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Abstract

Immunotherapies are becoming a promising strategy for malignant disease. Selectively directing 

host immune responses to target cancerous tissue is a milestone of human health care. The roles of 

the innate and adaptive immune systems in both cancer progression and elimination are now being 

realized. Defining the immune cell environment and identifying the contributions of each sub-

population of these cells has lead to an understanding of the immunotherapeutic processes, and 

demonstrated the potential of the immune system to drive cancer shrinkage and sustained 

immunity against disease. Poorly treated diseases, such as high-grade glioma, suffer from lack of 

therapeutic efficacy and rapid progression. Immunotherapeutic success in other solid 

malignancies, such as melanoma, now provides the principals for which this treatment paradigm 

can be adapted for primary brain cancers. The central nervous system is complex, and relative 

contributions of immune sub-populations to high grade glioma progression are not fully 

characterized. Here, we summarize recent research in both animal and humans which add to the 

knowledge base of how innate and adaptive immune cells contribute to glioma progression, and 

outline work which has demonstrated their potential to elicit anti-tumorigenic responses. 

Additionally, we highlight Neuropilin 1, a cell surface receptor protein, describe its signaling 

functions in the context of immunity, and point to its potential to slow glioma progression.

Keywords

glioma TME; immunotherapy; T Cells; GAMs; neuropilin 1

1. Introduction

High grade gliomas (HGG), such as grade IV Glioblastoma Multiform (GBM), are the most 

common and lethal primary tumors arising in the CNS [1]. GBM are viciously invasive, 

present chemo- and radio-therapy resistance, are histologically heterogeneous, and more 

recently have been classified by molecular subtypes [1–4]. Standard therapy minimally 

increases median survival and involves maximal surgical debulking followed by 
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Temozolomide and radiation treatment regiments [5]. GBM can arise from glial cells 

throughout the brain, and often results from malignant progression of grade II/III gliomas. 

The pathological hallmarks of glioma progression parallel those in other malignant solid 

tumor types, such as the dependency on vascular remodeling and angiogenesis, local tissue 

invasion, immune evasion, and resistance to standard of care therapies.

Increasing evidence supports the concept that the tumor microenvironment (TME) plays a 

modulatory role in glioma progression. The TME consists of non-cancerous stromal cell 

types, all of which ultimately contribute to maintenance and health of the bulk tumor [6]. 

While the CNS was once believed to be immune privileged, peripheral immune influences 

on CNS diseases is now a pragmatic subject. Here we discuss how major immune cell 

populations contribute to the progression and maintenance of HGG, and outline their 

potential to mitigate the advancement of disease. Lastly, we discuss Neuropillin 1 (NRP1), a 

prominent cell surface protein receptor with many distinct ligands, as a potential therapeutic 

target across immune cell populations, and suggest that NRP1 could be exploited in 

developing new treatments for GBM.

2. Discrete roles of immune cell populations in glioma progression, 

maintenance, and regression

2.1. Subpopulations of lymphocytes affect glioma progression

Although lymphoid populations vary across GBM cohorts, increased tumor infiltrating 

lymphocytes (TILs) correlate with glioma grade, but can also correlate with increased 

survival [7–9]. This paradox may be elucidated by considering the various lymphocytic 

populations present in the TME, and by identifying their contributions to tumor 

development. Naive CD4+ lymphocytes arise from hematopoietic thymic progenitors and are 

activated via MHC II antigen presentation on antigen presenting cells (APCs). Antigen 

exposure and humoral signaling initiate CD4+ T cells to expand into a variety of effector 

subsets. Polarized Th1/Th2 helper T cells (Th) are canonically derived from IL-12/INFγ or 

IL-4 exposure, respectively [10]. T regulatory cells (Treg) are another important subset of 

effector lymphocytes, which are potently induced following TGFβ exposure [11]. CD4+ Th 

cells have the ability to mount inflammatory responses, as well as activate processes of 

adaptive immunity. Alternatively, CD4+CD25+FOXP3+ Tregs are classically associated 

with immunosuppression, attenuation of autoimmunity, and the inhibition of CD4+ 

proliferation [11]. CD4+ cells are required for adaptive immune system activation, and thus, 

their presence would be expected to correlate with a stronger anti-tumoral adaptive immune 

response. However, the influences CD4+ Th2 and CD4+FOXP3+ Treg cells have within the 

TME have not been fully clarified in glioma.

