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Abstract
In portions of South Asia, vectors and patients co-infected with dengue (DENV) and chikun-

gunya (CHIKV) are on the rise, with the potential for this occurrence in other regions of the

world, for example the United States. Therefore, we engineered an antiviral approach that

suppresses the replication of both arboviruses in mosquito cells using a single antiviral

group I intron. We devised unique configurations of internal, external, and guide sequences

that permit homologous recognition and splicing with conserved target sequences in the

genomes of both viruses using a single trans-splicing Group I intron, and examined their

effectiveness to suppress infections of DENV and CHIKV in mosquito cells when coupled

with a proapoptotic 3' exon, ΔN Bax. RT-PCR demonstrated the utility of these introns in

trans-splicing the ΔN Bax sequence downstream of either the DENV or CHIKV target site in

transformed Aedes albopictus C6/36 cells, independent of the order in which the virus spe-

cific targeting sequences were inserted into the construct. This trans-splicing reaction forms

DENV or CHIKV ΔN Bax RNA fusions that led to apoptotic cell death as evidenced by

annexin V staining, caspase, and DNA fragmentation assays. TCID50-IFA analyses dem-

onstrate effective suppression of DENV and CHIKV infections by our anti-arbovirus group I

intron approach. This represents the first report of a dual-acting Group I intron, and demon-

strates that we can target DENV and CHIKV RNAs in a sequence specific manner with a

single, uniquely configured CHIKV/DENV dual targeting group I intron, leading to replication

suppression of both arboviruses, and thus providing a promising single antiviral for the

transgenic suppression of multiple arboviruses.

Introduction
TheWHO estimates hundreds of millions of infections and tens of thousands of deaths each
year are attributed to mosquito-borne virus related diseases, with well over half the world’s
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population remaining at risk for infection [1–7]. Individual outbreaks along with instances of
co-infections of dengue (DENV) and chikungunya viruses (CHIKV), are on the rise due to the
presence of both pathogens in a shared mosquito vector, Aedes albopictus [2,8–12].

Infection with one of four orthologous, but antigenically distinct DENV serotypes (desig-
nated DENV 1 through 4) can result in dengue fever (DF) or dengue hemorrhagic fever (DHF)
[1]. DF and DHF are endemic to tropical and subtropical regions of the world, but global
changes in climate, rapid dispersal of virus due to world travel, and migration of humans to
non-tropical regions has resulted in epidemic DENV outbreaks in areas that are non-endemic
for these viruses [13,14]. There are currently no consistently effective preventive control mea-
sures or approved tetravalent vaccines to combat DENV.

CHIKV is an emerging pathogen that infects humans with the principle mosquito vectors
being Ae. aegypti, Ae. albopictus, and Ae. vigilax [15], the same vectors responsible for dengue
virus spread [16–18]. Following a 2–12 day incubation period, clinical symptoms develop that
are similar to dengue fever including high fever, a prominent rash on the thorax and face, head-
ache, back pain, and myalgia. An intense arthralgia distinguishes CHIK fever from DF. Hemor-
rhagic fever resulting from CHIKV infection, has been reported during outbreaks in Thailand
[2].

CHIKV has been transmitted throughout Asia and Africa since the initial discovery of this
virus in Tanzania in 1952 [2,19–25]. Importation of this virus into Europe and the USA
resulted from infected travelers returning from endemic areas with high incidences of CHIKV
infection and Ae. albopictus transmission [26], underscoring the potential for a worldwide
CHIKV epidemic and the need for novel therapies to effectively combat the spread of this
virus. Most recently CHIKV transmission has occurred in the French Riviera [27], the Carib-
bean islands, and the United States [28–30].

Our lab has been surveying ribozymes as suppressive agents against arbovirus infection for
potential use in generating refractory transgenic mosquitoes. We previously examined the
effectiveness of hammerhead ribozymes in suppressing DENV infections in retrovirus trans-
duced mosquito cells [31]. This led to the identification of several hammerhead ribozymes
effective in significantly reducing DENV serotype 2 New Guinea strain (DENV2-NGC) infec-
tion of Ae. albopictus C6/36 cells. However, due to the relatively strict triplet nucleotide
sequence requirements for catalysis, engineering a single hammerhead ribozyme possessing
the ability to target all DENV serotypes as well as CHIKV is not practical. This necessitated
exploration of ribozymes that have an increased potential for broader specificity and utility.

Trans-splicing group I introns provide a versatile tool for repairing defective RNA [32–44].
Trans-splicing group I introns have also demonstrated utility in targeting the RNA genomes of
a number of viruses such as HIV-1 tat [45], cucumber mosaic virus coat protein mRNAs [32],
and the hepatitis C virus internal ribosome entry site (HCV-IRES; [46,47]). In recent years, our
lab has demonstrated the effectiveness of a group I intron trans-splicing strategy to target con-
served sequences among all DENV genomes [48].

In a previous report, we noted that the 5' end of the transcript encoding our anti-DENV
group I intron was composed of a 56 nt untranslated RNA leader sequence expressed from the
Actin 5c promoter [49]. This observation led us to consider the possibility that additional
sequences might be appended to the 5' terminus of our anti-DENV group I intron in a way that
allows the recognition and catalysis of another virus genome.

This report describes the development of dual targeting group I introns for the replication
suppression of all DENV serotypes and CHIKV through a “death by infection” strategy that
involves the inclusion of a proapoptotic effector gene that is active only when fused to CHIKV
or DENV RNA. These introns are based upon the previously described anti-DENV group I
intron [48] that is modified by the addition of CHIKV targeting external and internal guide
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sequences, along with a corresponding interacting P10 sequence, that allows targeting of either
CHIKV or DENV genomic RNAs. When coupled with an apoptosis-inducing ΔN Bax 3’ exon,
these constructs trans-splice conserved sequences of either CHIKV or DENV to the ΔN Bax 3’
exon, leading to the induction of apoptotic cell death upon virus infection. We demonstrate
antiviral and proapoptotic activity for these uniquely constructed group I introns in trans-
formed mosquito cell cultures challenged with infectious DENV serotypes 1 through 4 and
CHIKV.

The trans-splicing reaction of these dual targeting intron constructs was designed to attack
the conserved circularization sequence (CS) of the DENV genome as well as a highly conserved
region of the CHIKV NS1 gene. Splicing appends a 3’ exon RNA sequence encoding the ΔN
Bax sequence to the capsid (DENV) or the NS1 (CHIKV) protein coding regions of the respec-
tive genomic RNAs resulting in translation of a chimeric protein that induces premature cell
death upon infection by either DENV or CHIKV. TCID50-IFA analyses demonstrate suppres-
sion of each of the four DENV serotypes, and CHIKV 181/25 vaccine test strain. Results
obtained from annexin V staining, effector caspase assays, and DNA ladder assays confirm that
the resulting DENV CA-ΔN Bax (DCA- ΔN Bax) or CHIKV NS1- ΔN Bax (CNS1-ΔN Bax)
fusion proteins induce apoptotic cell death. Our cumulative results confirm the effectiveness of
our dual targeting (DENV and CHIKV) group I intron as a sequence specific antiviral that
should be useful for suppression of DENV and CHIKV replication in transgenic mosquitoes.

Results

Basic trans-splicing mechanism of the group I intron
The Tetrahymena thermophila group I intron trans-splicing mechanism is characterized by
two independent transesterification reactions ([50]; Fig 1). The ribozyme-mediated targeting
of substrate RNAs forms the P1 and extended antisense helices, which promotes guanosine-
mediated transesterification resulting in cleavage of the target virus RNA (Step 1). An internal
guide sequence (IGS) of 9 bases complimentary base pairs with the target RNA, except a reac-
tive guanosine that forms a wobble base pair with the targeted uracil to initiate the cleavage
reaction. The external guide sequence (EGS) Watson-Crick base pairs with the substrate RNA
nucleotides, downstream from the reactive uracil. This interaction provides additional stability
for the trans-splicing reaction. Sequences from the 3’ exon (ΔN Bax) displace the distal portion
of the P1 helix to form the P10 helix (Step 2). This allows the second transesterification to pro-
ceed, resulting in ligation of the DENV or CHIKV capsid and ΔN Bax. The end result is a new
RNA fusion molecule that, if appropriately configured, can be translated into a new proapopto-
tic protein (Step 3).

