Wellcome Open Research Wellcome Open Research 2019, 4:196 Last updated: 04 FEB 2020

SOFTWARE TOOL ARTICLE

'.) Check for updates

NeuroChaT: A toolbox to analyse the dynamics of neuronal

encoding in freely-behaving rodents in vivo [version 1; peer

review: 3 approved]

Md Nurul Islam “#'1, Sean K. Martin ““'1, John P. Aggleton2, Shane M. O’Mara "*' 1

TInstitute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
2School of Psychology, Cardiff University, Cardiff, UK

First published: 09 Dec 2019, 4:196 (
https://doi.org/10.12688/wellcomeopenres.15533.1)

Latest published: 09 Dec 2019, 4:196 (
https://doi.org/10.12688/wellcomeopenres.15533.1)

vi

Abstract

There is a dearth of freely-available, standardised open source analysis
tools available for the analysis of neuronal signals recorded in vivo in the
freely-behaving animal. In response, we have developed a freely-available,
open-source toolbox, NeuroChaT (Neuron Characterisation Toolbox),
specifically addressing this lacuna. Although we have particularly
emphasised single unit analyses for spatial coding, NeuroChaT also
characterises rhythmic properties of units and their dynamics associated
with local field potential signals. NeuroChaT was developed using Python
and facilitates a complete pipeline from automation of analysis to producing
and managing publication-quality figures. Additionally, we have adopted a
platform-independent format (Hierarchical Data Format version 5) for
storing recorded and analysed data. By providing an easy-to-use software
package, we aim to simplify the adoption of standardised analyses for
behavioural neurophysiology and facilitate open data sharing and
collaboration between laboratories.
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Introduction

Where and how spatial information is represented in the
brain has been of great scientific interest since O’Keefe and
Dostrovsky' first described the spatially-receptive fields of hip-
pocampal neurons (since named ‘place cells’). Subsequently,
many spatially-responsive cell types have been described,
including head direction cells*’, grid cells (neurons with mul-
tiple receptive fields arranged in a triangular grid)*’, as well as
boundary cells and object cells (neurons that respond to objects
placed in the environment)®’. Moreover, neurons tuned to non-
spatial, natural stimuli (e.g. speed cells), have also been described,
and are likely to contribute to the dynamic representations

of ‘self-location’, such as for path integration®”.

Standardised methods have evolved for studying the spatial
selectivity of neurons in the freely-behaving animal. Briefly,
rats (or mice) are surgically implanted with recording elec-
trodes targeted at a particular brain region or regions. After post-
surgery recovery, the freely-moving rat traverses mazes or open
fields (often in search of food). The experimental apparatus
may be shielded from the larger laboratory by curtains, to con-
trol the local cue set. This cue set may be manipulated with, for
example, cue rotations or selective cue deletions. Neuronal
activity (action potentials, or ‘spikes’) is recorded, amplified,
time-stamped and correlated with the moment-to-moment posi-
tion of the rat. These correlations are used to generate colour-
coded contour maps representing the density of spike firing at
all points occupied by the rat. Under these conditions, many
hippocampal neurons fire in a locally defined area of the maze
(usually no more than a few percent of the total maze area) and
remain silent or fire at low rates (<1 Hz) in other areas of the
maze’.

Modern recording techniques may use multiple record-
ing fine-wire electrodes or electrodes based on printed circuit
technology'’. These approaches generate vast amounts of data,
particularly if acquired over long duration recording sessions.
Moreover, advances in the design of recording electrodes have
increased the number of recording sites'™!'!, increasing data
volumes'>"*. Analysing such large data sets involves:

1. Identifying the activity of single neurons from the
noisy recorded data, known as spike sorting'“.

2. Analysing relationships between spatial and non-spatial
variables and verifying correlations.

3. Assessing individual neurons and computing inferential
statistics to describe local populations.

There are some open-source software packages for study-
ing the neural codes of single neurons, multiple neurons, and
local field potentials'*'®. Many individual laboratories use cus-
tom-written software, but there is no software package widely
available implementing standardised algorithms for spatial and
non-spatial neuronal coding within one working environment,
thereby limiting wider adoption of in vivo electrophysiological
recording methods. Nor is there a widely- and freely-available
toolbox to analyse neuronal encoding of spatial and non-
spatial information that also incorporates batch processing
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of substantial amounts of data. Finally, available packages
do not often easily facilitate quick implementation and integra-
tion of new techniques along with established ones given the
challenges associated with the evolution of new technology.

To address this important lacuna, we have developed a
toolbox, NeuroChaT (Neuron Characterisation Toolbox), a
graphical user interface (GUI)-based open-source software that
brings together peer-reviewed analysis methods in a unified
framework for greater accessibility and to provide an easier
implementation of analyses. We have adopted the widely-used
platform-independent Hierarchical Data Format version 5
(HDF5) for storing recorded and analysed data, which is com-
patible with most common programming languages. NeuroChaT
provides a systematic approach for analysing large numbers
of neurons and managing the graphical and parametric out-
puts. NeuroChaT is freely available from GitHub (https://github.
com/shanemomara/omaraneurolab) under the GNU Gen-
eral Public License (v3.0) for non-commercial use and open
source development. Sample data, a GUI user tutorial and exten-
sive application programming interface (API) documentation
are also provided on the project website. We hope NeuroChaT
will enable standardisation of analyses and assist in develop-
ing novel algorithms and experimental designs through its ease
of analysis based on a widely-used and standardised data format.

Methods

Analysis methods

NeuroChaT consists of multiple analysis methods that pro-
duce graphical figures and numerical results based on the
normative neuronal rate coding scheme, where changes in firing
rate represent responses to a stimulus or stimuli. The methods
that are available in NeuroChaT are enumerated in Figure 1 and
some example graphical outputs are shown in Figure 2.

NeuroChaT provides six analysis methods for assessing the
waveform and firing properties of single units. Waveform
properties measure characteristics such as the mean wave
amplitude and width on each tetrode in a recording. The inter-
spike interval (ISI), ISI autocorrelation, and cell bursting
properties are calculated from the spike train of the single unit.
In addition, a theta-modulated cell index and theta-skipping
cell index for the single unit are both calculated by fitting an
oscillating curve to the ISI autocorrelation histogram.