Fecci et al. have previously reported that patients with GBM present with CD4+ 

lymphopenia, but noticeably also maintain higher proportions of CD4+CD25+FOXP3+ 

regulatory T cells (Tregs) [12]. Treg depletion studies in culture and in an orthotopic murine 

model of glioma suggested that the activity of the increased hematogenous populations of 

Tregs in GBM patients may be linked to Th2 responses and suppressed proliferation of 

CD4+ T cells [12]. The same group demonstrated that anti-CTLA-4 treatment in mice 
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harboring malignant astrocytomas increased peripheral CD4+ cell numbers and conferred 

resistance to Treg immunosuppression [13]. Since this work, there has been an increased 

focus on the contributions of CD4+ Th cells and subset CD4+FOXP3+ Tregs to glioma 

progression at both the pre-clinical and clinical levels.

Following entry into the CNS/tumor compartment, lymphocytes downregulate CD28, and 

CD62L co-stimulatory molecule expression [8]. This may hint at a mechanism by which the 

existing immunosuppressive TME captures and represses TILs. Although CD4+ cell 

numbers alone do not directly correlate with clinical outcome in GBM patients [7,14], new 

evidence suggests that elevated CD4+ and/or CD4+FOXP3+ population ratios may be 

indicative of glioma disease severity and risk of recurrence [15,16].

The mechanisms underlying how Th and Treg populations aid glioma progression have not 

been fully characterized. Mu et al. conducted an elegant study which analyzed 44 paired 

samples from patients with recurrent HGG [17]. Elevated numbers of perivascular CD4+ 

TILs strongly correlated with CD34+ tumor vascularity in both primary and recurrent glioma 

[17]. In a subset of patients refractive to bevacizumab anti-angiogenic therapy, increased and 

activated CD4+ populations were found to be correlated with bevacizumab resistance, as 

such activation was not apparent in chemotherapy- naïve patient samples [17]. Elevated 

CD4+ and CD4+FOXP3+ populations were correlated with shorter recurrence-free survival, 

and the perivascular CD4+FOXP3+ Treg population in primary tumors was identified as an 

independent predictor of tumor recurrence in this cohort [17]. The close association to the 

perivascular region, and conspicuous relationship with tumor progression and recurrence 

may point to the angiogenic process which may contribute to grade III glioma progression to 

GBM, a mechanism which has long eluded glioma biology. Nevertheless, these data support 

negative roles of CD4+ population subsets in glioma progression.

Despite these supportive roles, selectively modulating CD4+ populations could be used to 

elicit tumor shrinkage. Anti-tumorigenic effector functions of these cells have been realized 

in mouse models of melanoma and pancreatic cancer [18–20]. In a syngeneic orthotopic 

murine model of glioma, CD4+ depletion completely nullified tumor lysate vaccine/Fc-

OX40L treatment efficacy, and the survival effects were found to be driven in part by 

antibody-dependent cell mediated cytotoxicity (ADCC) and natural killer T cell (NKT) 

populations [21]. Similarly, CD4+ cell populations were found to be necessary for the 

complete efficacy of combined oncolytic herpes simplex virus (oHSV ΔG47-mIL12) and 

immune checkpoint inhibitor therapy in two distinct murine derived glioma models [22].

The anti-tumorigenic potential of alternate lymphocytic populations is also supported by a 

study, which expanded and differentiated glioma patient T cells (of mixed CD3+CD4−CD8−, 

CD4+, and CD8+ subsets) ex vivo using IL-2, IL-15, and IL-21. The study demonstrated 

preferential expansion of existing memory effector T cells populations, which were reactive 

against autologous tumor cells and shared tumor-associated antigens [23]. The authors also 

suggest that these expanded cell populations were resistant to TME immunosuppressive 

factors, and proposed this protocol for adoptive cell transfer therapy application [23]. While 

other specialized T cell subsets, such as γδ T cells, may lack roles in immune-mediated 
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responses to HGG [24], CD4+ T cells and CD4+FOXP3+ Treg subsets cannot be ignored 

when considering HGG progression and treatment responses.

