation conditions.
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