Our lab has demonstrated the effectiveness of group I introns targeting sequences in the
DENV 5’ CS [48]. While these group I introns efficiently cleave this conserved region, the use
of these molecules as simple catalytic cleavage agents requires levels of expression that match
or exceed those for the generation of virus in infected cells. Escape events may be possible in
the event virus replication exceeds group I intron catalytic suppression. As a result, we pre-
sumed that expression of anti-viral group I introns alone in cells may not be the ideal method
for suppressing DENV expression and decreasing the probability of generating escape mutants.
We reasoned that coupling the splicing activity of the group I intron to a death-upon-infection
strategy would provide an added level of insurance against the development of escape mutants.
We therefore designed anti-DENV group I introns coupled with the apoptosis-inducing genes
as the 3’ exon to induce cell death upon infection with DENV and validated this approach as
an effective antiviral in C6/36 cells [47].
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Construction of CHIKV targeting Group I intron
ClustalX alignments of available CHIKV genome sequences revealed the presence of a con-
served region located within the NS1 gene of CHIKV (S5 Fig). This conserved sequence occurs
in genomic forms of CHIKV RNA that are present during the early and late stages of alpha-
virus infection [51], and represents an ideal target for our antiviral group I strategy (Fig 2A).
The anti-CHIKV group I intron was produced through PCR amplification of the anti-DENV
group I intron [48,49], with a forward primer that possessed EGS and IGS sequences compli-
mentary to nucleotides C201 to C209 and G188 to U196, respectively, of the CHIKV RNA
genome. The CHIKV P10 helix forming sequences (S1 Table) and a UAA stop codon were
inserted into our anti-CHIKV group I intron as previously described [48,49]. The UAA triplet
was inserted immediately upstream of the UCG splice site to prevent inadvertent expression of
the 3’ exon, ΔN-Bax [48,49]. Though the conserved region of the CHIKV target RNA does not
possess an invariant base, a single variable base at nucleotide 152 of the DENV RNA was posi-
tioned within a non-homologous bulge loop (BL) structure that separates the IGS and EGS,
and therefore did not influence the targeting of the intron (42). This BL structure promotes the
formation of the P10 helix, which increases the catalytic efficiency of the intron (45).

Construction of anti-DENV and anti-DENV/CHIKV dual targeting group I
intron-ΔN Bax vectors
In previous reports, we described the construction and trans-splicing activity of an anti-DENV
group I intron that was designed to effectively trans-splice all known DENV sequences by

Fig 1. Trans-splicing reaction catalyzed by the group I intron. First step! Intron finds its target RNA
sequence through complimentary base pairing with the internal and external guide sequences (IGS and
EGS, respectively). The intron then sequesters the 3’-OH of a free-floating guanosine (GTP, GDP, GMP, or
guanosine alone). The 3’GNPOH attacks the phosphodiester backbone directly downstream of the reactive
uracil on the 5’ exon. Second step! The 3’ exon is brought into proximity with the newly freed 3’-OH on the
cleavage uracil, guided by the P10 helix. The 3’-OH attacks the phosphodiester backbone just upstream of
the 3’ exon in another transesterification reaction, resulting in the 5’ exon and the 3’ exon being joined
covalently. Third step! The end result is a newmRNAmolecule, functional and ready for translation, formed
of two separate RNAmolecules. Adopted from Figure 1 in reference [49].

doi:10.1371/journal.pone.0139899.g001
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targeting the uracil at position 143 within the DENV 5’CS [48,49] (Fig 2B; see Materials and
Methods). This trans-splicing anti-DENV group I intron included a 9 nucleotide EGS that
Watson-Crick base pairs to sequences that are fully conserved among all known DENV
genomes to improve catalytic efficiency and minimize potential off-target splicing interactions.
A 9 base IGS was also present in this antiviral intron, possessing a reactive guanosine that
forms a wobble base pair with the targeted uracil on the substrate DENV RNA (Fig 1). The
anti-DENV group I intron was used in this study as a positive control for DENV trans-splicing
and a negative control for CHIKV trans-splicing. It also served as a PCR template for the pro-
duction of anti-CHIKV and DENV/CHIKV dual targeting group I introns.

The antiviral group I intron constructs that we refer to as “dual targeting introns” were con-
structed by engineering the DENV-targeting antiviral group I intron [48,49], to include EGS,
IGS, and P10 helix forming sequences specific for CHIKV (Fig 3). This was accomplished by
incorporating IGS, EGS, and P10 sequences specific to the highly conserved NS1 region of the
CHIKV RNA into the previously successful anti-DENV 9v1 construct [48,49], allowing target-
ing of genomic CHIKV RNA as well as DENV genomic RNAs by a single antivirus group I
intron (Fig 3). Excluding the wobble base with the uracil at nucleotide position 143 (for DENV
RNA targeting) or nucleotide position 193 (for CHIKV RNA targeting), which are required for
proper cleavage [52–55], 17 bases of each set of targeting sequences from each dual targeting
intron interacted directly with the intended target sequence.

The CHIKV/DENV dual targeting version 1 (v1) and version 2 (v2) group I intron con-
structs differ by the 5’ to 3’ arrangement of the p10 helix forming sequences that are specific for
CHIKV and DENV (Fig 3). For example, the dual targeting introns with the v1 designation
possess the CHIKV p10 immediately upstream (5’) of the DENV p10. The vice versa is true for
the v2 dual targeting intron configurations.

Fig 2. Schematic Representation of the A. CHIKV and B. DENV genomes, respectively, with regions
targeted by the Dual Targeting Introns. A. CHIKV genomic RNA diagram with the indicated conserved
region targeted for viral suppression. The CHIKV conserved domain, labeled as the CHIKV Conserved
Region, was determined through a Clustal X alignment of GenBank obtained CHIKV sequences (see
Materials and Methods and S5 Fig). B. The most invariant segments of the DENV RNA are known as the 5’
and 3’ cyclization sequences (labeled as the Group I Intron target site). These sequences are so named
because they are complementary to each other and are thought to be involved in the formation of a
panhandle structure during genome replication.

doi:10.1371/journal.pone.0139899.g002
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The ΔN Bax coding sequence, corresponding to amino acids 112–192 of the Bax protein,
was included as the 3' exon (Fig 3). The ΔN Bax protein has been shown to induce cell death in
A549 and NCI-H1299 cell lines more efficiently than tBax [56]. The increased induction of
apoptosis is due to deletion of the Bax BH-3 domain that facilitates protein-protein interactions
between Bax and Bcl-2 or other anti-apoptotic regulators. To insure that this potent apoptosis
inducer was not expressed from the intron construct, we inserted a UAA stop codon into the
P9.0 helix of the group I intron immediately upstream of the UCG splice donor [48,49]. Link-
ing the 3’exon, ΔN-Bax, to these dual targeting, antivirus group I introns was designed to insure
replication suppression of two different viral RNA genomes, in this case DENV and CHIKV,
with a single group I intron.

We previously constructed negative controls for trans-splicing activity by removing the
entire catalytic core, domains P4 through P6, of the trans-splicing intron [48]. Using this nega-
tive control group I intron as a PCR template, we engineered two negative control group I
introns, ΔCHIKV/DENVv1 and ΔDENV/CHIKVv1, as described in Materials and Methods.

The DENV/CHIKV dual targeting intron-ΔN Bax constructs were further modified by
attaching a Drosophila C Virus (DCV) IRES-driven mCherry fluorescent marker gene imme-
diately downstream of the ΔN Bax 3’ exon (Fig 3). This bi-cistronic configuration allowed
monitoring for the presence and expression of the dual targeting CHIKV/DENVgroup I intron
constructs within mosquito cell cultures. Expression of the entire construct was driven in mos-
quito cells by the Drosophila melanogaster Actin 5c promoter (A5c).

