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Abstract: Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder
characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed
in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting
with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list
of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in
this gene list, and tested whether rare or common variants in these genes are associated with ADHD
or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related
to neurodevelopmental and brain function. Most of these Mendelian disorders also present with
other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES)
data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of
inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants
and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2,
HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally
associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2
with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which
is in line with the symptomatology of the rare disorders they are responsible for. In conclusion,
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inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach
for identifying new risk genes and the mechanisms of complex disorders.

Keywords: ADHD; rare mendelian disorders; genetic variants

1. Introduction

Attention-deficit hyperactivity disorder (ADHD) is characterized by symptoms of
hyperactivity, increased impulsivity, and/or inattention, affecting approximately 5% of
children and adolescents and 2.5% of adults worldwide [1]. There is a high comorbid-
ity between ADHD and other psychiatric conditions such as autism spectrum disorder
(ASD, 65–80%), oppositional defiant disorder (ODD, 50–60%), and conduct disorder (CD,
20–50% in children and 40–50% in adolescents), the last two being characterized by aggres-
sive behavior [2]. Additionally, depression (16–26%) or anxiety (10–40%) disorders and
obsessive-compulsive disorders (OCD, 6–15%) are highly prevalent in ADHD, especially in
adult patients [2,3].

The contribution of genetic factors to ADHD is estimated to be around 70–80% in
children and adults [1]. ADHD symptoms are attributable to heritable quantitative traits
distributed in a continuum in the population, and diagnoses correspond to the extreme
tail of these symptoms, that cause impairment. The genetics of ADHD is complex and
polygenic, which represents a challenge for identifying genes involved in this neurodevel-
opmental disorder. Recent advances towards identifying genetic risk variants for ADHD,
both common and rare, have been possible through genome-wide association study (GWAS)
meta-analyses and whole-exome sequencing studies (WES) [4,5].

Some known rare Mendelian diseases, such as Phenylketonurya, Adrenoleukodystro-
phy, Tuberous sclerosis, Fragile X, Muchopolysacaridosis type III, Hyperlysinemia, or Jou-
bert syndrome, include symptoms of hyperactivity and/or inattention. These disorders
also present with other psychiatric symptoms that are comorbid with ADHD, as described
in the Online Mendelian Inheritance in Man (OMIM) database (https://www.omim.org/).
Around 7000 rare diseases have been described, affecting 350 million people globally,
and often including a wide range of symptoms. The vast majority are characterized by
Mendelian inheritance, and most of them (80%) have a known genetic cause [6,7]. In the
last decades, and with the appearance of high-throughput and next-generation sequencing
techniques, there has been a rapid advance in identifying the causal genes responsible for
Mendelian disorders, which are nowadays known for more than 6000 of OMIM entries.
Given their simple pattern of inheritance, they are easier to study than complex disorders,
from a genetic perspective [7]. An interesting study considered this fact and searched for
ADHD risk genes in three extended pedigrees with multiple members affected by ADHD,
with an apparent dominant inheritance pattern [8]. Combining linkage analysis in these
families and WES in ADHD patients, they identified 12 genes associated with the disorder,
which points to this approach as being potentially useful to identify novel risk genes for
this disorder.

In the present study, we explored the OMIM database to search for rare disorders
presenting with hyperactivity and/or inattention with the objective to elucidate molecular
mechanisms involved in these traits. Then, under the hypothesis that genes responsible
for these Mendelian disorders may also be involved in ADHD and in its most frequent
comorbidities, we investigated the possible contribution of rare and common risk variants
on them using a gene-based analysis. In addition, for the common variants located in genes
associated with ADHD, we investigated their role on gene expression and on impacting
subcortical brain volumes. Finally, we explored whether these genes were also significantly
associated with several ADHD comorbid conditions.

https://www.omim.org/
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2. Materials and Methods
2.1. Gene Selection

We queried the OMIM database (https://www.omim.org/; accessed on 25 February 2019)
with the search term “hyperactivity OR hyperactive OR attention OR inattention”. We did
not include a search for the presence of impulsivity only, since this is frequently present
in many disorders related to aggression and not hyperactivity. Therefore, we included
impulsivity only when it is presented with hyperactivity, to avoid the inclusion of rare
disorders with symptomatology not directly related to ADHD.