2.2. Challenges cytotoxic lymphocytes face during glioma rejection

Unlike CD4+ cells, there is appreciably more knowledge surrounding the mechanisms by 

which CD8+ cytotoxic lymphocyte (CTL) populations affect glioma progression. Stimulated 

by MHC I+ APCs, effector CD8+ T cells selectively target virus-infected, malfunctioning, 

and/or cancerous cells. CTL infiltrate is typically correlated with survival in GBM patients 

[25]. Consequently, ineffective tumor clearance arises when tumor cells express ligands, 

which directly inhibit CTL function. Programmed death ligand 1 (PD-L1) is a primary 

immunosuppressive molecule whose expression is correlated with glioma grade, and may be 

a prognostic marker of GBM survival [26]. However, it should be noted that PD-L1 

expression among GBM subtypes is inconsistent [27]. Tumor cell expression of PD-L1 is a 

major mechanism by which the TME exerts immunosuppressive effects via ligation with 

PD-1 on CD8+ CTL effector immune cells. Success in phase I/II clinical trials for GBM 

patients using PD-1 checkpoint inhibitors Pembrolizumab and Nivolumab has demonstrated 

that PD-1 blockade may be a promising strategy to control glioma progression [28,29]. 

Animal models of GBM demonstrate that CTL effector function underlies PD-1/PDL-1 

blockade responses [30]. However, efficacy of PD-1 blockade may be dependent on tumor 

PD-L1 expression levels, and the perquisite existence of PD-L1 subdued CTLs [31]. These 

caveats present interesting challenges when considering PD-1 blockade as a treatment 

strategy for GBM. As such, combinatorial treatments aim to more effectively stimulate, 

recruit and prime CTL populations. Supporting this theory, radiotherapy has shown to 

dramatically increase the efficacy of checkpoint inhibitor blockade in animal models of 

glioma, which is characterized by increased CTL infiltrate and diminished Treg populations 

[32,33]. This regimen can easily be applied to human subjects, as radiotherapy is already a 

component of standard of care for HGG.

Other methods designed to improve CTL effector function utilize adoptive cell transfer 

(ACT). ACT elicits potent anti-tumor responses via exogenously priming or genetically 

altering effector CD8+ T cells to recognize tumor specific antigens. This allows CTLs to 

enter the brain parenchyma, identify target cells, clonally expand, and elicit INFγ-

dependent, cytotoxic anti-tumorigenic responses [34]. ACT has been successful in targeting 

primary melanoma and melanoma brain metastases [35,36], however they are still in initial 

phases of being developed for malignant gliomas. Intracranial and systemic delivery of 

autologous T cells expressing genetically engineered chimeric antigen receptor (CAR) 

against the tumor antigen IL13Rα2 has recently been demonstrated to be a tolerable 

platform to treat patients with advanced GBM [37]. Following this study, a recent individual 

case has reported compete regression of recurrent, multifocal tumors following modified 

IL13Rα2 CAR T-cell therapy [38]. Other modalities, such as the identification of a CD8-

independent mechanism of tumor regression in a murine model of glioma via Fc-OX40L 

may shed light on how discrete lymphoid populations contribute to tumor control [21].

Perhaps the most striking advancement in GBM immunotherapy is the application of 

dendritic cell (DC) vaccines. Native CTLs are often insufficient to induce GBM disease 
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regression, by virtue of the immunosuppressive TME, and due to the majority of 

unrecognizable surfaces within the bulk tumor. Exogenously introducing professional 

antigen presenting cells (APCs) which have been pre-educated to tumor antigen profiles can 

enhanced activation of the adaptive immune system, allowing for subsequent induction and 

recruitment of sufficient levels of host derived CTLs. This process may then tip the balance 

in favor of tumor rejection. Although it has been difficult to predict DC vaccination efficacy, 

the platform has proven to be a promising as well as tolerable approach to increase CTL 

infiltrate and GBM patient responses [39,40].