Dual targeting CHIKV/DENV-ΔN Bax intron constructs effectively target CHIKV and all
DENV serotypes analyzed.

Our previous studies demonstrated that anti-DENV group I intron-firefly luciferase (FL)
and anti-DENV group I intron-ΔN Bax constructs were capable of effectively targeting the 5’

Fig 3. anti-CHIKV/DENV Dual Targeting Introns in a Bicistronic Configuration. Each of the trans-splicing
dual targeting introns was tagged downstream of the ΔN Bax 3’ exon (active, further truncated version of
tBax) with the mCherry fluorescent marker gene expressed from an IRES sequence of the Drosophila C Virus
(DCV). Expression of these constructs was driven by the Drosophila melanogaster Actin 5c promoter. Each
of these Dicistrovirus IRES sequences was previously determined to yield the highest levels of expression in
Ae. aegyptimosquito cells [48]. The bicistronic configuration allowed monitoring for the presence and
expression of these constructs within cell cultures through dual expression of antiviral intron-ΔN Bax and
mCherry cistronic portions of the plasmid. Version 1 (v1) and Version 2 (v2) refer to the order of the CHIKV
and DENV specific P10 helix sequences. CHIKV = Chikungunya virus targeting sequences; DENV = Dengue
virus targeting sequences; IRES = internal ribosome entry site; EGS = external guide sequence;
IGS = internal guide sequence; BL = bulge loop; TSD = trans splicing domain; P10 = P10 helix.

doi:10.1371/journal.pone.0139899.g003
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CS region located within the RNA of all DENV serotypes [48,49]. We followed a similar proto-
col to examine the ability of our dual targeting constructs to effectively target, splice, and sup-
press both DENV and CHIKV in transformed cells (Fig 4).

Intron-expressing stable lines were generated by co-transfection of C6/36 cells with a hygro-
mycin selectable marker plasmid along with one of the A5c promoter plasmids expressing each
of the dual targeting CHIKV/DENV group I introns, or with a negative control intron coupled
to the 3’ ΔN Bax exon, as described in Materials and Methods and previous reports [48,49].
Post-spliced products of approximately 300 or 310 bp were recovered as a result of targeting
either DENV or CHIKV by the respective singlet antiviral introns (lanes 3 and 4), or dual anti-
virus intron (lanes 5 through 8) targeting of DENV or CHIKV (Fig 4). The identity of these
presumptive spliced product bands was confirmed by sequencing (Data not shown).

As expected we did not detect spliced products by RT-PCR of RNAs extracted from cells
transfected with the negative control dual ΔCHIKV/DENV-ΔN Bax vector constructs (ΔC/D
and ΔD/C, Lanes 1 and 2, respectively; Fig 4). Moreover, DENV CA-ΔN Bax spliced product
was not detected when cells transformed with the antiviral intron designed to target only
CHIKV were challenged with DENV (lane 3), nor was the CHIKV NS1 ΔN Bax spliced product
detected when anti-DENV-ΔN Bax transformed C6/36 cells were challenged with CHIKV
(lane 4).

CHIKV/DENV dual targeting intron-ΔN Bax constructs initiate apoptosis
upon arbovirus infection
Annexin V apoptosis assays were performed to establish the ability of expressed DENV CA-
ΔN Bax or CHIKV NS1-ΔN Bax fusion proteins to initiate apoptosis [57–59]. C6/36 clonals
stably expressing CHIKV-ΔN Bax, DENV-ΔN Bax, or the dual targeting intron-ΔN Bax con-
structs were challenged with each DENV serotype indicated, or CHIKV strain and analyzed by
annexin V staining as described in Materials and Methods (Fig 5). As a control, C6/36 cell lines
stably expressing CHIKV-ΔN Bax, DENV-ΔN Bax, and CHIKV/DENV dual targeting intron-
ΔN Bax constructs were tested in the absence of virus for annexin V activity to ensure that sta-
ble expression of the intron itself does not trigger apoptosis.

As expected, non-transfected (designated as "wild type") C6/36 cells, as well as clonal cells
expressing the inactive anti-CHIKV/DENVv1 group I intron-ΔN Bax constructs (ΔCHIKV/
DENVv1-ΔN Bax or ΔDENV/CHIKV v1-ΔN Bax), displayed background annexin V-FITC
staining following DENV or CHIKV infection (Fig 5). Expression of the active dual targeting
intron constructs with ΔN Bax as the 3’ exon, irrespective of the DENV serotype or CHIKV
challenge, led to the activation of cellular apoptotic pathways as indicated by the binding of
FITC-conjugated annexin V to the PS externalized on the cell surface [59].

All CHIKV/DENV dual targeting-ΔN Bax clonal cell lines displayed 2 fold
greater initiation of apoptosis than negative control cells
Although C6/36 cell lines stably expressing the anti-CHIKV -ΔN Bax construct did not exhibit
annexin V staining above background in the presence of DENV infection, CHIKV challenge
resulted in significant annexin V staining (Fig 5). Similarly, C6/36 cell lines stably expressing
the anti-DENV-ΔN Bax construct did not exhibit annexin V staining above background in the
presence of CHIKV infection, while DENV challenge resulted in positive staining (Fig 5).
These results further demonstrate the specificity of our anti-CHIKV/DENV dual targeting
intron approach.
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Fig 4. CHIKV/DENV dual targeting intron–ΔN Bax constructs effectively target CHIKV and all four DENV serotypes tested.Clonal Ae. albopictusC6/
36 cells transformed with constructs bearing anti-CHIKV, anti-DENV, or the catalytically active and inactive forms of the anti-CHIKV/DENV dual targeting
intron constructs were infected with one of the arboviruses indicated on each figure panel and analyzed for the presence of splice product by RT-PCRwith
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Activity of CHIKV/DENV dual targeting intron-ΔN Bax constructs against
DENV and CHIKV results in further progression of apoptosis
Caspases are associated with the initiation of the “death cascade” and are important markers of
the cell’s entry point into apoptosis [60,61]. Caspase-3 is a mammalian-specific effector cas-
pase. However, mosquitoes possess several “effector caspases”, and it is not clear which caspase
(s) is/are involved in apoptosis in Aedesmosquito cells [62]. Therefore, for the purposes of this
paper, we will simply refer to these mosquito caspases as ‘effector caspases’.

Clonal C6/36 cell populations expressing anti-CHIKV/DENV-ΔN Bax constructs, linked to
a DCV IRES-mCherry configuration, were challenged with each of the four DENV serotypes
or the CHIKV strain 181/25, and analyzed (Fig 6), as described in Materials and Methods. As a

heterologous primers as stated in Materials and Methods. The title of each figure panel indicates the virus the CHIKV/DENV dual targeting intron–ΔN Bax
constructs were tested against. CHIKV/DENV-ΔN Bax or DENV/CHIKV-ΔN Bax refers to the CHIKV/DENV dual targeting trans-splicing group I introns that
were designed for dual targeting of CHIKV and DENV. These introns are coupled to the proapoptotic ΔN Bax as the 3’ exon. ‘v1’ and ‘v2’ refer to the order of
the CHIKV and DENV specific P10 helix-forming sequences, as explained in Materials and Methods ΔCHIKV/DENVv1-ΔN Bax (ΔCD) or ΔDENV/CHIKVv1-
ΔN Bax (ΔCD) refer to the anti- CHIKV/DENV dual targeting introns possessing the inactive deletion mutation of the trans-splicing domain that is linked to the
ΔN Bax 3’ exon. The deletion mutation of the trans-splicing domain is designed to knock out trans-splicing function, providing a negative control [76]. Control
RT-PCR experiments were performed with primers for actin to confirm similar RNA loading. Heterolgous primers to the intron-ΔN Bax segment of the dual
targeting intron construct were used to confirm the presence of our anti-CHIKV/DENV introns. All constructs are linked to the DCV IRES-mCherry
configuration as shown in Fig 3. The identity of spliced products was confirmed by sequencing (Data not shown).