This search returned 182 OMIM entries that were manually curated to discard 18 en-
tries not related to ADHD, as well as 27 entries without a known associated gene, ending up
with 137 OMIM entries linked to 139 genes. From those entries, we retrieved information
on related psychiatric and neurological disorders (Supplementary Table S1). From a final
list of 139 OMIM genes, enrichment analyses of biological processes (Gene Ontology, GO)
and KEGG pathways were performed using the WEB-based GEne SeT AnaLysis Toolkit
2019 (WebGestalt, http://www.webgestalt.org/) [9].

2.2. Whole-Exome Sequencing

To assess the contribution of rare variants in the OMIM gene list, we analyzed the
presence of high-impact rare variants within those genes and their associations with
ADHD symptom dimensions in a sample of adult patients with ADHD. The dataset com-
prised 668 German adults with persistent ADHD, diagnosed according to DSM-IV criteria;
the mean age was 34 (ranging from 18–65), with 50.8% of the sample being males. This
sample is part of the International Multicenter persistent ADHD Collaboration (IMpACT,
http://www.impactadhdgenomics.com) and is described in more detail by Rovira et al. [10].
All participants signed informed consent, and the Ethics Committees of the universities
involved approved the study.

Participants provided EDTA-blood samples for DNA extraction using a standard
salting-out method [11]. Genomic DNA was targeted with a BGI exome capture kit and
sequenced on the Illumina HiSeq2000 platform. We selected variants with a minor allele
frequency (MAF) <0.01 in the European superpopulation of 1000 genomes Phase 3 [12]
and extracted the variants that were more likely to affect protein function, expression,
or availability: protein-truncating variants (nonsense and splice site changes) and putative
damaging missense variants, using CADD_phred scores >15.

2.3. Rare Variant Association Analyses

Using a gene-based approach, we analyzed the cumulative effect of high-impact rare
variants in the OMIM-derived genes with ADHD symptoms dimensions (inattention and
hyperactivity/impulsivity symptoms). The statistical analyses were performed using the
Multi-marker Analysis of GenoMic Annotation (MAGMA v1.07) software, with a SNP-
wise mean model for the gene-based association analysis, adjusting for genomic principal
components as covariates. We considered the genes to be associated if they reached the
Bonferroni-corrected adjusted threshold for the number of genes tested (e.g., 101 genes;
p < 4.95 × 10−4) or a 10% False Discovery Rate (FDR). As WES analyses were not performed
for variants in the X chromosome, only genes located in the autosomes could be analyzed.

Additionally, we investigated the possibility that the OMIM gene list carried a higher-
than-expected frequency of high-impact rare variants, using a Monte-Carlo resampling
and permutation approach. For this, we sampled 100,000 sets of the same number of genes
as those containing high-impact rare variants and analyzed the distribution of variants in
those sets.

2.4. Common Variant Gene-Based Association Studies

The contribution of common variants (MAF > 0.01) in the OMIM gene list to ADHD
was assessed through a gene-based association analysis using MAGMA v1.06 [13] and the
summary statistics from the largest GWAS meta-analysis in ADHD available (19,099 cases
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and 34,194 controls) [4]. The SNP-wise mean model was used as the statistical test, consid-
ering the p-values for SNPs located within the transcribed region. Only the genes located
in autosomal chromosomes could be investigated, as those variants within the sex chro-
mosomes had not been analyzed in any of the GWAS meta-analyses included in the study.
For multiple testing correction, we considered both the Bonferroni correction (112 genes;
p < 4.46 × 10−4) and 10% FDR.

2.5. Gene-Based Analyses and Meta-Analysis with Comorbid Conditions

For the genes significantly associated with ADHD, we inspected which comorbid traits
were present in the OMIM database. We performed a gene-based analysis, as previously
described, on: anxiety [14], ASD [5], children’s aggressive behavior [15], impulsive personality
traits [16], and OCD [17] (Supplementary Table S2). All GWAS summary statistics were
obtained from the Psychiatric Genomics Consortium (PGC; https://www.med.unc.edu/pgc/
download-results/, accessed on 10 April 2019), except for impulsive personality traits,
where results from the gene-based association analyses were obtained directly from the
published manuscript (see Supplementary Table S2).

For significantly associated phenotypes, we performed a gene-based meta-analysis to
combine the results of ADHD and each comorbid phenotype using MAGMA 1.06. First,
a gene-based analysis of each independent dataset was performed, as previously described.
Then, the weighted Stouffer’s Z method was used to combine the Z-scores for each gene
across cohorts, with weights set to the square root of the sample size. We only considered
the results from the combined analyses when nominal associations were found both in
ADHD and the comorbid phenotype separately and when their statistical significance
increased by at least one order of magnitude in the combined analysis.