NeuroChaT offers eight spatial locational analyses. The spa-
tial path of the subject and the spike train are used to produce
a locational firing rate map. From the firing rate map, place
field, grid cell, border cell, and gradient cell analyses are avail-
able. The place field is determined by finding the connected
area of activity in the arena with the highest firing rate. Grid cell
analysis involves calculating the spatial autocorrelation of the
firing rate map and assessing the shape formed by the peaks
in autocorrelation. For border cell analyses, a border of the
arena is estimated from the path the animal traversed and the
firing rate is compared to the distance from the border. Gradi-
ent cell analysis begins similarly to border cell analysis and
then fits a Gompertz function (a monotonically increasing
function that exhibits a slow growth rate at the border and the
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Figure 1. The number of methods available in NeuroChaT for each category of analysis.

centre of the arena) to the relationship between firing rate and
the distance from the border.

The following three methods are shared between spatial loca-
tional and head directional analyses. Time-lapse analyses exam-
ine the evolution of the firing rate over time to determine if
spatial tuning occurs during the animal’s exploration of the envi-
ronment. Shuffling tests randomly distribute the original spikes
along the path of the animal to investigate whether the effect
of a spatial variable on the firing rate of a unit has occurred
by chance. Time-shift analyses gradually move the whole
spike train of a unit forwards and backwards in time to test
if there is a corresponding gradual change in the coding spe-
cificity, indicating a systematic variation in the firing rate and
providing timing information of the spatial cells'’. Skaggs infor-
mation content'® is available in NeuroChaT for any spatial
variable and is appropriate to use in combination with these
spike time-altering analyses. Furthermore, for locational analy-
ses, these methods can be used in combination with coher-
ency and sparsity measures, which assess the spatial quality
of a single unit. For head directional analyses, these methods
can be used with the Rayleigh Z-score and the concentration
parameter for the von Mises distribution, which assess the
uniformity of the head-direction firing rate.

Head directional firing rate analyses are also available. These
compare the spike train information to the head direction of
the animal and can be computed for different angular veloci-
ties, such as when the animal is turning clockwise or counter-
clockwise. To round off NeuroChaT’s single variable spatial
analysis toolkit, there are two analyses methods related to speed
and angular velocity. In these, the spike rate is linearly cor-
related to the speed of the animal and the angular velocity of
the animal’s head in both the clockwise and counter-clockwise
directions.

There are two multi-variable spatial analyses in NeuroChaT. The
first involves building a multi-variable linear regression model to
predict the firing rate of a single unit. The location, head direc-
tion, speed, angular velocity, and distance to the border are the
five predictor variables used to estimate the firing rate of the
unit at multiple binned points in time. The predictive power of
these variables is indicative of the spatial tuning of the single
unit. The second analysis compares the observed firing rate
related to an independent variable (speed, angular velocity, dis-
tance to the border, or head direction) to an estimated firing
rate. The estimated firing rate is formed solely from the binned
locational firing rate map and the value of the independent vari-
able in each locational bin. In this way, it can be determined if
modulation of the firing rate by an independent variable is a
real effect, or if it is attributable to an inhomogeneous sampling
of the independent variable.

There are two analysis methods available in NeuroChaT to
analyse the raw local field potential (LFP) signal. The first
involves computing the time-resolved frequency spectrum of
the LFP. The second involves computing the average power
in the LFP over the duration of the recording in the different
frequency bands, such as the Theta band, using Welch’s peri-
odogram. When considering the LFP in relation to the spiking
information, two analyses are available. In the first analysis, the
spike-triggered average LFP signal, the phase-locking value,
and the spike-field coherence measures are obtained to assess
the phase-locking of a unit to the LFP signals. In the second
analysis, the distribution of the phase in the LFP at which spikes
occur is formed by using the Hilbert Transform of the band-pass
filtered LFP signal.

In addition to the analyses listed in Figure 1, two uncategorised
methods are available in NeuroChaT. NeuroChaT can com-

pute the Hellinger distance and the Bhattacharyya coefficient
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Figure 2. Example plots to demonstrate the graphical output from a subset of the analyses available in NeuroChaT. A short description
of each plot follows, going from top left to bottom right and moving along rows. (1) The mean waveform of a single unit (black) and the standard
deviation of the waveform (green). (2) The histogram of the interspike interval of a unit, with the red dotted line showing the refractory period.
(3) A wave fitted to the autocorrelation of the interspike interval at theta frequency (8 Hz). (4) The predictive power of location, head direction,
speed, angular velocity, and border distance for the firing rate. (5) The path of the rodent in a square arena (black) and firing (red). (6) The
locational firing rate information modulated by dwell time in the arena, with green indicating high firing rates. (7) The spatial autocorrelation
of the locational firing rate map, with red indicating high spatial autocorrelation. (8) A polar plot showing the firing rate modulated by head
direction. (9) The path of the animal in the arena and firing activity over time. (10) A scatter plot of speed against the firing rate, with the red
line showing a line of best fit. (11) A line plot comparing the border distance to the firing rate. (12) A histogram of spatial coherence values
for 500 shuffled spike trains, with the red line indicating the 95th percentile value. (13) The power in the local field potential (LFP) signal at
different frequencies. (14) The power of the LFP signal at different frequencies over time, with red indicating high power values. (15) A polar
plot of the LFP phase value at each spike time, with the red line indicating the mean phase. (16) The average LFP signal around the time of
a spike occurrence.
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between spike clusters to evaluate the separation of unit clus-
ters on a tetrode or to compare the similarity of a cluster across
recordings. The latter can be used to help identify if the same
cell is present in multiple recordings. To aid analysing sub-
stantial amounts of data, NeuroChaT can produce a summary
png plot of the spatial information on each tetrode in multiple
recordings. For Axona data, this can recursively search direc-
tories and produce a summary for any tetrode file with sorted
spikes and is readily extendable to other formats.

Implementation

NeuroChaT wuses object-oriented programming (OOP), using
the freely-available open-source programming language,
Python. In OOP, classes are programming elements that work
as a placeholder for data and functions an object can perform,
providing encapsulation of its attributes and actions. The rela-
tionships between the classes are shown in Figure 3 using
class diagrams. The classes were designed to encapsulate one
aspect of the software. For example, the NeuroChaT UI class
manages the GUI and corresponding interactions between the
graphical elements with the underlying code and data containers.