DC vaccines are faced with their own pitfalls including insufficient activation of the adaptive 

immune system, tumor heterogeneity, and limited migration of activated cells. An approach 

to circumvent the limited priming of the adaptive immune system is to combine DC vaccines 

with ACT. Tumor RNA-pulsed-DCs cocultured with autologous lymphocytes effectively 

expand tumor specific CTL populations, and in conjunction with DC vaccination, ACT 

significantly improves survival in animals with HGG [41]. Further protocols, which expand 

tumor specific CTLs, may be extended to humans. Tumor antigen-pulsed DCs from HLA-

A*02-positive GBM patients can increase CD8+ T cell expansion and specificity ex vivo 
[42]. INFγ production is signature to functional CTL effector populations. CTL responses to 

tumor antigens can be measured by INFγ production as well as effector/target killing ratios, 

which could help identify potent CTL effector populations for ACT [42].

Deriving DC vaccination efficacy has also been demonstrated by altering the antigenic 

profile DCs present to the adaptive immune system. Immunogenic cell death (ICD) of 

glioma cells induced by photodynamic therapy elicited a significantly stronger DC 

vaccination response over typical DC priming techniques in a prophylactic animal model of 

glioma [43]. ICD generates reactive oxygen species and damage associated molecular 

patterns (DAMPs), which drives DCs to confer robust protection and inhibition of glioma 

progression [43]. Furthermore, ICD based DC vaccination increased brain Th1 and CTL 

infiltrates, INFγ levels, and reduced Treg population ratios following glioma induction [43]. 

This approach was also found to be synergistic with traditional DC priming techniques, such 

as glioma cell freeze/thaw necrosis, as well as standard Temozolomide treatment [43]. Thus, 

new efforts should consider where tumor antigens are derived and by which methods DCs 

are primed before vaccination, so that complete activation and specificity of CTLs may be 

produced.

Lack of DC activation and migration also presents an obstacle for DC vaccination. GBM 

patients receiving intracranial injection of recall antigen tetanus/diphtheria (Td) toxoid to 

precondition the vaccination site showed improved clinical outcomes following CMV-pp65 

RNA pulsed DC vaccine treatment [44]. Patients displayed a robust increase in number of 

DCs draining into vaccine site lymph nodes. Further investigation identified a CD4+ T cell 

dependent mechanism, which mediated DC recall and Td precondition efficacy [44]. 

Prompting DC lymph node draining, cell maturation, and adaptive immune communication 

are all necessary to induce DC vaccine functionality.
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2.3. Glioma associated microglia and macrophages

Glioma associated microglia and macrophages (GAMs) traffic to malignant lesions, where 

they become subverted by tumor cells to adopt a pro-tumorigenic phenotype. Although the 

paradigm of polarized “M1” or “M2” phenotypes has recently been challenged [45], it is 

widely accepted that GAMS are predominantly M2-like; and orchestrate tumor progression 

by secreting factors which promote chemoattraction, immune suppression, neoangiogenesis, 

tumor cell survival, and by influencing extracellular matrix (ECM) reorganization (reviewed 

in [6,46,47]). GAMs are considered to be an integral part of glioma pathology, and evidence 

suggests that modulation of this immune cell population could slow or cause regression of 

tumor growth.

HGG biopsies consistently show excessive GAM infiltrate [9,48,49], and GAM populations 

reportedly comprise up to 30% of tumor bulk [47]. GAM infiltrate has been correlated with 

poor prognosis, particularly those which express M2 markers [50–52]. In silico and 

transcriptional analyses of patient samples link excessive M2 GAM infiltrate to the 

aggressive mesenchymal GBM subtype, and suggest that alterations in the TME promote 

GAM recruitment and disease progression [53]. It has also been shown that GAMs from 

GBM patients express high levels of PDL1, and upregulate this immunosuppressive ligand 

in response to tumor secreted IL-10 [54]. By deeply infiltrating peritumoral and bulk lesions, 

pro-tumorigenic M2 GAMs largely exert negative influence over human glioma progression.

Consistent with pro-tumorigenic M2 GAMs found in human patient samples, dynamic 

characterization of immune cell populations and transcriptomic analysis of GAMs in C6 rat 

gliomas definitively identify accumulation of immunosuppressive CD4+ and Treg 

populations, and high expression of M2 markers [55]. The mechanisms by which GAMs 

contribute to glioma progression extend from regulating inflammatory responses to 

neoangiogenesis. Modulating immunosuppressive TGFβ activity through exogenous miRNA 

delivery can abrogate M2 GAM populations and prolong animal survival [56]. The anti-

tumorigenic response in animal models, elicited by modulating GAM populations, is 

accompanied by significant downregulation of M2 associated genes, including Arginase-1 

(Arg1), Adrenomedullin (Adm) and CD206 [57–61]. Suppressing the M2 phenotype is 

paramount for controlling GAM pro-tumorgenic functionality, however, shifting this innate 

immune cell population towards an M1 phenotype may be an additional mechanism to stifle 

glioma progression. GAM specific SOCS3 KO cells upregulate the JAK/STAT signaling 

pathway in conjunction with increased pro-inflammatory markers TNFα and CXCL10 [57]. 