2.6. MetaXcan

We assessed whether the estimated expression of the OMIM genes associated with
ADHD is altered in this disorder using MetaXcan [18] and the GWAS summary statistics
of ADHD previously described [4]. Prediction models were constructed using the SNPs
located within ± 1 Mb from the transcription start site (TSS) of the implicated genes,
and were trained with the RNA-Seq data of 13 GTEx brain tissues [19]: amygdala, anterior
cingulate cortex (BA24), caudate nucleus, cerebellar hemisphere, cerebellum, cortex, frontal
cortex (BA9), hippocampus, hypothalamus, nucleus accumbens, putamen, spinal cord
cervical c-1, and substantia nigra. The SNP covariance matrices were generated using the
data of European individuals of the 1000 Genomes Project Phase 3 [12].

2.7. Effect on Subcortical Brain Volumes

We explored whether common genetic risk variants on the OMIM genes have an effect
on subcortical brain volumes, using the summary statistics of a GWAS meta-analysis of
seven MRI volumetric measures from the ENIGMA Consortium: amygdala, caudate nu-
cleus, hippocampus, nucleus accumbens, pallidum, putamen and thalamus [20]. This GWAS
meta-analysis consists of seven million markers inspected in 13,171 subjects of Euro-
pean ancestry [20]. We applied Bonferroni corrections, setting a significance threshold
at p = 8.3 × 10−3, considering six areas.

3. Results
3.1. Genes in Mendelian Disorders Presenting with ADHD Symptoms

We inspected the OMIM database to search for genes involved in Mendelian dis-
orders that present with ADHD symptoms (hyperactivity and inattention). As a result,
we obtained a list of 139 genes responsible for 137 OMIM phenotypes containing at least
one ADHD trait; there were 65 genes related to hyperactivity, 18 to inattention, and 56
to both symptoms (Figure 1, Supplementary Table S1). From those 139 genes, 14 were
also related to impulsivity symptoms. This gene list (referred to as the OMIM gene list
from now on) is enriched in genes involved in cognition, synapse organization, fore-

https://www.med.unc.edu/pgc/download-results/
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brain development, glutamatergic synapses, nicotine addiction, and metabolic processes
(Supplementary Tables S3 and S4), being all consistent with the impairments, dysregula-
tions, or comorbidities observed in ADHD patients.
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Figure 1. Mendelian disorders with a causal gene identified that present with ADHD symptoms.
(A) Search in OMIM database (https://www.omim.org/; 25 February 2019) and selection, obtaining
137 disorders with a known causal gene and 139 genes related to hyperactivity and/or inattention,
14 of which also related to impulsivity symptoms. (B) Genes responsible for disorders that also
present with other comorbid psychiatric conditions, considering the overlap between them (on the
left) or only the comorbidity (on the right). ADHD: Attention-deficit hyperactivity disorder; ASD:
Autism spectrum disorder; OCD: Obsessive-compulsive disorder. From the 139 genes described in
the figure, 112 were located in autosomal chromosomes.

We further annotated whether these 137 disorders also presented with other psychiatric
or neurological comorbidities, frequently observed in ADHD patients, such as autism or
aggressive behaviour. From the list of 139 genes known to cause these disorders, 57 genes
were related to disorders that also present with symptoms of ASD, 49 with aggression,
15 with anxiety, and 14 with OCD (Figure 1, Supplementary Table S1). Other psychiatric
symptoms were also present in some of these 137 Mendelian disorders, but less frequently
(Supplementary Table S1). Neurological phenotypes, such as intellectual disability, seizures,
or sleep disorders, were quite frequent among them (Supplementary Table S1).

3.2. Rare Variants in the OMIM Gene List and ADHD Symptomatology in Patients

We tested the possible contribution of rare variants to hyperactivity/impulsivity
symptom dimensions and to inattention symptoms in a clinical sample of 668 adults with

https://www.omim.org/
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persistent ADHD. From the original list of 139 OMIM genes, we were able to extract the
set of rare variants from 111 autosomal genes, with 101 of them presenting at least one
high-impact rare variant (Supplementary Table S5).