NeuroChaT class (NeuroChaT). The NeuroChaT class takes
information from GUI, determines what analysis or action to
perform, and dictates to other connected classes to act accord-
ingly. NData is a fagade data structure composed of data classes
and governs information flow between the other data classes,
namely NSpike, NSpatial, NLfp and Nhdf. Data classes, like
NSpike and NSpatial, are placeholders for spiking activity of
neurons and the spatial position of the animal, respectively.

(a) oo (b)
I

NbData

1

PdfPages
Configuration

(<)
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NeuroChaT passes the relevant parameters to NData, and asks
permission to perform the analyses, on a cell-by-cell basis,
based on the user input in the specification phase.

User interface class (NeuroChaT _Ui). The NeuroChaT
user interface class is the graphical component of the
NeuroChaT software. It provides the interface for users to spec-
ify the analyses they want to perform, select the data and param-
eters for those analyses, and, finally, the graphical file format to
store the results in. This is a simple-to-use, tick-box interface
with features that enable settings and information to be
forwarded to the NeuroChaT object. Its composing objects are
all graphical elements, except the NeuroChaT object. Although
built in a composite structure, this class is static, in the sense that
its components cannot be altered dynamically using commands
outside of the class itself. Therefore, the coupling between
these classes to others is considered tight, and any changes
required must involve changing the code file where the class is
defined.

Neuronal spiking information class (NSpike). The NSpike class
is the container for neuronal spiking activities. It decodes the files
that record the waveforms and timestamps of the spikes from
a proprietary format and stores these in a Neurodata Without
Borders (NWB) format. It also contains analyses involving spik-
ing activity of the single-units, i.e. inter-spike interval, assessing
rhythmicity etc., along with implementing the decoders for
the copyrighted data formats. If the recording undergoes spike-
sorting, this class also provides the information about which
spike-waveform belongs to which putative neuron.

NeuroChaT
I
I

1.a 0.1 0.1

NLogBox v 1
UiParameters UiResults
L
. NOut

ParamBoxLayout
ScrollableWidget

UiMerge UiGetFiles
— I

NSpatial

Figure 3. Class diagrams showing the relationships between the classes in NeuroChaT. Although each class contains several member
attributes and local variables, these are not represented to keep the diagrams compact. The regular white arrows indicate class inheritance
while the black diamond arrows indicate object composition. The numbers along an arrow specify the allowable number of instances in the
relationship. For example, in the composition between NData and Nhdf, 1..1 indicates that an NData object has exactly one Nhdf object, while

0..1 indicates that an Nhdf object belongs to at most one NData object.
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Neuronal local field potential class (NLfp). The NLfp class
is the container for recorded LFP activities. The timestamps and
the amplitude of the LFP information are stored in the instance
of this class along with other recording information, i.e. LFP
channel number or the bandwidth of the filter that was used to
extract the LFP signal from the recorded data. The analyses that
are implemented in the class are frequency spectrum of the LFP
signal, LFP phase distribution, phase locking and SFC of an
event-timestamp train as that of a single-unit, event-triggered
average LFP signal etc.

Spatial information class (NSpatial). The NSpatial class con-
tains methods for analysing the spatial correlation of the single
units. The only single unit information required for this class
is the timing of the activity. This is passed directly as an input
to its methods (API use guide) or through NData. When used
with the NData class, it receives the information through that
class instead of coupling directly to the NSpike data. This creates
a layer of independence between the data classes and reduces
the effort required to couple them.

Neuronal spike sorting class (NClust). The NClust class pro-
vides the waveform features, unit spiking activity, and measures
of cluster separation for quality assessment of spike-sorting and
measuring the cluster similarity with a unit in another NClust
object. The class delegates the handling of the file containing
the neuronal spike information to the NSpike object that is an
attribute of the NClust instance.

Neuronal Hierarchical Data Format class (Nhdf). NData
also contains an Nhdf data object to provide read/write access
of HDF5 files containing spatial or neural data within the
class without decoding the proprietary file formats every
time the data is loaded. As the HDFS5 file contains all the
data, it makes storage more manageable through a readable
format. Nhdf contains methods to read and write what is
called groups and datasets in HDFS5 file format. It also con-
tains methods that are specific to storing individual NSpike,
NLfp, and NSpatial data to their common HDFS5 container for
a recording session. NeuroChaT creates one such file for each
recording session, not for individual units or electrodes.

Neuro-data class (NData). The NData object, as shown in
Figure 3, comprises data objects of different kinds, and is built
upon the composite structural object pattern'’. This type of
design pattern used in NeuroChaT creates a modular structure and
allows the objects to alter dynamically without intense refactoring
of the code. In NeuroChaT, NAbstract and NBase form the par-
ent classes with basic and common methods and attributes across
different data types. Each data class representing the neural data
(NSpike, NClust, NLfp), along with the event class NEvent,
inherits NBase, where NBase itself inherits NAbstract and
extends its capabilities. The NSpatial class inherits the NAbstract
class. The NData class gets one instance or object for each
NSpatial, NSpike and NLfp class as its attribute. The rationale
behind this design is to provide an encapsulation of the interac-
tion among the behavioural and neural data types, i.e. how the
peers like NSpatial and NSpike would know each other. Either
they will need to have a reference to each other, which increases
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their coupling, or they need to be cooperated using another
object, which, in our design, is the NData object.

A similar design principle is also followed in other compos-
ite classes of NeuroChaT. The getter and setter methods of
the composite class instance then allow dynamically chang-
ing the objects or retrieving it. For example, the spatial data
does not need to be changed for a single recording while ana-
lysing for multiple single units recorded in the same session.
Therefore, the NSpatial object remains the same, but the data in
the NSpike object changes with changing the units. Now, creat-
ing one instance of NData for every pair of spatial and single
unit data is not very memory efficient. Instead, we can replace
the data in the NSpike by reloading the spike file while it is still
a member of the NData object and optimise the reuse of data
objects, save memory, and increase the performance of the
software.