doi:10.1371/journal.pone.0139899.g004

Fig 5. Promotion of the initial stages of apoptosis by the activation of our Dual Targeting Intron Constructs. Clonal Ae. albopictusC6/36 cells
transformed with the single or dual targeting antiviral intron constructs indicated were challenged with eeach of the arboviruses shown on the figure. Cells
were stained with FITC conjugated annexin V and analyzed the manufacturer’s instructions (Cayman Chemical Company; see Materials and Methods). ΔC/
D- or ΔD/C refer to the anti- CHIKV/DENV dual targeting introns possessing the inactive deletion mutation of the trans-splicing domain that is linked to the ΔN
Bax 3’ exon. Wt (wild type) refers to a negative control C6/36 cell line that does not express antiviral intron constructs. Six individual clonal cell populations
per single or dual virus targeting intron construct are shown. Each number corresponds to the individual clonal cell population tested. Three wells were
infected per clonal cell population and analyzed for annexin V-FITC staining. The experiment was performed at three independent times resulting in a total of
nine replicates for each dual-targeting intron-ΔN Bax tested.

doi:10.1371/journal.pone.0139899.g005
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control, C6/36 cell lines stably expressing antiviral intron constructs were tested in the absence
of virus for effector caspase activity to ensure that stable expression of the intron itself does not
trigger apoptosis.

In the presence of either CHIKV or DENV challenge, all CHIKV/DENVv1-ΔN Bax clonal
cell lines displayed 10 fold greater initiation of apoptosis than negative control cells. Five out of
6 DENV/CHIKVv1 clonal cell lines initiated apoptosis at levels similar to CHIKV/DENVv1
clonals, as was the case for 4 out of 6 for CHIKV/DENVv2 and 5 out of 6 DENV/CHIKVv2
clonal cell populations tested. As expected, wild type C6/36 or ΔCHIKV/DENVv1-ΔN Bax or
ΔDENV/CHIKV v1-ΔN Bax constructs displayed only background levels of effector caspase
activity, following DENV or CHIKV infection.

Uninfected wild type C6/36 displayed minimal effector caspase activity, comparable to
background levels following CHIKV or DENV infection. Similar results were also observed for
cell clones transformed with the active anti-DENV group I intron following CHIKV challenge,
and the active anti-CHIKV group I intron following DENV challenge, demonstrating virus
specificity of our anti-arbovirus approach. The absence of significant effector caspase activity
observed with the inactive dual targeting introns ΔCHIKV/DENVv1-ΔN Bax or ΔDENV/

Fig 6. Effector caspase activation confirms the induction of apoptosis by the activation of Dual Targeting Intron Constructs. Clonal Ae. albopictus
C6/36 cells transformed with the single or anti-CHIKV/DENV dual targeting antiviral intron constructs indicated were challenged with either of the four DENV
serotypes or CHIKV vaccine strain 181/25 (MOI 0.01). 1x106 cells were assessed for effector caspase activity, per the manufacturer’s instructions (see
Materials and Methods). ΔC/D-ΔN Bax or Δ/C-ΔN Bax refer to the anti- CHIKV/DENV dual targeting introns possessing the inactive deletion mutation of the
trans-splicing domain that is linked to the ΔN Bax 3’ exon. Wt (wild type) refers to a negative control C6/36 cell line that does not express antiviral intron
constructs. Numbered lanes indicate clonal cell populations expressing single or dual virus targeting intron constructs. Three wells were infected per clonal
cell population and analyzed for “effector caspase” activity. The experiment was performed at three independent times resulting in a total of nine replicates for
each dual-targeting intron-ΔN Bax tested.

doi:10.1371/journal.pone.0139899.g006
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CHIKV v1 following CHIKV or DENV challenge demonstrated effective suppression of read
through of the ΔN Bax 3’ exon linked to these intron constructs.

A hallmark of apoptosis is the degradation of nuclear DNA into nucleosomal units of
approximately 180 bp in length [63], yielding a DNA ladder appearance that can be visualized
on an agarose gel. DNA fragmentation analysis was performed on infected anti-CHIKV/
DENV dual targeting intron-ΔN Bax expressing clonal cell lines, as described previously
[64,65] and in Materials and Methods, to further demonstrate the apoptosis inducing capabili-
ties of our antiviral constructs (Fig 7 and S1 Fig through S5 Fig).

As expected, infected or uninfected wild type C6/36 cells did not display fragmentation of
nuclear DNA. Clonal Ae. albopictus C6/36 cells stably expressing the trans-splicing deficient
ΔCHIKV/DENVv1-ΔN Bax, ΔDENV/CHIKVv1-ΔN Bax, ΔCHIKV/DENVv1-ΔN Bax, or
ΔDENV/CHIKVv1-ΔN Bax constructs did not display observable DNA fragmentation upon
infection with CHIKV (Fig 7A) or DENV (Fig 7B and S1 Fig through S4 Fig), further demon-
strating that the insertion of a UAA codon in the P9.0 helix of the group I intron prevents pre-
mature expression of the ΔN Bax effector gene. DNA fragmentation was evident in all CHIKV/
DENVv1 dual targeting intron-ΔN Bax clonal cell populations infected with CHIKV or
DENV. 5 out of 6 DENV/CHIKVv1 clonal cell lines displayed DNA fragmentation similar to
CHIKV/DENVv1 clonals, as was the case for 4 out of 6 for CHIKV/DENVv2 and 5 out of 6
DENV/CHIKVv2 clonal cell populations tested.

Wild type C6/36 or the inactive controls (ΔCHIKV/DENVv1-ΔN Bax, ΔDENV/CHIKV v1-
ΔN Bax, ΔCHIKV/DENVv1-ΔN Bax, ΔDENV/CHIKV v1-ΔN Bax) displayed no detectable
DNA fragmentation following DENV or CHIKV infection. Uninfected wild type C6/36 also
displayed no DNA fragmentation. Similar results were also observed for cell clones trans-
formed with the active anti-DENV group I intron following CHIKV challenge, and the active
anti-CHIKV group I intron following DENV challenge, demonstrating the specificity of our
anti arbovirus approach. The absence of observable DNA fragmentation with the dual targeting
CHIKV/DENV introns, without CHIKV or DENV challenge, demonstrated effective suppres-
sion of read through of the ΔN Bax 3’ exon linked to these intron constructs.

All DNA fragmentation assay results directly correlated with the clonal cell populations dis-
playing high levels of effector caspase activity, and helped confirm that optimal antiviral group
I intron mediated DENV CA-ΔN Bax or CHIKV NS1-ΔN Bax splice formation and subsequent
protein expression leads to full induction of apoptosis in the presence of arbovirus infection.

Anti-CHIKV/DENV dual targeting intron-ΔN Bax activation leads to full
suppression of DENV replication
Effective targeting and suppression of DENV replication was previously demonstrated through
the expression of anti-DENV group I intron-FL and anti-DENV group I intron-ΔN Bax con-
structs [48,49]. We expected that clonal cell expression of a ΔN Bax product following DENV
or CHIKV targeting by our dual-targeting intron constructs would demonstrate an enhanced
suppressive effect. C6/36 cell clones stably expressing dual targeting intron constructs bearing
ΔN Bax as a 3’ exon were challenged with each DENV serotype indicated or CHIKV 181/25,
and virus production was quantified by TCID50-immunofluorescence antibody assays as
described in Materials and Methods (Fig 8; [31]).