We analyzed the association of these genes in a gene-based analysis for inattention
and hyperactivity/impulsivity symptom dimensions. After accounting for multiple testing,
we observed that three genes, harboring rare high-impact variants (KIF11, WAC, and CRBN),
were significantly associated with inattention symptoms in this sample, with inattention
being present in the Mendelian disorders they are responsible for (Table 1). On the other
hand, no genes carrying rare high-impact variants were found to be associated with the
hyperactivity/impulsivity symptom dimension.

Table 1. Genes associated with the inattention symptom dimension in the rare variants analysis from
the OMIM gene list (autosomal).

Gene
Symbol OMIM ADHD Phenotype in

Mendelian Disorder
Genomic Coordinates

(hg38)
Number of Rare

Variants Identified p-Value Adjusted
p-Value

KIF11 #152950 Hyperactivity/inattention 10:92593068-92655395 1 (10:92613567–A) 4.81 × 10−6 2.43 × 10−4

CRBN #607417 Hyperactivity/inattention 3:3149633-3179717
3 (3:3150954–G;

3:3174156–T;
rs201449042)

3.03 × 10−6 2.43 × 10−4

WAC #616708 Hyperactivity/inattention 10:28532588-28623112 1 (rs201855730) 1.03 × 10−4 3.45 × 10−3

Subsequently, we used a permutation procedure to assess if the burden of high-
impact variants identified in the OMIM gene list was higher than expected due to chance.
We identified 667 high-impact variants in 103 OMIM-genes. We observed a trend close to
statistical significance (p = 0.057) for the enrichment of rare variants in the permutation-
based analysis.

3.3. Common Variants in the OMIM Gene List and ADHD

We analyzed the contribution of common genetic variants in the OMIM gene list to
ADHD, using a gene-based approach on the largest GWAS meta-analysis of the disorder,
which included 19,099 cases and 34,194 controls [4]. We tested a total of 112 genes (in auto-
somes), and found six OMIM genes significantly associated with ADHD (based on 10% FDR
correction). From these, five genes were related to hyperactivity (MANBA, UQCC2, HIVEP2,
FOPX1, and KANSL1) and one with a short attention span (AUH) (Table 2). HIVEP2 and
KANSL1 were also related to impulsivity. The MANBA gene remained associated with
ADHD even after a stringent Bonferroni correction and also surpassed the gene-wide
significance threshold (p = 5.99 × 10−8).

Table 2. Significant results from the GWAS gene-based association studies on the OMIM gene
list (autosomal).

Gene
Symbol

Mendelian
Disorder

ADHD Phenotype in
Mendelian Disorder

Comorbid Psychiatric
Phenotypes in

Mendelian Disorder

ADHD
Gene-Based

p-Value

Adjusted
p-Value *

Significant
Gene-Based

Association of
Comorbidities

MANBA #248510 Hyperactivity Aggression 5.99 × 10−8 6.65 × 10−6

UQCC2 #615824 Hyperactivity ASD/Aggression 5.88 × 10−4 0.0326
HIVEP2 #616977 Hyperactivity/impulsivity ASD/Anxiety 1.10 × 10−3 0.0407 ASD/Anxiety
FOXP1 #613670 Hyperactivity ASD/Aggression/OCD 2.43 × 10−3 0.0674 ASD/Aggression

KANSL1 #610443 Hyperactivity/impulsivity ASD/Anxiety 3.56 × 10−3 0.0790 ASD
AUH #250950 Short attention span - 4.63 × 10−3 0.0857

ADHD: Attention deficit/hyperactivity disorder; ASD: Autism spectrum disorders. OCD: Obsessive-compulsive disorder. In bold, overcoming
Bonferroni correction. * p-value adjusted by False Discovery Rate (FDR).
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We explored whether the six genes associated with ADHD were predicted to be dif-
ferentially expressed in cases versus controls in different brain areas, using MetaXcan
(Supplementary Table S6). We observed that MANBA is differentially expressed in the cere-
bellum (Z-score = 3.96; p = 7.38 × 10−5) and in the cerebellar hemisphere (Z-score = 5.23;
p = 1.63 × 10−7). It is important to note, however, that the information for most gene–
tissue combinations was not available. We also inspected if common genetic risk variants
in these six genes were associated with changes in subcortical brain volumes, using the
summary statistics of a GWAS meta-analysis of seven MRI volumetric measures from the
ENIGMA Consortium [20]. We found that genetic variants in HIVEP2 were associated with
changes in the nucleus accumbens (p = 4.87 × 10−3), and AUH and MANBA in the pallidum
(p = 2.37 × 10−3 and 8.12 × 10−3, respectively). We also identified nominal associations
for the MANBA gene with subcortical volumes of the hippocampus (p = 0.032) and the
thalamus (p = 0.045).