M1 shifted GAMs were shown to induce anti-tumorgenic responses by altering the immune 

landscape through increasing CD8+ populations while simultaneously decreasing Treg 

populations, although, only mild improvements in animal survival and tumor burden were 

observed [57]. This presents the notion that GAMs within the TME may be persuaded to 

shed their subverted pro-tumorigenic phenotype and adopt more anti-tumorigenic behaviors.

Indeed, this idea has demonstrated effectiveness in the context of colony stimulating factor 1 

receptor (CSF1R) inhibition, where GAMs can become “re-educated” within the glioma 

microenvironment to adopt an anti-tumorigenic phenotype [58]. Further, CSF1R inhibition 

using the experimental compound PLX3397 has been shown to reduce disease progression 

and M2 gene signatures in preclinical models of glioma, and has enhanced efficacy over the 
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broader spectrum tyrosine kinase inhibitors Vatalanib and Dovitinib [59]. PLX3397 is 

currently in active clinical trials for malignant solid tumors including recurrent GBM. More 

recently, CSF1R inhibition has shown to prevent resistance to anti-VEGF therapy in 

orthotopic model using ovarian cancer cells [62]. These studies highlight CSF1R as a major 

target by which GAM contributions to glioma progression can be controlled.

Hypoxic tumor regions also induce potent angiogenic signaling in tumor associated 

macrophages (TAMs). This process regulates the expression of VEGF, contributes to 

vascular remodeling, and is reportedly dependent on the activity of hypoxia-inducible factor 

1-alpha (Hif1α) [60,63]. Additionally, in vitro experiments demonstrate that M2 

macrophages are responsible for inducing angiogenesis [64]. Thus, regulating GAM 

populations within the TME could provide a valid method to control immunosuppression 

and aberrant angiogenesis associated with HGG (Figure 1).

GAMs are potent sources of secreted chemokines, which drive immunosuppressive TIL 

recruitment. Chemokines, such as CCL2, have been correlated with TIL levels as well as 

decreased GBM patient survival [65]. To investigate this possible connection, Chang et al. 

utilized in vitro and in vivo systems in the GL261 murine glioma model and reported that 

soluble factors produced by tumor cells induce Arg1+ M2-like GAMs within the TME to 

secrete high levels of CCL2. CCL2 production correlated with distinct CCR4+ Treg and 

CCR2+ myeloid derived suppressor cell (MDSC) populations infiltrating the tumor, 

suggesting these molecular steps may be largely responsible for the recruitment of 

immunosuppressive cell types in glioma [65]. Other chemokines also play roles in local and 

peripheral immune recruitment during glioma progression. Activated microglia associated 

with NF1 low-grade optic gliomas were found to express significantly higher levels of CCL5 

and CXCL13 RNA [66]. Antibody mediated CCL5 blockade reduced glioma growth and 

decreased microglia recruitment to tumor cells, indicating that this chemokine has local CNS 

effects and enhances the TME growth supporting functions [66].

Contribution to chemotaxis is not limited to GAMS; transplanted hematopoietic stem cell 

(HSC) prior to ACT in an animal model of glioma were shown to be necessary for 

lymphocyte recruitment and effective tumor rejection [41]. The chemoattracting properties 

of the HSCs, specifically the secretion of CLL3, was determined to be the governing factor 

for ACT efficacy [41], supporting the roles that immune signaling proteins have in glioma 

maintenance and progression. Thus, factors produced both by the tumor as well as immune 

cells of the TME contribute to the remodeling of the immune landscape. Cell signaling 

profiles may have important implications when considering how patients will respond to 

therapies.