Experimental event class (NEvent). NEvent class imple-
ments event-related data management and basic analyses, i.e.
peri-stimulus time histogram (PSTH) and analyses pertaining
to locking of the LFP signals to the event(s). It also delegates
the analyses to the relevant NSpike or NLfp objects. For exam-
ple, if the PSTH is to be obtained from a spike-train, the NEvent
object recruits the relevant NSpike and uses its function
computes the same analysis.

Visualisation and export. NeuroChaT uses a custom python
module ‘nc_plot’ to plot the graphical outcomes of the analyses,
then stores the parametric results in a tabular format and con-
verts the data into the standardised HDFS5 files using the Nhdf()
object. The user can perform statistical analyses on the parametric
results if required: this is the Inference phase of the data analysis
workflow using NeuroChaT. The specifications of the data,
analyses, and input parameters can be saved for future use in
an ‘ncfg’ (NeuroChaT configuration) file. This file is in YAML
format, a human-readable data-serialisation format commonly
used for configuration files.

Utility classes. In addition to the primary classes already described,
NeuroChaT also provides classes that provide essential utility
functionality. NLogBox is an editable graphical widget that is
subclassed from QTextEdit of the QtWidgets of PyQt5 to for-
mat the logged messages into HTML format. ParamBoxLayout
is derived from QVBoxLayout and is used for arranging
the parameter definition in a vertical layout in the Settings
menu of the interface. ScrollableWidget provides a con-
tainer of listed items so the user can scroll through the items
if the list takes more space than the widget they are located in.
UiParameters define and add the graphical elements to the inter-
face. NOut replaces the standard output texts of Python or
[Python (print command) into texts that are received by the
logger of the system. UiResults is a sub-class of QDialog of
QtWidget that displays the results of the analysis in a tabular
format along with an option to export them in an Excel file.
UiMerge is a graphical window that asks the user to select a
list of pdf filenames to merge them into one file or to transfer to
a single folder. The user can also select the pdf files manually
using an interactive window built in UiGetFiles class.
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Operation

NeuroChaT has been tested to run on Windows 7, Windows
10, and Ubuntu 18.04. NeuroChaT requires 100MB of system
storage to perform a full install, including Python and Python
package dependencies. There are no system requirements
to run NeuroChaT, but at least 8GB of RAM is recommended.

The NeuroChaT graphical user interface (GUI) is shown in
Figure 4. The linear workflow for using NeuroChaT is shown
in Figure 5. Initial analysis specification starts with the
selection of data, analysis techniques to be used, and input
parameters for the analyses, using the GUI This set of choices
is collectively referred to as the ‘configuration’. This selec-
tion is passed to the NeuroChaT backend, which then computes
the specific analyses, and automatically plots and stores the
graphical results to the storage disk. At the end of the analysis,
a graphical table pops up showing the numerical results that
the user can refer to for inferential analysis. These numerical
outputs can be exported to an excel file, while graphical results
are exported to a PDF file. NeuroChaT can store a specific
configuration to be loaded again at a later date using the
GUL

Batch-mode analysis. NeuroChaT facilitates batch mode
processing by providing the unit and spatial information in an
Excel list. Researchers often keep track of identified single
units or units of interest using an Excel file; we facilitate this
analysis using this list. The output graphics are, accordingly,
all stored in the respective data folder. Units with speculated-
upon similar properties, for example, head-directional firing, can
be listed in one file for the convenience of post hoc inferential
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analysis of population data. The verification utility in the
software can verify the information specified in the Excel list
for batch processing, i.e. whether the specified path or files
exist, or whether the cluster unit of interest belongs to the
recording or is mistyped. This ensures the user does not
waste time finding issues after running the analyses and knows
ahead of about problematic specifications. As many of the
NeuroChaT analyses are time consuming, this is a convenient
way of eliminating common human errors and reduces time
wasted.

Nomenclature. NeuroChaT provides for better data manage-
ment by standardising the nomenclature in its output data file. It
creates a unique name for each unit of a recording session using
the following format: unit id = record_id+ ‘TT’+ tet_no+
‘. SS_’+ unit no + ‘_’+ eeg_file_ext where record_id = unique
file or folder identifier for each recording session used to store
and identify data, tet_no = electrode number where the unit is
identified, unit_no = tag of the unit or the cluster number in
spike-sorting, eeg_file_ext = filename or the extension used
for naming an LFP data file. This approach brings efficiency to
managing and scrutinising the outcome of data analyses. Cur-
rent analyses in NeuroChaT can produce more than 50 graphi-
cal outputs for each unit with publication-quality images. Stor-
ing them in one file creates the initial layer of output data
management. These output files are stored in the respective data
folder, so they can be easily traced. The unique name ‘unit_id.pdf’
of the unit information is essential when working with many
such units from the same study; otherwise, keeping track of the
output graphics would be overwhelming in terms of the number
of graphics files and the amount of disk space they would require.

Analysis Selection

File Settings Utilities Multiple Files Help
Input Data Format Analysis Mode Unit No LFP Ch No
Axona 'l [Single Unit V} [0 v] [

v] [7] Select Al

Graphic Format Select spike(.n) &/or position file(. txt)

© PDF Select Cell Type O]

B . Interspike Interval

= dinant () Place () Gradient
2 = [T] 151 Autocorrelation p
(") Head-directional () HDxPlace =
Z % [7] Theta-modulated Cell Index
) Grid () Theta-rhythmic

2 i [T] Theta-skipping Cell Index

() Boundary () Theta-skipping

»

[ waveform Properties -

[ Burst Property =
[ spike Rate vs Running Speed

[] spike Rate vs Angular Velocity

[] spike Rate vs Head Direction

[7] Head Directional Shuffiing Analysis
[] Head Directional Time Lapse Analysi

[] Head Directional Time Shift Analysis «
4| n [ 3

Figure 4. The graphical user interface to NeuroChaT.
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Figure 5. Linear workflow for using NeuroChaT.