In the presence of either CHIKV or DENV challenge, all CHIKV/DENVv1-ΔN Bax clonal
lines demonstrated complete suppression of DENV and CHIKV replication. More specifically,
in all 6 clonal lines that stably expressed CHIKV/DENVv1, none displayed detectable levels of
DENV or CHIKV, exhibiting up to 7 logs reduction in viral titer when compared to the wild
type C6/36 infection control (I). 5 out of 6 DENV/CHIKVv1 clonal lines fully suppressed these
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Fig 7. DNA Fragmentation Assay. Clonal Aedes albopictus C6/36 cells transformed with the anti-CHIKV,
anti-DENV, anti-CHIKV/DENV or anti-DENV/CHIKV dual targeting antiviral intron constructs indicated were
each challenged with each arbovirus indicated. Following virus challenge cells were pelleted, lysed, and
analyzed as described in Materials and Methods. DNA fragmentation results obtained following clonal C6/36
cells challenged with A. CHIKV or B. DENV-2 are shown. See S1 Fig through S5 Fig for DNA fragmentation
assays performed following challenge with DENV-1, DENV-3, DENV-4, or DNA fragmentation assays
performed on uninfected clonal cells expressing anti-CHIKV, anti-DENV or anti-CHIKV/DENV dual targeting
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arboviruses, as was the case for 4 out of 6 for CHIKV/DENVv2 and 5 out of 6 DENV/
CHIKVv2 clonal cell populations tested. As expected, virus infected wild type C6/36 (I) or
ΔCHIKV/DENVv1-ΔN Bax or ΔDENV/CHIKV v1-ΔN Bax constructs did not exhibit sup-
pression of DENV or CHIKV replication. This result was also observed for clonal cells trans-
formed with either the active anti-DENV group I intron following CHIKV challenge and active
anti-CHIKV group I intron following DENV challenge.

Discussion
Our results demonstrate, for the first time, that a single group I intron can be configured to tar-
get and trans splice two different RNA sequences. In this instance we establish the effectiveness
of a constitutively expressed group I intron that targets and trans-splices conserved sequences
within CHIKV and DENV, viruses representing two distantly related families of arboviruses.

antiviral intron constructs. Numbered lanes indicate clonal cell populations expressing single or dual virus
targeting intron constructs. Commercial DNA ladder served as size standards for each gel. Size of DNA
ladder is indicated on the right of each gel. I = Wt C6/36 mosquito cells infected with virus indicated;
U = uninfected; Wt C6/36 mosquito cells; ΔC/Dv1 = ΔCHIKV/DENVv1; ΔD/Cv1 = ΔDENV/CHIKVv1; ΔC/Dv2
= ΔCHIKV/DENVv2; ΔD/Cv2 = ΔDENV/CHIKVv2.

doi:10.1371/journal.pone.0139899.g007

Fig 8. Suppression of CHIKV and DENV replication is evident in clonal cell populations expressing antiviral Dual Virus Targeting Group I Intron
Constructs. Clonal Ae. albopictus C6/36 cells, transformed with the single or dual targeting antiviral intron constructs indicated, were challenged with each
arbovirus indicated. Infected cell supernatants were collected, and viral titers were determined by TCID50-IFA. I = wild type C6/36 mosquito cells infected with
virus indicated; U = uninfected wild type C6/36 mosquito cells; ΔC/D = ΔCHIKV/DENVv1; ΔD/C = ΔDENV/CHIKVv1. Supernatants originating from each
clonal cell population were used as inoculum for three wells of fresh C6/36 cells and analyzed for the presence of each DENV serotype of CHIKV vaccine
strain 181/25 by TCID50-IFA. The experiment was performed at three independent times resulting in a total of nine replicates for each dual-targeting intron-
ΔN Bax tested.

doi:10.1371/journal.pone.0139899.g008
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These trans-splicing, dual targeting group I intron configurations employ a 3' exon, ΔN Bax,
that, when appropriately spliced with coding domains from each virus, induces apoptotic cell
death upon infection in transformed mosquito cells.

Group I trans-splicing introns have an established potential for targeting RNA virus
genomes in infected cells [45,46,48]. In previous reports we determined an optimal group I
intron target sequence following an alignment of 98 instances of DENV that identified one
highly conserved region positioned within the capsid coding sequence at nucleotides C131 to
G151. These nucleotides are a part of the 5’-3’ CS domain of the DENV genome [66,67] that is
essential for DENV replication [67] and include the amino terminal portion of the CA protein
coding region. In this report we also identified a highly conserved region within the CHIKV
NS1 gene at nucleotides G188 to C216 (S5 Fig) that we demonstrate serves as an effective target
for trans splicing.

The unique configuration of our anti-CHIKV/DENV dual targeting group I introns cata-
lyzes trans-splicing of the 5’ conserved target sequences of the DENV and CHIKV genomes to
a 3’ ΔN Bax exon to effectively induce apoptotic death of cells following infection, thus prevent-
ing viral spread. A UAA stop codon was inserted in the trans-splicing domains of these introns
to prevent premature expression of ΔN Bax that may result in cell death prior to infection. Fol-
lowing CHIKV/DENV dual targeting intron catalysis of DENV genomes at uracil 143, or
CHIKV RNA genomes at U193, a chimeric mRNA is formed that consists of the 5’ cap, 5'
UTR, and either 144 nucleotides of the DENV Capsid (CA) or 117 nucleotides of the CHIKV
NS1 coding sequences appended to the 3’ ΔN Bax exon. These chimeric RNAs express a
DENV CA-ΔN Bax or CHIKV NS1-ΔN Bax fusion protein that is demonstrated capable of
inducing apoptotic cell death instead of allowing a productive virus infection.

Effective suppression of arbovirus replication with induction of apoptosis has been previ-
ously demonstrated in mosquitoes, most notably with Sindbis viruses [68]. Therefore, provid-
ing an apoptotic response in addition to genome targeting should enhance suppression of
DENV or CHIKV replication as well. The ability to induce apoptosis following targeted splic-
ing of viral genomes is an important advantage of this antiviral approach. While our group I
introns demonstrated the capacity to cleave the highly conserved DENV 5’ CS region and a
highly conserved region found within the CHIKV NS1 gene, the utility of these molecules as
simple catalytic cleavage agents requires levels of expression that are equal to or greater than
those generated by virus in infected cells.

Since escape events may arise if the rate of virus replication exceeds the rate of group I
intron catalytic suppression, coupling the splicing activity of group I introns to a death-upon-
infection strategy provides an added level of insurance against the development of escape
mutants by insuring virus replication rates do not exceed group I intron expression and cata-
lytic rates.

The potential emergence of escape mutants resulting from changes in the viral RNA, pre-
venting targeting by antiviral ribozymes, is a possibility. The potential inability of the CHIKV/
DENV dual targeting group I introns to suppress either CHIKV or DENV escape mutants can
occur if the ribonucleic acid residues that constitute the IGS are not able to successfully target
CHIKV or DENV RNA. This can be due to a mutation of the targeted uracil or the viral RNA
residues targeted by the IGS. Mutation of viral RNA residues targeted by the EGS may not have
a detrimental effect on group I intron catalysis of the viral RNA genome. It has been demon-
strated that mutation of any residue in the sequence targeted by the EGS domain of group I
introns does not eliminate catalysis or trans-splicing of the viral RNA sequences to the 3’ exon
RNA.

We constructed a set of anti-arbovirus group I trans-splicing intron constructs (S1 Table,
Fig 3) that are coupled to the proapoptotic ΔN Bax 3’ exon to assess whether the relative order
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of virus specific targeting sequences and P10 helices in these constructs affected activity against
each virus. The results confirm that these constructs effectively trans-splice the RNA of an
infecting DENV or CHIKV to the ΔN Bax 3’ exon when constitutively expressed as RNA in
transformed C6/36 cells, irrespective of the relative position of the targeting sequences. These
intron constructs effectively suppress DENV or CHIKV infection of transformed mosquito
cells. Clonal C6/36 cell populations expressing the anti-CHIKV/DENV group I intron-ΔN Bax
constructs, linked with the IRES driven mCherry as a bicistronic transcript (Fig 3), resisted
infection with either CHIKV or DENV. Furthermore, addition of these IRES/mCherry config-
urations immediately downstream of the 3’ ΔN Bax exon did not appear to alter the trans-splic-
ing capabilities of these trans-splicing introns (Fig 4), or affect the ability of ΔN Bax to initiate
apoptosis in DENV or CHIKV infected cells (Figs 5, 6 and 7).