Neuropilin 1 has recently been identified as a receptor involved in the activation of GAMs 

[67,68]. Our group has demonstrated that binding of the immunomodulatory tetrapeptide, 

tuftsin (TKPR), to Nrp1 in the setting of experimental autoimmune encephalomyelitis 

(EAE), a rodent model of Multiple Sclerosis, has the potential to polarize microglia to a 

more immunosuppressive phenotype via TGFβR1 and SMAD2/3 activation, thereby 

reducing the severity of the disease course [67]. This initial observation led to the 
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examination of Neuropilin’s potential role in the immune regulation of glioma 

microenvironment.

3. Neuropilin 1: an immunotherapeutic, anti-proliferative, and anti-

angiogenic target for glioma

Neuropilin 1 (Nrp1) is a cell surface receptor which was originally identified to contribute to 

signaling associated with axonal pathfinding and chemorepulsion via co-reception with one 

of its associated co-receptors, Plexin A1, in neurons [69]. Nrp1 has since been found by 

various groups to also have the potential to complex with other co-receptors including 

transforming growth factor β receptor I/II (TGFβRI/II), vascular endothelial growth factor 

receptor 2 (VEGFR2), hepatocyte growth factor receptor (cMET) and to amplify signaling 

pathways associated with these receptors [70–72].

Nrp1 is composed of an A1, A2, B1, B2, oligomerization, transmembrane, and cytoplasmic 

tail domain. The cytoplasmic tail domain is quite short and is considered to have no potential 

to elicit downstream signaling on its own (Figure 2). However, in complex with an 

associated receptor via interactions with its oligomerization domain, Nrp1 has the potential 

to amplify the associated receptor’s signaling pathway [73]. The A1 and A2 domain are 

semaphorin binding domains while the B1 and B2 domains are responsible for binding 

VEGF, TGFβ, PIGF, and HGF [74]. Additionally, it has been shown that Nrp1 can complex 

with ABL1 in endothelial cells and carry out angiogenic signaling independently of its 

association with VEGFR2 or VEGF [75].

Nrp1’s expression is rather ubiquitous in terms of its tissue distribution in that it is expressed 

by endothelial cells, subsets of DCs, subsets of T cells, subsets of myeloid-derived cells, and 

microglia [74–76]. In mice and rats, the complete elimination of Nrp1 is lethal due to its 

crucial role in embryonic angiogenesis [77,78]. In a similar manner, mice which express 

Nrp1 with a point mutation in the B1 domain responsible for signaling via TGFβ, PlGF, 

HGF, and VEGF-A, survive to adulthood but exhibit abnormal vasculature [78]. These mice 

have been shown to have a resistance phenotype to the growth of xenograft tumors, 

attributed to poor neovascularization of the tumors [78].

3.1. Functional roles of NRP1 in T cells

Nrp1 is expressed by subsets of Tregs and plays a role in the suppression of adaptive 

immunity [76]. In skin allograft experiments in mice, it was seen that the survival of the 

tissue was partially dependent on the expression of Nrp1 by Treg populations. When this 

expression was lost, the allografts were rejected, hinting at an immunosuppressive role for 

Nrp1 in these cells [79]. NRP1 may also function to suppress autoimmunity, as CD4+ loss of 

NRP1 in a mouse model of multiple sclerosis skews inflammatory populations to a TH-17 

phenotype and reduces Treg populations, worsening autoimmune disease progression [80]. It 

has also been shown in a murine melanoma model that Nrp1 expressing Tregs are attracted 

to tumors via the tumor’s secretion of VEGF, which is abrogated by the inhibition of Nrp1 

signaling. Delgoffe et al. have shown that the stability of Nrp1+ Tregs in the tumor 

microenvironment is dependent on their activation by the Nrp1 ligand, semaphorin 4A 
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(Sema4A). Antibody-mediated blockade of sema4A or genetic deletion of Nrp1 from these 

Treg populations using FOXP3-Cre resulted in enhanced anti-tumoral immunity in 

melanoma mouse models [81]. The accumulation of Nrp1 expressing Tregs in tumors is 

correlated with increased immunosuppression and the suppression of effector T cell 

functions [82].

Nrp1 expression in the majority of peripheral T cells is rather negligible in healthy people. 