Converting data to a widely-accessible format. The propri-
etary format data are converted into HDF5 and are accessible
through the HDFS file viewers (www.hdfgroup.org/), once they
go through NeuroChaT. Every time NeuroChaT analyses a
unit, it stores the analysed data in the HDF5 file as a group that
has been named following the NeuroChaT convention described
above. There is always one HDFS5 file for one recording ses-
sion but different groups for each recorded unit. The recorded
data are stored following the specification as in the NWB
format®. NeuroChaT also has a utility that converts the unit
data from a vendor format to HDF5 format using a data speci-
fication list like the one used for the batch-mode processing.
Additionally, the NeuroChaT input output module for HDF5
through Nhdf enables writing data and attributes to any of its
paths or data without rewriting the entire file which was a major
limitation in the NWB APL

Utility for graphics management. Given that many units are
recorded over time, the number of pdf or ps output files grows
linearly. The PDF management utility in NeuroChaT facilitates
merging the output files of interesting units into one file or mov-
ing them to a folder to group them together. The utility can be
used either by providing a list of units or by manually choosing
the files using an interactive window. At the end of each

execution, NeuroChaT provides a list of pdf files where the
graphical outputs for each analysed unit are stored. Users
can export this list from the GUI utility menu and can use the
list for merging or accumulating them into one folder. Thus,
NeuroChaT also bridges the gap of tracing, by using unique
nomenclature and managing hundreds of graphical outputs in a
logical approach.

Use cases

Assessment and validation of individual neurons

In 7,21, we reported the presence of spatially-responsive neu-
rons in the rat anterior and rostral thalamic nuclei. Consider
one of the place cells as shown in Figure 6*>. The top and mid-
dle row show where in the environment one such unit becomes
active (spike-plot) and the firing rate map of the unit with
respect to the 2D location of the animal. The patch of high
firing zone implies that the unit is responsive to the location
of the animal. This patch of firing could result from three
different factors:

1. The unit may fire with respect to that part of the border,
as in boundary vector cells™.

2. The animal might face the north wall of the environ-
ment while approaching that area and a head directional
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Figure 6. Identifying and verifying a place cell using analyses in NeuroChaT recorded in rat anterior thalamus’. (a) Top- the scatter
plot of spiking-activity showing the path of the animal (black line) and the location in the arena where spiking activity occurred (red dots);
Middle- the firing rate map of the unit showing the patch of locational receptive field. These two plots provide the initial screening of the place
unit. Bottom- the firing rate of the unit with respect to the head-direction of the animal. The blue line shows the true rate and the green line is
the predicted rate as described by Cacucci et al.**. Both lines are very similar, implying that there is a sampling bias for the head-direction
and, therefore, the tuned rate towards nearly north direction is not representative of the head-directional unit. (b) Multiple regression analysis
shows that location contributes to most of the variation in firing rate, confirming that the location is the main contributing factor and, in this
case, the only factor to contribute to the spiking activity. (¢) The distribution of Skaggs in randomly shuffled spike time (no. of shuffles = 500).
The 95th percentile (0.34) of the distribution is much lower than the Skaggs of the original activity of the unit (1.16), so the place cell activity is
not random. (d) The systematic changes in Skaggs information content (IC) as spiking timing is shifted by 0.2 s to 0.4 s in steps of 25 ms.
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unit may appear as a place cell, because of constraints
on the trajectory of movement, and therefore of the
sampling of unit activity (Figure 6; bottom).

3. The unit might also be a head direction-by-place cell,
where the unit fires in a certain location of the environment
only when it is heading towards a particular direction®.

We can use multiple built-in analysis methods in Neuro-
ChaT to assess and confirm whether the unit is a place
cell as mentioned below:

1. Multiple regression analysis models the instantane-
ous firing rate of the unit by a linear combination of
the environmental variables under consideration® and
provides the relative contribution of each factor on
the firing property of the unit. As the firing rates are
idiosyncratic for place and head-directional cells, the
variable values were replaced by the corresponding
average firing rate maps.

2. Assuming the null hypothesis that the observation of
a place cell is a matter of chance, we can do shuffling
analysis. In this technique, neuronal spikes are randomly
shuffled and the specificity index (Skaggs Informa-
tion Content)'® for each such artificial unit is calculated.
The specificity index of the unit is tested whether it is
significantly larger than the mean information content in
a population of shuffled simulated units firing randomly
with respect to the location.

3. Finally, we can perform the time-shift analysis and
observe whether the unit follows a gradual change in
information content with respect to the time-shift, imply-
ing that the firing rate is not random, and there is a
consistent and graded, or a systematic location-related
variation.

The multiple regression for this unit (Figure 6b) shows that
the variation in spiking activity is primarily due to the loca-
tion of the animal and is not merely due to other factors.
Skaggs distribution shows that the information calculated from
the original spiking activity is greater than 95th percentile
of the distribution in random spiking, implying that the spe-
cificity to locational firing is significantly larger than the
randomly-correlated units and, therefore, the null hypothesis of
observing the locational firing of the unit by chance is not true.
The time shift analysis, although not very smooth, still shows that
there is a graded change in the information content, marked by
the parabolic change in information content as the timing of the
unit-activity is gradually shifted by —200 ms to 400 ms, which
further implies that the effect of location on the firing rate is
systematic rather than random.

Assessment and validation of a population of neurons

The analysis outcome in NeuroChaT has been used to assess
the effect of stress induced by high-intensity light expo-
sure to rats on its spatial information processing system,
particularly on units that represent the head-directional

Wellcome Open Research 2019, 4:196 Last updated: 04 FEB 2020

information in postsubiculum of the hippocampal formation
(HF)*. Following the initial cell selection, 230 units were analysed
using NeuroChaT*. The units with dominant head-directional
firing were identified using supervised k-means clustering of
the distribution of multiple-regression coefficients (Figure 7a)
for location and head-direction. We did not find significant
correlations for border angular head-velocity and running
speed of the animal. Sixty-five head-directional (HD) cells were
identified to be in a distinct cluster, representing higher corre-
lation to direction. Several of NeuroChaT’s numerical outputs
such as the preferred firing direction of the HD cells and the
peak firing rate were used for characterising the units and com-
paring the changes in these characteristics due to stress. Each
unit remained a stable predictor of direction in both the con-
ditions as the preferred head-directionality of units remained
unaffected (Figure 7b; Pearson’s r* = 0.64, p < 0.001) and the
accuracy of directional representation, as measured by the half-
width of the directional tuning curve was unaltered (Pearson’s
= 0.715, p < 0.001). Head-directional partial r values and
peak head-directional firing rate variables showed a signifi-
cant decrease in value (Figure 7c¢ and d; mean head-directional
partial r value Z65 = -3.029, p = 0.002, peak head-directional
rate Z65 = -2.109, p = 0.035). A number of other aspects
were also studied, such as assessing whether the photic
stress influences a specific sub-population of head-direction
cells, see Figure 7 (adapted from 26).