The expression and pro-apoptotic function of ΔN Bax is not inhibited by the 15 amino acids
of CHIKV NS1 or 19 amino acids of dengue CA proteins fused to its N-terminus. Expression
and activity of ΔN Bax, CNS1- ΔN Bax or DCA-ΔN Bax expressed in cells are not significantly
different, and trans-splicing of the CHIKV and DENV RNA genomes by CHIKV-ΔN Bax
(against CHIKV RNA), DENV-ΔN Bax (against DENV RNA), or CHIKV/DENV-ΔN Bax
leads to the activation of cellular apoptosis as indicated by annexin V-FITC (Fig 5), effector
caspase assays (Fig 6), and DNA ladder analysis (Fig 7 and S1 Fig through S5 Fig). None of
these assays indicate apoptotic cell death when the trans-splicing negative ΔCHIKV/DENV or
ΔDENV/CHIKV intron-bearing constructs are expressed or when cultured wild type C6/36
mosquito cells are infected with either CHIKV or DENV, confirming our results are a conse-
quence of the presence of a trans-spliced RNA encoding the CNS1-ΔN Bax or DCA-ΔN Bax.
Results obtained also demonstrate that fusion of the N-terminal amino acids of the DENV CA
or CHIKV NS1 proteins to the N-terminus of the ΔN Bax protein does not eliminate the apo-
ptotic inducing capacity of ΔN Bax, as may have been expected. The C-terminal residues of
Bax possess the pore forming function of this pro-apoptotic protein [69], and may be the rea-
son ΔN Bax retains proapoptotic activity in the presence of an N-terminal addition. Other
researchers have analyzed N-terminal epitope-tagged variants of tBax with little alteration in
activity [56,70,71].

Lower effector caspase and inhibition of viral replication may be due to the hindrance of
dual targeting intron-ΔN Bax mRNA translocation out of the nucleus, leading to a decrease in
the number of trans-spliced mRNAmolecules that are produced following dual targeting
intron-ΔN Bax targeting of CHIKV or DENV RNA in the cytoplasm of clonal cells.

Several labs have demonstrated that differences observed between annexin V and effector
caspase/DNA fragmentation assays, may reflect the fact that the early stages of apoptosis can
be reversed [72–76], preventing the progression of several clonal cell populations from the
early stages of apoptosis (positive annexin V staining) to the latter stages of apoptosis (negative
effector caspase activity and DNA fragmentation). Additionally, variability seen among the
individual clones can be attributed to differences in expression of the group I introns due to
position effects resulting from random integration of the transgene.

Additional support for the utility of these anti-CHIKV/DENV dual arbovirus targeting con-
structs as potent antiviral effectors is evidenced by the TCID50-IFA results that demonstrate
suppression of infectious virus production from transformed clonal cell lines upon challenge
with either CHIKV or each of the four serotypes tested (Fig 8). These results validate the utility
of this single antiviral effector gene as a potential means for producing transgenic mosquitoes
that will suppress DENV and CHIKV transmission.

We now have a set of anti-CHIKV/DENV group I introns that each have the ability to target
four DENV serotypes and CHIKV. Our results demonstrate for the first time that group I
introns may be configured to mediate trans-splicing against two different RNA targets. In this
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case, we successfully used this approach to create antiviral group I intron constructs that could
arm mosquito cells to suppress two mosquito-borne viruses (CHIKV and DENV). Targeting
these co-endemic viruses with a single catalytic ribozyme eliminates the necessity to construct
and test separate catalytic RNAs or siRNA molecules, and could greatly facilitate the establish-
ment of effective transgenic mosquito lines for potential release. The induction of cellular apo-
ptosis by our anti-CHIKV/DENV constructs following DENV or CHIKV trans-splicing
reduces the opportunity for escape mutants that may evolve in the infected cell and prevents
the virus replication from overriding catalytic intron activity if the replication of DENV or
CHIKV supersedes the catalytic activity of the anti-CHIKV/DENV group I intron.

Materials and Methods

Cells, Virus and Antibody
The Ae. albopictus C6/36 cells used in this study were obtained from ATCC, and maintained in
Leibovitz’s L-15 media (Atlanta Biologicals) supplemented with 10% FBS (Atlanta Biologicals),
10% TPB (triptose phosphate broth; Invitrogen/Gibco), penicillin G (100U/ml; Invitrogen/
Gibco) and streptomycin (100μU/ml; Invitrogen/Gibco), and grown in a 28°C incubator and
passaged every 4 days. Assays involving DENV and CHIKV infections required L-15 media
supplemented with 2% FBS and 10% TPB. Viral stocks were prepared as previously described
[31,48,77].

CHIKV and DENV sequence data were provided by NCBI. Genbank GenInfo identifiers for
the four DENV serotypes and CHIKV used in this study comprise the following: DENV type 1
Hawaii: DQ672564.1, DENV type 2 strain New Guinea C (NGC): AF038403.1, DENV type 3
strain ThD3 0010 87(strain H87): AY676352.1, DENV 4 strain DENV-4/SG/06K2270DK1/
2005 (strain H241): GQ398256.1, and CHIKV vaccine strain 181/25: L37661.

TCID50-IFA analyses involving DENV infection were performed using monoclonal anti-
body (MAb) 4G2 (kindly provided by Dr. Stephen Higgs, Kansas State University), while anal-
yses involving CHIKV infection were performed using a Chikungunya 181/25 vaccine strain
specific antibody (IBT Bioservices, Gaithersburg, Maryland, USA).

Plasmid construction
Assurance of identity and integrity of all plasmids used was established through sequencing
and restriction analysis. All restriction enzymes were obtained from New England Bio Labs
(NEB).

The Drosophila melanogaster actin 5c (A5c) promoted anti- DENV 9v1 trans-splicing
intron construct employed in this study was used previously to trans-splice DENV type
2-NGC targets with either the firefly luciferase (FL) [48] or ΔN Bax [49] 3’exons, and was used
as a template for the production of anti-CHIKV/DENV dual targeting trans-splicing introns
by PCR amplification. Our negative controls for trans-splicing activity, ΔCHIKV/DENVv1
and ΔDENV/CHIKVv1, were produced by a two-step PCR amplification process. First, the
entire catalytic core [52], domains P4 through P6 [78], of the anti-DENV group I intron were
removed by PCR amplification with Platinum Taq polymerase (Invitrogen) using the forward
and reverse primers listed in S2 Table. The PCR product was used to replace the catalytic core
of the anti-DENV group I intron using the enzymesMluI and NheI. Then, the resulting inac-
tive intron was used as a template to produce ΔCHIKV/DENVv1 and ΔDENV/CHIKVv1 neg-
ative control introns using forward and reverse primers that possess the viral targeting
sequences and P10 helix forming sequences (S2 Table). This resulted in control introns that
lacked trans-splicing activity.
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Group I introns that possess efficacy in targeting of CHIKV and DENV were produced by
PCR amplification of the anti-DENV group I intron previously described [48]. See S2 Table for
sequences of primers used to produce these dual arbovirus targeting introns. Amplification of
the CHIKV/DENV introns was achieved with forward primers possessing the IGS and EGS
complementary to the RNAs of CHIKV and DENV, respectively, were tailed with theMluI
restriction site sequence. The dual arbovirus targeting introns referred to as DENV/CHIKV
were produced by PCR amplification with forward primers possessing IGS and EGS comple-
mentary to the RNAs of DENV and CHIKV, respectively, were tailed with theMluI restriction
site sequence.