3.4. Contribution to Comorbidities of the Genes Associated with ADHD

Following the previously identified ADHD-associated genes, we observed that all
the Mendelian disorders with hyperactivity symptoms also presented other psychiatric
comorbid traits such as ASD, aggression, anxiety, impulsivity, or OCD (Supplementary
Table S1). We inspected those genes in GWAS of these comorbid traits and found associa-
tions for most of them, consistently with the symptomatology in those Mendelian disorders
(Table 2).

For ASD we found associations with the genes HIVEP2, FOXP1, and KANSL1 using
a GWAS of 18,382 cases and 27,969 controls (Table 2 and Supplementary Table S7). As-
sociations for HIVEP2 and FOXP1 were nominal, but gene-wide significant for KANSL1
(p = 7.34 × 10−7). The gene UQCC2 did not show association with ASD.

In the case of anxiety, we found a nominal association with the HIVEP2 gene using a
GWAS of 7016 cases and 14,745 controls (Table 2 and Supplementary Table S8). The KANSL1
gene did not show association.

For aggression, FOXP1 was found nominally associated in a GWAS of 18,988 individ-
uals (Table 2 and Supplementary Table S9). Neither MANBA nor UQCC2 were associated
with aggression.

For OCD, no significant association with FOXP1 was identified using a GWAS that
included 1773 cases, 6122 controls and 915 trios (Table 2).

In all cases, we observed a more robust signal for these associations (at least one order
of magnitude larger) when combining ADHD with the comorbid trait in a gene-based
meta-analysis (Supplementary Tables S7–S9). We did not identify any association between
the six genes and impulsivity or OCD.

Interestingly, KIF11, that was significantly associated with ADHD in the analysis
of rare variants, was also nominally associated with aggression, consistently with the
symptomatology in this Mendelian disorder (Supplementary Tables S1 and S9).

4. Discussion

In our study, we followed a new approach to identify novel risk genes for ADHD.
We searched for Mendelian disorders with a known causal gene that present with hy-
peractivity and/or inattention among their symptomatology, and identified 137 OMIM
phenotypes and 139 genes related to them. They are enriched in genes involved in neuro-
logical processes, brain function, and development. Nine of those genes were highlighted
in our study, three of which showing association with rare variants related to the severity
of ADHD symptoms (KIF11, WAC, and CRBN) and six carrying common genetic variants
that are associated with ADHD (MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH).
Furthermore, for HIVEP2, FOXP1, and KANSL1, which are causal genes for rare disorders
presenting with psychiatric conditions that are frequently comorbid with ADHD, we also
found associations with these comorbidities.
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A total of 137 rare disorders with an ADHD-related phenotype were identified, repre-
senting 2.2% of the 6138 OMIM entries with a known molecular basis. A similar number
(95 disorders) was found in a previous study investigating symptomatology featuring ag-
gressive behavior in rare disorders [21]. Among the 139 causal genes for the rare disorders
with an ADHD-related phenotype, we found an enrichment of genes involved in cognition,
synapse organization, forebrain development, glutamatergic synapse, nicotine addiction,
and metabolic processes. All these functions and pathways are related to this complex
neurodevelopmental disorder. ADHD is characterized by deficits in multiple cognitive
domains [1], and patients have a lower surface area of the prefrontal cortex [22] and a
lower concentration of glutamate and glutamine in the basal ganglia [23]. Although these
regions have been extensively studied in ADHD, these are not the only brain alterations
related to the disorder, and other regions and neurotransmitter systems are also involved
in its development. Genes implicated in synapse organization and development and gluta-
matergic transmission have been associated with ADHD [24–28]. Furthermore, nicotine
addiction is more frequent in ADHD patients (42%) than in controls (26%), and the genetic
correlation between both phenotypes is high (rg = 0.53, p = 1.85 × 10−13) [29]. In rodents,
ADHD-like behavioral symptoms co-occur with metabolic hypoactivity of the prefrontal,
mesolimbic, and subcortical brain areas [30]. The functions and pathways identified in the
OMIM gene list reveal molecular mechanisms important for ADHD. Similarly, information
retrieved from genes containing causal evidence for Mendelian disorders related to aggres-
sion was useful to elucidate molecular pathways and to identify genes that are relevant
for aggression, when combined with genetic information obtained from GWAS or animal
models [31].