Assessment of rhythmic properties of a neuron

Spike-train dynamics and the nature of the interaction with
simultaneously recorded LFP provides vital information to
understand the neuronal networks and the dynamics of indi-
vidual neural components across different brain areas’*.
Analysis of this sort can be important particularly for assessing
the mechanism of spatial computation as it is hypothesised that
there is a spatial information packaging by theta rhythms®. The
cortical head-directional cells are segregated in time by alternat-
ing theta cycles according to their directional preference”’, hip-
pocampal place cells show location specific phase-segregation
reflecting the distance representation by time-compression,
which is also dependent on speed of the animal®, and separate
theta cycles segregate distinct environmental representations
and the changes in context, i.e. location of reward”. Analysis
of theta-modulated units, theta-skipping units, and units
to LFP phase synchrony are widely used in this regard. In
NeuroChaT, we assess them using the following analyses:

1. The distribution of ISI, and the relationship of the
interval before vs interval after.

2. The autocorrelation histogram of ISI, which exfoliates
the rhythmic pattern merely observed for the ISI itself.

3. The distribution of LFP-phases at the time of the unit
activity’!, the phase-locking value (PLV)* and the
spike-field coherence (SFC)* at different frequencies.

A unit with clear rhythmicity in firing activity represented
by a higher count of ISI at around 125 ms is shown in the
upper row of Figure 8. This unit was co-recorded with
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Figure 7. Study of the effect of photic stress on postsubicular head-directional cells (adapted from 26). NeuroChaT output parameters
were used to accomplish the study. a) Identification of head-directional cells of recorded postsubicular cells. Correlation coefficients from
multiple linear regression analysis and subsequent cluster-analysis revealed spatial (purple) and head-directional (blue) cells. The head-
directional cells are not changing their preferred direction of firing, as shown by the high correlation between the mean directions of the
neurons before and after stress induction (b), but the correlation coefficient representing the variability of the firing rates due to head-direction
(c) and the peak firing rates (d) changes. This implies that information processing is disrupted due to stress experienced by the rats.

head-directional cells in the electrophysiology study of thalamic
nuclei’”!. The scatter plot of ISI before and after shows distinct
patches implying the replication of ISI at those values (roughly
125 ms). The autocorrelation histogram unfolds the rhythmic-
ity more prominently. As the replication occurs at around 8 Hz
or in the Theta-rhythmic band, this unit is called a theta-modu-
lated cell. Further analysis of this unit provides its descriptive
characteristics. The spike to LFP phase distribution shows that
there is a higher count of phases at around 195°. Although the
delta band signal dominates the underlying LFP, the unit is
still strongly locked to the theta-band as can be seen from the
high PLV and SFC at around 10 Hz. The time-resolved PLV
and SFC analysis of the unit provides further insight into the
temporal nature of the locking. As the bottom row of Figure 8
shows, the locking is maximal at around 10 Hz throughout the
entire window, but it evolves after the spiking event and max-
imises at a lag of roughly 125 ms, implying that the theta phase

encodes the spiking event. One interpretation of the 125 ms
lag for maximal locking is that the spiking event is encoded
in the next cycle of the theta wave.

Discussion

We developed the NeuroChaT toolbox to facilitate and stand-
ardise the analysis of neuronal spike trains and their relationship
to behaviour and to simultaneously recorded LFP signals. Neu-
roChaT is hosted in a GitHub repository (https:/github.com/
shanemomara/omaraneurolab). We provide a simple graphi-
cal interface and an easy-to-use API for using the correspond-
ing analysis techniques and managing data. We hope that
providing a simple, easy to use software package will facili-
tate the adoption of in vivo recording techniques. We hope that
NeuroChaT, by assembling standard analyses techniques in one
place along with a standard workflow will facilitate the adop-
tion of standardised analyses for behavioural neurophysiology,
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Figure 8. Upper row: left- inter-spike interval (ISl) distribution revealing that this unit has high burst propensity and is theta-rhythmic;
middle-ISI before vs after discloses the characteristic patches at around 125 ms indicating high replication of such ISl events; right-
autocorrelation of ISI histogram amplifies the rhythmic effect. Middle row: left- distribution of spike phases with underlying local field
potential (LFP) signal; right- LFP power spectrum showing that there is a presence of weak theta-rhythm in the LFP. Lower row: although the
LFP theta is small, the frequency spectrum of spike-triggered average (STA, left), the spike-field coherence (SFC; middle) and phase-locking
value (PLV; right) all display strong locking to theta signal, verifying the locking as seen in phase distribution. Bottom row: the time-resolved
fast Fourier transform (FFT) of STA (left), SFC (middle), and PLV (right) show that the peak locking does not occur simultaneously and has
a lag from the time of spike-onset. It may imply that the LFP phase is encoding the spiking event instead of momentary representation or
prediction of the spikes. The lag time for peak metric is 125 ms, which may also imply that the spiking event is represented in the next theta
cycle instead of the synchronous one.

Page 13 of 22



and facilitate open data sharing and collaboration between labo-
ratories. The simple GUI is designed for researchers without
programming knowledge, while the versatile design in API pro-
vides an opportunity for neuroscientists with programming
expertise to use the platform as a starting tool for extending
their analytic capabilities. The built-in collection of analyses
methods will allow them to quickly scan and infer the
characteristics of the recorded neurons and refine their experi-
mental protocols. The examples both here and in the project
documentation depict how NeuroChaT can be used to build a
custom analysis portfolio for characterising single units and
population of neurons.