Any active dual targeting CHIKV/DENV dual targeting intron listed with a “version 1” (i.e.
v1) or “version 2” (i.e. v2) designation were each produced by a 2 step PCR process. Version 1
(v1) introns possess 6 nucleotides responsible for the formation of the CHIKV specific P10
helix immediately followed by 6 nucleotides responsible for the formation of the DENV spe-
cific P10 helix (Fig 3). Production of these “v1” introns was achieved by PCR with each respec-
tive forward primer possessing either CHIKV/DENV or DENV/CHIKV targeting sequences
and a reverse primer possessing the CHIKV P10 helix forming sequences (also functions as a
PstI site), and tailed with a XhoI site that is immediately upstream of the PstI restriction site/
CHIKV P10 helix (S2 Table). The XhoI site was removed, and DENV P10 helix forming
sequences inserted, by PCR amplification of the ΔN Bax 3’ exon with forward and reverse
primers tailed with PstI and XbaI, respectively. This final PCR step resulted in insertion of
DENV P10 helix forming sequences immediately upstream of the ΔN Bax 3’ exon and immedi-
ately downstream of the CHIKV P10 helix forming sequences.

Version 2 (v2) introns possess 6 nucleotides responsible for the formation of the DENV spe-
cific P10 helix immediately followed by 6 nucleotides responsible for the formation of the
CHIKV specific P10 helix (Fig 3). Production of these v2 introns was achieved by PCR with
each respective forward primer possessing either CHIKV/DENV or DENV/CHIKV targeting
sequences and a reverse primer possessing the DENV P10 helix forming sequences immedi-
ately followed by CHIKV P10 helix forming sequences (also a PstI site), and tailed with a XhoI
site that is immediately upstream of the PstI restriction site/CHIKV P10 helix (S2 Table). The
XhoI site was removed by PCR amplification of the ΔN Bax 3’ exon with forward and reverse
primers tailed with PstI and XbaI, respectively.

The anti-CHIKV group I intron was produced through PCR amplification of the anti-
DENV group I intron [48] with a forward primer that possessed the EGS and IGS sequences
corresponding nucleotides that are complimentary to nucleotides C201 to C209 and G188 to
U196, respectively, of the CHIKV RNA genome and tailed withMluI. The CHIKV P10 helix
forming sequences were inserted immediately downstream of the P9.0 helix. Production of
these anti-CHIKV introns was achieved by PCR with a forward primer possessing CHIKV tar-
geting sequences and a reverse primer possessing the CHIKV P10 helix forming sequences
(also a PstI site), and tailed with a XhoI site that is immediately upstream of the PstI restriction
site/CHIKV P10 helix (S2 Table). The XhoI site was removed by PCR amplification of the ΔN
Bax 3’ exon with forward and reverse primers tailed with PstI and XbaI, respectively.

The anti-DENV intron construct used in this report as a negative control for CHIKV and a
positive control for DENV targeting and trans-splicing is the same antiviral intron as the previ-
ously tested 9v1 intron [48], but was renamed “U143” for clarity [49].

Production of anti-CHIKV, anti- DENV, and anti-CHIKV/DENV dual targeting group I
intron constructs possessing the DCV intergenic IRES site driving an mCherry fluorescent
marker was achieved by subcloning DCV-mCherry from the previously described 9v1 con-
struct into the antiviral group I intron constructs described above using NotI and SacI restric-
tion sites ([48,49]; Fig 3).
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Establishment of clonal cell populations
Clonal cell populations were produced as previously described [79]. Briefly, C6/36 cells stably
expressing anti-CHIKV, anti-DENV, CHIKV/DENV dual targeting intron constructs, or the
inactive intron versions ΔCHIKV/DENVv1 or ΔDENV/CHIKVv1 were grown to 1x104 cells/
mL and then diluted to 5 cells/mL. 100μl of this cell suspension was placed in each of a 96 well
plate and grown to confluency. Twelve wells of each plate were scraped and transferred to indi-
vidual wells of a 24 well plate. Once confluent, cells were then transferred to a 12 well plate,
then a 6 well plate, and lastly T-25 flasks. Following each transfer step, cells were maintained
with 1mL L-15 complete media supplemented with 100 μg/mL hygromycin. In order to guar-
antee clonability, 3 cloning cycles were carried out.

Reverse Transcription-PCR of DENV-ΔN Bax Splice Products Derived
from Cell Culture
Intron-expressing stable lines were generated by co-transfection of C6/36 cells with a hygromy-
cin selectable marker plasmid and one of either A5c promoter plasmids expressing dual target-
ing CHIKV/DENV group I introns or negative control introns coupled to the 3’ ΔN Bax exon,
as previously described [48,49]. Following hygromycin selection, the transformed C6/36 cells
were seeded at a density of 5x106 cells/ml in T25 flasks and were challenged with either DENV
(MOI = 0.1) or CHIKV (MOI = 0.01). Total cellular RNAs were isolated at 96 hours post-infec-
tion and assessed for CHIKV/DENV group I intron activity by RT-PCR detection of trans-
spliced products. Post-spliced products of approximately 300 or 310 bp were recovered as a
result of DENV or CHIKV targeting by the respective singlet antiviral intron (lanes 3 and 4)
and dual antivirus intron (lanes 5 through 8) targeting of DENV or CHIKV (Fig 4). The iden-
tity of these presumptive spliced product bands was confirmed by sequencing (Data not
shown).

Extraction of RNA from CHIKV or DENV infected and uninfected cells was performed
using the Qiashredder and RNeasy Mini kits (QIAGEN Inc., Valencia, CA, USA). Extracted
RNAs (5 μg) were treated with Turbo DNA-free DNAse (Applied Biosystems/Ambion, Inc.
Austin, TX USA). RT-PCR was performed using the SuperScript III One-Step RT-PCR kit
(Invitrogen) as directed. cDNA synthesis and PCR amplification were also performed as previ-
ously indicated [48,49].

A forward primer with the sequence 5’-GTGGACATAGACGCTGACA-3’ and a reverse primer
to ΔN Bax with the sequence 5’-CACTCCCGCCACAAAGATG-3’ were used for the RT-PCR of
CHIKV NS1-ΔN Bax (CNS1-ΔN Bax) splice products. For the RT-PCR of DENV CA-ΔN Bax
(DCA-ΔN Bax) splice products, previously described [49] forward primers specific to each
DENV serotype were used with a reverse primer possessing the sequence 5’-CACTCCCGCCAC
AAAGATG-3’.

Annexin V Assay
Binding of annexin V to translocated phospholipid phosphotidylserine (PS) allows for the
detection and analysis of apoptotic cells [57–59]. These assays were performed using the
Enhanced Apoptosis Kit as indicated by the manufacturer (Cayman Chemical Co.) with a few
modifications. Briefly, C6/36 clonal cell lines stably expressing the CHIKV-, DENV-, CHIKV/
DENV, and DENV/CHIKV dual targeting intron-ΔN Bax bearing constructs were infected
with DENV serotypes 1 through 4 (MOI = 0.1) or CHIKV strain 181/25 (MOI = 0.01) and
assayed for annexin V binding at 24 hpi (with CHIKV) or 48 hpi (with DENV). 1x106 clonal
cells were scraped and placed in a well of a 96 well black opaque microtiter plate in triplicate
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for each clonal cell type assayed. FITC-annexin V stained microtiter plates were assayed for
FITC-annexin V binding at 485 nm with the Spectra max M2 luminometer (Molecular
Devices) and analyzed with Softmax Pro 5.4.5.

Three wells per clonal cell population indicated were infected with the arbovirus shown and
analyzed for annexin V-FITC staining. This experiment was performed three times to give a
total of nine replicates for each dual -targeting intron-ΔN Bax tested. Assay were performed in
triplicate. Error bars indicate standard deviation of three independent experiments.