Remarkably, one of the genes included in the OMIM gene list, TBC1D2, was pointed
to as a risk gene in a previous study in three families with multiple ADHD-affected
members, with an apparent dominant inheritance pattern [8]. This gene is responsible for
pontocerebellar hypoplasia type 11. Patients with this disorder present with behavioral
abnormalities, including attention-deficit hyperactivity, autistic features, and stereotyped
behavior (OMIM #617695).

The analysis of rare variants in the OMIM gene list pinpointed three genes, KIF11, WAC,
and CRBN, which carry high-impact genetic variants associated with inattention severity.
All disorders related to these genes include ADHD among their clinical manifestations:
KIF11 is responsible for a disorder with microcephaly and lymphedema (OMIM #152950),
WAC for Desanto-Shinawi syndrome (#616708), and CRBN is responsible for a recessive
intellectual disability syndrome (#616708). The gene KIF11 encodes for a kinesin, CRBN,
which is a protein involved in ubiquitination, and WAC, a molecular adaptor involved in
ubiquitination and several biological processes such as the cell cycle and autophagy.

Analysis of common variants highlighted six genes associated with ADHD, five of
which (MANBA, UQCC2, HIVEP2, FOPX1, and KANSL1) were related to rare disorders
presenting with hyperactivity, and one (AUH) with a short attention span. MANBA is
responsible for β-mannosidosis (#248510), UQCC2 for Mitochondrial complex III deficiency
(#615824), KANSL1 for Kooln-de Vries Syndrome (#610443), AUH for 3-methylglutaconic
aciduria type I (#250950), and both HIVEP2 and FOXP1 are related to syndromes with
intellectual disability (#616977 and #613670, respectively).

MANBA, encoding for β-mannosidase, has been found to be associated with ADHD at
a gene-wide significant level in our study. The encoded protein is a lysosomal enzyme that
has been especially related to kidney disease but also to psychiatric disorders. Previous
studies identified MANBA as a gene that is associated with schizophrenia and nicotine
dependence [32], as well as antipsychotic response [33].

HIVEP2, FOXP1, and KANSL1 have been found to be associated with ADHD and
also were nominally associated with ASD in our study. HIVEP2 and FOXP1 code for
transcription factors and both have previously been related to autism [34–36]. HIVEP2
has also been linked to schizophrenia and substance use disorders [37–39], and knockout
mice for this gene show hyperactivity, anxiety, and schizophrenia-related behaviors [40,41],
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which is in line with the associations we found between ADHD and anxiety. FOXP1 was
also found to be associated with aggression in our study, but, to our knowledge, it has not
been previously related to aggressive behavior. One of the loci associated with ADHD in
the largest GWAS meta-analysis pointed to FOXP2, another member of the same family [4].
FOXP2 forms homo- and/or heterodimers with FOXP1 and FOXP4 [42,43], and regulates
neuron maturation and locomotor activity [44]. Thus, these three genes seem to have a
pleiotropic role in ADHD and its related comorbidities.

Several limitations of this study should be taken into account. On one hand, the sample
size for the rare variant analysis is limited, and this could have prevented us from identi-
fying associations of other genes with the dimension of the severity of ADHD symptoms.
On the other hand, the statistical power of the GWAS meta-analysis, used for identifying
common variants, is still limited, especially for OCD and impulsive personality traits,
in which we could not identify any gene associated, potentially due to the limited sample
size of these studies. Also, common variants could not be investigated separately in the
different symptom domains of ADHD. Causal genes for Mendelian disorders presenting
only with impulsivity, and not in combination with hyperactivity, were not investigated,
which could have hindered our ability to identify additional relevant genes for ADHD.
Finally, rare and common variants within genes located on non-autosomal chromosomes
could not be assessed in this study. Therefore, further studies would be of help to confirm
the role of these OMIM genes in ADHD.

5. Conclusions

Overall, our results delineate an alternative way to identify candidate genes for com-
plex disorders through exploring the shared phenotypic space with Mendelian diseases.
We have seen that genes related to hyperactivity and/or inattention symptoms in Mendelian
rare disorders could be relevant in the common and complex forms of ADHD, and have
identified mechanisms that are potentially involved in neurodevelopment and brain func-
tion. Following this strategy, we have identified nine novel candidate genes for ADHD,
three of them being of special interest for their potential pleiotropic role in several ADHD
comorbidities.
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