Some commercial and open-source toolboxes, such as Neo™,
support conversion of electrophysiology data from several copy-
righted formats (i.e. Axona, Blackrock, Plexon, NeuroExplorer
etc.) to HDF5 format. NeuroChaT currently supports Axona
and NeuraLynx formats. Integrating other data formats will
be useful to provide for the analytic need of scientists using
recording systems from a wide range of vendors. Currently,
NeuroChaT supports analyses that pertain to assessing the
dynamics of spatial correlates of neuronal responses. Analysis
of stimulus-response dynamics is also widely studied in neu-
rophysiology. Extensive development of event-related analysis
using both the LFP and single-unit data will potentially
open the door for wide-spread reception among neuro-
physiologists. An effort to integrate or to interface popular
automated spike sorting algorithms or toolboxes can also be
undertaken. Although there are frameworks for LFP-LFP* and
point-process causality analysis between spike-trains®, as far as
we are aware, there is no such framework for studying the causal
relations between the spike-train of a unit and simultaneously
recorded LFP signals. Future work will pursue this aspect of
analysis as well. Owing to the rise of big data in neurophysi-
ology and envisioning the use of cloud computing®’, future
developments of NeuroChaT can target a cloud-native version
to support distributed computing and work with algorithms
to support such technologies.

Data availability

Underlying data

Open Science Framework: NeuroChaT: Neuron Characterization
Toolbox. DOIL: https://doi.org/10.17605/0OSF.I0/642YH*.

This project contains the following underlying data:

e Example Place cell: 040513_1.hdf5 (Assessment and
validation of individual neurons - neuronal data to repro-
duce Figure 6. These data were recorded by Maciej
Jankowski’.)

e Data from Passecker et al 2018.xlsx (Assessment and
validation of a population of neurons - spreadsheet data

Wellcome Open Research 2019, 4:196 Last updated: 04 FEB 2020

containing the numerical output from NeuroChaT used
to create Figure 7 (adapted from 26). These data were
recorded by Johannes Passecker™)

e Example theta modulated cell_conjunctive speed cell:
112512_1.hdf5 (Assessment of rhythmic properties of
a neuron - neuronal data to reproduce Figure 8. These
data were recorded by Maciej Jankowski’'.

Extended data
Open Science Framework: NeuroChaT: Neuron Characterization
Toolbox. DOL: https://doi.org/10.17605/0SE.I0/642YH*

This project contains the following extended data:

e Example Border cell: 040114_C3.hdf5 (recorded by Paul
Wynne).

e Example Gradient cell_conjunctive angular head veloc-
ity and speed cell: 052214_C1.hdf5 (recorded by Pual
Wynne).

e Example Grid cell: 120213_26.hdf5 (recorded by Maciej
Jankowski).

e Example Head Directional cell: 120412_1.hdf5 (recorded
by Maciej Jankowski).

Data are available under the terms of the Creative Commons
Zero "No rights reserved" data waiver (CCO 1.0 Public domain
dedication).

Software availability
¢ An executable version of NeuroChaT for non-coder
Windows users is available from: https:/github.com/
shanemomara/omaraneurolab/releases/download/v1.1.0/
NeuroChaT.exe

e Source code available from: https://github.com/shanemo-
mara/omaraneurolab/tree/master/NeuroChaT

* Archived source code at time of publication: https://doi.
org/10.5281/zenodo.3543732

¢ License: GNU General Public License version 3
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Islam et al. describe the functionality, architecture, and potential impact of their software which is
designed to analyze co-recorded in-vivo electrophysiology and behavioral data. Further, the authors
explore how the widespread adoption of this software may benefit the field at large via the adoption of
standardize methodologies and open source data formats. Thus, the current project represents an
important step toward the availability of open source tools. We agree that this software will aid in the
standardization of methodologies and data formats in the field of in-vivo electrophysiology. While the
authors have provided a useful toolbox, we suggest a number of improvements to the user friendliness
and transparency of the software which we feel is ultimately in line with the author’s goals for this project.
Our major comments are listed below.

1. Introduction - first paragraph — the authors should also make note of recent developments in

egocentric coding [e.g., Hinman et al., (2019); LaChance et al., (2019)2].

2. Methods - third paragraph under heading “Analysis of methods”: the authors should provide a
definition and citation of “gradient cell”.

3. Methods - third paragraph under heading “Analysis of methods”: Can the authors make note of the
number of bins required to meet the threshold for a place field definition? How many place fields
can be defined for each cell?

4. Related to our comments above, more detail is needed in describing methods for each category of
analysis. For example, there are several methods to calculate “theta-modulated cell index,” and
some methods may not be appropriate for low firing units (Climer et al., 2015°). Please make
explicit which specific methods are being employed for each measure.

5. Using the software’s .exe form, while we were able to use the available test files, we were unable to
successfully conduct any analyses using our own Neuralynx data. Some issue exists which made
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the program crash upon initiating each analysis. As it stands, we were unable to fully test this
software.

6. A list of acceptable spike-sorted data formats should be listed. To be more user friendly, the
integration of multiple spike sorted data formats should be considered for integration such as
results from popular methods: Phy, MClust, Mountainsort, Offline Sorter, etc. Otherwise, the
software in its current form will require users to write unit identities back into original Neuralynx and
Axona formats.

7. We suggest that the authors make use of perceptually uniform colormaps which is friendly to
common forms of colorblindness. Further, does the software allow adjustment of colormap
resolution? For example, in figure 6a row 2, the colormap is down-sampled to a handful of color
levels resulting in a loss in the available firing rate resolution (e.g., 2Hz is identical to 0Hz).
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes
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expertise to confirm that it is of an acceptable scientific standard.
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NeuroChaT is a toolbox written in Python that allows a number of measures to be computed based on an
animal’s neurophysiological data and simultaneously recorded spatial information. Its’ application is
particularly useful for the analysis of spatially-specific neural activty. The software has been written to use
output files generated in Axona and NeuralLynx electrophysiology recording systems, or from other
proprietary electrophysiology systems with conversion to the HDF5 file extension format. We agree with
the comments made by Poucet and Jacob (2019), especially the suggestion of a short manual that
provides formulas to indicate how some of the measures were computed. We have additional comments
based on our experience using NeuroChaT.