However, in patients with certain advanced stage cancers, such as pancreatic 

adenocarcinoma and colorectal cancer, Nrp1 expressing T cells are significantly elevated in 

their blood and have been considered as potential biomarkers for their degree of 

immunosuppression in these patients [74]. Additionally, the expression of Nrp1 has also 

been consistently documented in naïve populations NKT cells in humans, but its expression 

is lost in mature populations of the cells [83].

3.2. Dendritic cells and innate immune cells

Immature plasmacytoid dendritic cells (iDCs) are another PBMC that has consistently been 

identified to express high levels of Nrp1 in humans. These cells have the potential to 

preferentially interact with Nrp1-expressing Tregs via the homotypic interaction of Nrp1 on 

both cell types, leading to the activation and expansion of these Treg populations, providing 

an explanation for how they can lead to increased immunosuppression. This “glue” between 

both cell types has also been postulated to contribute to greater sensitivity of these cells to 

antigen presentation [84]. Additionally, it has been shown that human Nrp1-expressing DCs 

have the potential to transfer Nrp1 to Tregs via trogocytosis along with VEGF and 

potentially other intracellular contents [85].

3.3. NRP1 functionality in monocytic populations

Macrophage-specific depletion of Nrp1 in mice via the use of LysM-Cre does not result in 

any apparent abnormalities in development or in adulthood [86]. However, it has been shown 

that mice with Nrp1 depletion from LysM-Cre expressing microglia and macrophages are 

resistant to pathological angiogenesis in a model of retinal sclerosis [87]. These same mice 

with Nrp1-deficient LysM expressing cells were shown to have slower disease courses in 

orthotopic breast and pancreatic cancer models, attributed to poorer vascularization of the 

tumors and increased infiltration of tumors by anti-tumorigenic macrophages and T cells 

[86]. Our group has reported the expression of Nrp1 by glioma associated microglia and 

macrophages (GAMs) associated with glioma biopsies of various grades [68]. Additionally, 

Zhang et al. reported that subsets of highly aggressive gliomas are populated by GAMs with 

significantly elevated Nrp1 expression [88].

As mentioned earlier, activation of Nrp1 by tuftsin during EAE resulted in polarization of 

microglia to a more M2-like phenotype via SMAD2/3 activation [67]. We have also 

observed that Nrp1 depletion from GAMs slows tumor progression and increases anti-

tumoral immunity in a murine model of GBM [68]. The outcomes in these diseases models 

were partially attributable to the fact that Nrp1 complexes with TGFβRI/II to potentiate 

signaling via SMAD2/3, highlighting its potential as a therapeutic target in a similar fashion 

to the use of TGFβ inhibitors [89]. Additionally, using chimeric mouse models, we have 
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shown that NRP1 ablation from either populations of peripheral monocytes or resident 

microglia can repress glioma progression, suggesting discriminant functionality of these 

cells [90].

3.4. Glioma-derived cancer cells

Overexpression of Nrp1 by cancerous cells in glioma biopsies has been directly correlated 

with poorer clinical outcome and worse progression free survival (PFS) [91]. Various studies 

have implicated most of the soluble factors known to signal via Nrp1 to be associated with 

poorer clinical outcomes and direct promotion of glioma growth in animal studies. Chen et 

al. demonstrated that blocking Nrp1 using a monoclonal antibody inhibited the proliferation 

and migration of the human-derived glioma cell line U87MG and slowed tumor progression 

in vivo when the cell line was xenografted in mice [92]. Additionally, the U87MG cell line 

has a highly invasive phenotype relative to glioma cell lines such as the LN18, T98, and 

U118 human glioma cell lines. In vitro analysis of the secretome of the U87MG cell line 

showed significant elevations in the amount of Nrp1 secreted by the cells relative to the less 

invasive lines [93] In the U373MG human glioma cell line, it was shown that siRNA-

mediated knockdown of Nrp1 reduced proliferation and increased apoptosis of the cells, 

associated with reductions in Bcl-2 expression and ERK, JNK, and MAPK activation [94]. 

Additionally, Nasarre et al. showed that targeting the transmembrane domain of Nrp1 via a 

small peptide inhibitor has the potential to slow glioma progression due to reductions in 

angiogenesis and proliferation in pre-clinical human xenograft and rat models [95].