Effector Caspase Assay
Further validation of apoptosis induction was performed by assaying for increases in effector
caspase and other DEVD-specific protease activities using the EnzChekCaspase-3 Assay Kit #2
Kit (Life Technologies) as directed by the manufacturer. Briefly, C6/36 clonal cell lines stably
expressing the CHIKV-, DENV-, CHIKV/DENV, and DENV/CHIKV dual targeting intron-
ΔN Bax bearing constructs were infected with DENV serotypes 1–4 (MOI = 0.1) or CHIKV
strain 181/25 (MOI = 0.01) and assayed for effector caspase activity at 4d.pi (for DENV) or
3dpi (for CHIKV). 1x106 clonal cells were lysed, cell debris was pelleted, and lysates were
placed in a well of a 96 well black opaque microtiter plate in triplicate for each clonal cell type
assayed. Following addition of the Z-DEVD–R110 substrate, microtiter plates were assayed for
effector caspase activity at 496 nm with the Spectra max M2 luminometer (Molecular Devices)
and analyzed with Softmax Pro 5.4.5.

Three wells per clonal cell population indicated were infected with the arbovirus shown and
analysed for “effector caspase” activity. This experiment was performed three times to give a
total of nine replicates for each dual-targeting intron-ΔN Bax tested.

DNA Fragmentation Assay
Clonal C6/36 cells (1x107) stably expressing the CHIKV-, DENV-, CHIKV/DENV or DENV/
CHIKV dual targeting intron-ΔN Bax constructs were infected with one of four known DENV
serotypes (MOI = 0.1) or CHIKV strain 181/25 (MOI = 0.01) and assayed for DNA fragmenta-
tion as previously described [49]. Briefly, at 4 dpi (for DENV) or 3dpi (for CHIKV) infected
and uninfected cells were scraped, pelleted and lysed overnight at 50°C in lysis buffer [1.67mg/
ml Proteinase K, 10mM Tris (pH8.0), 100mMNaCl, 0.5% SDS 25mM EDTA]. Genomic DNA
was extracted with 200 μl Phenol:Chloroform:IAA (25:24:1) and sodium acetate/ethanol pre-
cipitated. DNA pellets were resuspended in 20 μl TE buffer, RNase A treated (6.0 mg/ml) at
37°C for 3 hours, and analyzed by 2% agarose gel electrophoresis at 5v/cm and visualized
under UV light. DNA fragmentation is demonstrated by the appearance of a DNA ladder-like
pattern.

TCID50-IFA analysis of dengue viruses
Immunofluorescence detection of cell surface expressed CHIKV or DENV envelope (E) pro-
teins in C6/36 cultures infected with serial 10 fold dilutions were used to assess the titer of
CHIKV (MOI 0.01) or each DENV serotype (MOI 0.1) tested as previously described [31,48].
10 fold serial dilutions of infected C6/36 cell culture supernatants were harvested at 24 hpi
(CHIKV) or 48 hpi (DENV) and used as inoculum for 96 well plate cultures of C6/36 cells.
Plates were incubated for 4 days at 28°C without CO2, washed, fixed with acetone:DPBS (3:1),
and stained with a primary DENV E antibody (1:200) [80], followed by a biotinylated-strepta-
vidin detection system conjugated with FITC (Amersham Biosciences, Piscataway, NJ). Wells
displaying cellular fluorescence were scored as positive for DENV infection. The number of
positive wells were counted and the virus titers calculated according to Karber’s method [81].
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Supernatants originating from each clonal cell population indicated were used as inoculum
for three wells of naïve C6/36 cells and analyzed for the presence of each DENV serotype or
CHIKV vaccine strain 181/25 by TCID50-IFA. This experiment was performed three times to
give a total of nine replicates for each dual-targeting intron-ΔN Bax tested.

Supporting Information
S1 Fig. Alignment of CHIKV Genomic Sequences for Identification of a Fully Conserved
Target Site. An alignment was performed of twenty five (25) CHIKV genomic sequences to
determine the most optimal regions for the design of the chikungunya virus specific and
DENV/CHIKV dual targeting antiviral group I introns by determining the region with the
greatest conservation within the CHIKV RNA genomes. Nucleotide sequences in yellow indi-
cate complete conservation. Nucleotide sequences in blue indicate partial conservation. Nucle-
otide sequence position is indicated at the top of the figure. GenBank Accession Numbers at
the left of the figure indicate the CHIKV sequences aligned.
(TIF)

S2 Fig. DNA Fragmentation Assay in the presence of DENV-1 challenge. Clonal Ae. albopic-
tus C6/36 cells transformed with the anti-CHIKV, anti-DENV or anti-CHIKV/DENV dual tar-
geting antiviral intron constructs indicated were each challenged with dengue virus serotype 1,
processed, and analyzed as described for Fig 7 and in Materials and Methods. I = Wt C6/36
mosquito cells infected with virus indicated; U = uninfected Wt C6/36 mosquito cells; ΔC/Dv1
= ΔCHIKV/DENVv1; ΔD/Cv1 = ΔDENV/CHIKVv1; ΔC/Dv2 = ΔCHIKV/DENVv2; ΔD/Cv2
= ΔDENV/CHIKVv2.
(TIF)

S3 Fig. DNA Fragmentation Assay in the presence of DENV-3 challenge. Clonal Ae. albopic-
tus C6/36 cells transformed with the anti-CHIKV, anti-DENV or anti-CHIKV/DENV dual tar-
geting antiviral intron constructs indicated were each challenged with dengue virus serotype 3,
processed, and analyzed as described for Fig 7 and in Materials and Methods. I = Wt C6/36
mosquito cells infected with virus indicated; U = uninfected Wt C6/36 mosquito cells; ΔC/Dv1
= ΔCHIKV/DENVv1; ΔD/Cv1 = ΔDENV/CHIKVv1; ΔC/Dv2 = ΔCHIKV/DENVv2; ΔD/Cv2
= ΔDENV/CHIKVv2.
(TIF)

S4 Fig. DNA Fragmentation Assay in the presence of DENV-4 challenge. Clonal Ae. albopic-
tus C6/36 cells transformed with the anti-CHIKV, anti-DENV or anti-CHIKV/DENV dual tar-
geting antiviral intron constructs indicated were each challenged with dengue virus serotype 4,
processed, and analyzed as described for Fig 7 and in Materials and Methods. I = Wt C6/36
mosquito cells infected with virus indicated; U = uninfected Wt C6/36 mosquito cells; ΔC/Dv1
= ΔCHIKV/DENVv1; ΔD/Cv1 = ΔDENV/CHIKVv1; ΔC/Dv2 = ΔCHIKV/DENVv2; ΔD/Cv2
= ΔDENV/CHIKVv2.
(TIF)

S5 Fig. DNA Fragmentation Assay in the absence of virus challenge. Clonal Ae. albopictus
C6/36 cells transformed with the anti-CHIKV, anti-DENV or anti-CHIKV/DENV dual target-
ing antiviral intron constructs indicated were each mock infected, processed, and analyzed as
described for Fig 7 and in Materials and Methods. I = Wt C6/36 mosquito cells infected with
virus indicated; U = uninfected Wt C6/36 mosquito cells; ΔC/Dv1 = ΔCHIKV/DENVv1; ΔD/
Cv1 = ΔDENV/CHIKVv1; ΔC/Dv2 = ΔCHIKV/DENVv2; ΔD/Cv2 = ΔDENV/CHIKVv2.
(TIF)
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S1 Table. Sequence composition of antiviral group I intron domains. The ribonucleotide
sequences of each antiviral group I intron are shown. The left column lists the viruses targeted
by the dual targeting introns containing respective targeting sequences shown. Targeting
sequences specific for each virus are indicated. See methods for description of assembly.
CHIKV = Chikungunya virus targeting sequences; DENV = Dengue virus targeting sequences;
EGS = external guide sequence; IGS = internal guide sequence; BL = bulge loop; TSD = trans
splicing domain; P10 = P10 helix.
(TIF)

S2 Table. Primers used for Dual Targeting Intron Construct Construction. Listed are the
forward and reverse primer sets used to produce the PCR fragments of anti-CHIKV/DENV
introns, negative controls, and the ΔN Bax 3’ exon for plasmid insertion. Restriction sites used
are indicated by lowercase nucleic acids. See Materials and Methods for description of vector
construct assembly.
(TIF)
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