For this review, we were able to trial the executable GUI version of the NeuroChaT analysis software for
Windows 10. Thus, our comments may not apply to the NeuroChaT toolbox if it is generated from the
source code. We analysed data acquired using the Axona dacqUSB data acquisition system and
analysed using the TINT cluster cutting program. The electrophysiology recording session was conducted
in our lab with a rat running around in a square open field arena. To get started with the analysis, the GUI
requires the spike times and waveforms information for a tetrode (spike .n file) and a .txt file containing
the tracker position data. In order to generate this file, TINT is used to produce a “.txt” file from the “.pos
file”, which contains a vector of X - Y spatial coordinates of the rat during the recording session. Although
the dialogue box indicated that a spike .n file and/or a spatial .txt file could be used, we were unable to get
the GUI to work using only a spike .n file, even if the output analyses that we selected did not require any
positional information. Nonetheless, the instructions were easy to follow and NeuroChaT created a .pdf
file and a numerical output file of our data.

Our comments relate to clarification of the .pdf file and the numerical output file.

Reassuringly, our figures previously generated from custom written code and functions in Matlab matched
the equivalent output files of NeuroChaT. In addition, NeuroChaT provided several additional figures that
we think are very helpful. For example, the figure showing changes in head direction tuning curves as a
function of time and displaying changes in tuning parameters minute by minute. This analysis is useful to
visualize preferred firing direction fluctuations around the mean direction, which is not captured by
commonly used measures of linear drift. Although there may be sampling bias issues due to the time the
rat spends looking toward the preferred firing direction at different time periods, it would be helpful to have
some values for these plots, in order to characterise preferred firing direction fluctuations. We suggest a
measure of instantaneous drift rate in degrees/minute. This defines the direction and the extent of drift,
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computed by looking at differences in preferred firing direction between adjacent time periods.

The decomposed clockwise and counter-clockwise tuning functions plot shows the extent of angular
separation which enables cells to anticipate the actual head direction. We may suggest to add to this plot
a legend showing which of the two clockwise and counter-clockwise curves are represented by the two
colours (red and blue). Moreover, a measure of angular separation between the two decomposed
functions would be useful, in order to be correlated with the anticipatory time interval analysis.

The program also includes a different way to quantify anticipatory firing of a head direction cell. This is
useful, as the standard anticipatory time interval measure commonly used in spatial navigation papers
has some drawbacks. First of all, this measure is affected by the smaller number of observations at high
angular head velocity values. Secondly, it is difficult to compare this measure across brain regions, as
researchers have often used different head direction and angular head velocity bins. The alternative
measure implemented by NeuroChaT is based on the optimal time shift value that is required to optimise
tuning curve parameters. The relation between optimal time shift and peak firing rate/ Skaggs information
content is plotted. It would be useful to generate figures for the relation between tuning width and shift
value.

One of the strengths of this program is that it is straightforward and easy to use. It would be a good idea to
implement also a GUI version that allows to upload more than one trial at a time, for example to compute a
mean spectrogram for the entire session. Similarly, the program conveniently and quickly writes the
numerical output associated to each plot in an Excel file. We noticed that these files, at least in our hands,
were overwriting each other as we conducted subsequent analyses of different units within the same
folder so it might be useful if new file names could be generated for each analysis, possibly with the
filename of the spike .n file.

The local field potential (LFP) phase — coherence analysis is very detailed, and provides plots to visualise
the extent of phase locking (Rayleigh vector) and preferred phase of each cell. In the polar histogram
named “LFP phase distribution plot”, we suggest that the red line detailing the preferred phase of each
cell should be proportional to the Rayleigh vector length (the theta modulation depth of that cell). This is
because for irregularly firing cells, the mean phase is not a representative measure, as cells do not
increase firing on any specific theta phase. Moreover, to avoid binning the phase data, a polar scatter plot
could be implemented alongside the polar histograms in which each dot represents the phase of the
underlying oscillations at which each spike is emitted. Finally, we think having the option to run the
spike-LFP and LFP related functions independent of the spatial data.

For the future, it would be helpful for our lab, to broaden the type of accepted file formats at least to be
more compatible with Matlab or Plexon. This would be of great utility to analyse monkey electrophysiology
data and quantify spatial firing (e.g. in head direction cells) across different species.

Overall, NeuroChat provides a standardized approach to the analysis of spatial-specific neural data that
allows interpretation and comparison across labs, making results more reliable, and reproducible.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes
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The authors provide a toolbox that contains most of, if not all, useful analyses to characterize the main
firing properties of neurons that code space in one way or another (place cells, head direction cell, grid
cells, etc.). As mentioned in the introduction of their paper, most research groups in the field have
developed their own custom written code for data analysis, but the lack of methodological standardization
prevents direct comparisons between the data acquired here and there. There is therefore a clear
advantage to having this toolkit, especially for newcomers to the field.

The toolbox as described in the article appears to be well designed, user-friendly and comprehensive.
Unfortunately, we tried to run the executable version of the software on data files recorded with Axona or
NeuraLynx systems and could not go beyond the main menu. The problem apparently stems from the
heterogeneity of the data format, not only between systems but also within systems. This is probably
where the toolkit can be improved, by trying to make it compatible, in a user-friendly way, with most of the
formats used for recording and storing behavioral (e.g., positional, user-entered events) and neural
(single unit and LFPs) data.
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Among other possible improvements that could be considered, it would be useful to have a short manual
explaining briefly the analyses and possible settings and providing the formulas (e.g., how spatial
coherence, Skaggs information, Rayleigh vector length, theta index, etc. are computed)

Understanding neural substrates for spatial processing is a rapidly evolving domain. Although the toolkit is
capable of assessing the spatial firing characteristics of the "historical" classes of spatial neurons (e.g.,
place cells, head direction cell, etc.), upgrading of the toolkit will need to take into account the recent
discovery of neurons that may have more complex correlates (e.g., goal-distance cells: Spiers et al.,
Hippocampus, 2018"; goal-direction cells: Sarel et al., Science, 20172; bidirectional and multidirectional
cells: Jacob et al., Nat Neuro, 20172 and Olson et al., Nat Neuro, 2017%; egocentric boundary cells:
Hinman et al., Nat Comm, 2019°). For example, recent advances have emphasized the importance of

goal location or environmental geometry. The ability to process data by entering areas of spatial interest
will be a great improvement.
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