3.5. NRP1 signaling in glioma maintenance and progression

Semaphorin 3A (sema3A) has been implicated to promote the infiltration and spread of 

glioma-derived cells in an autocrine fashion and is overexpressed in a subset of gliomas in 

patients [96]. Sema3A is secreted by glioma-derived cells in vesicles, which have been 

shown to directly increase vascular permeability by interacting with Nrp1 on endothelial 

cells in xenograft mouse models. Blocking signaling via either sema3A or Nrp1 was shown 

to abrogate this. Additionally, these vesicles can be detected in the blood of patients, which 

may also hold some prognostic value [97]. The expression of the receptor for sema3A, 

PlexinA1, has been correlated with worse survival outcomes in patients with GBM. 

Additionally, in a murine xenograft model, it has been shown that a small peptide inhibitor 

that disrupts the oligomerization of Nrp1 and PlexinA1 reduces GBM proliferative potential 

and tumor angiogenesis in vivo [98]. This peptide inhibitor, interestingly, blocked VEGF-

dependent angiogenesis in vitro as well, possibly by also blocking the oligomerization of 

Nrp1 with VEGFR2. Additionally, Casazza et al. have shown that Sema3A acts a 

chemoattractant for Nrp1-PlexinA1 expressing TAMs to infiltrate tumors where they 

downregulate Nrp1 expression once becoming entrapped in more hypoxic environments. 

Deletion of Nrp1 or mutating the sema3A-binding A1 domain of Nrp1 from TAMs was 

shown to prevent this [86]. As mentioned above, Nrp1 also binds and signal via Sema4A, 

playing an important role in the maintenance of immunosuppressive Treg populations.

VEGF-A and VEGF-B bind Nrp1 in complex to VEGFR2 and amplify pro-angiogenic 

signaling via the activation of AKT and p38 MAPK [99]. Glioma stem cells have also been 

shown to secrete VEGF-A, which not only serves to promote angiogenesis, but also 
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enhances the proliferative index of glioma cells in an autocrine fashion via VEGFR2 in 

complex to Nrp1 [100]. VEGF-A overexpression is well documented in almost all cases of 

HGG and has received a great deal of attention as a therapeutic target in recent years. Phase 

III clinical trials were performed in 2014, evaluating concomitant Avastin (bevacizumab, an 

anti-VEGF antibody) with TMZ and RT as first line defense for newly diagnosed glioma. 

While increasing PFS significantly, the trials failed to meet pre-defined criteria for success 

and failed to show any increase in overall survival time (OST) for patients [101]. However, 

individual patients responded quite well, showing that some may serve to benefit from the 

adjuvant therapy. Bevacizumab is still under evaluation as a concomitant therapy in various 

clinical trials for HGG.

Nrp1 has been shown to bind TGFβ and LAP-TGFβ and amplify signaling associated with 

these ligands in cancer cells via co-reception with TGFβRI/II [89]. TGFβI and II 

overexpression, especially that of isoform II, has been correlated with poorer clinical 

outcomes in subsets of glioma [102,103]. Autocrine signaling within cancer cells serves to 

enhance epithelial to mesenchymal transition (EMT) and increases the invasive phenotype of 

tumor cells. TGFβ potentiates angiogenesis and is an immunosuppressive cytokine, which 

polarizes Tregs and attracts and polarizes immunosuppressive GAMs [104,105]. It can 

downregulate perforin, granzyme A/B, IFNγ, and FasL expression by CTLs, which are all 

mediators of CTL-mediated cytotoxicity [106]. Downregulation of the expression of 

TGFβRII in human xenograft-derived gliomas has been shown to reduce their 

tumorigenicity [107]. Inhibition of TGFβ-dependent pathways using TGFβRII inhibitors in 

GAMs has been shown to prevent their immunosuppressive polarization [108]. Blocking 

TGFβ-mediated signaling using systemically administered neutralizing antibodies was 

efficacious in slowing glioma progression in immunocompetent mice, partially by 

preventing the immunosuppressive polarization of GAMs [109]. For the treatment of glioma, 

clinical trials are ongoing, evaluating the TGFβRI small molecule inhibitor, LY2157299, for 

efficacy in combination with the standard of care. The drug is generally well tolerated and 

has shown efficacy in about 20% of patients [110].

Placental growth factor (PlGF) is an important angiogenic factor, which has been shown to 

bind the B1 domain of Nrp1 and act as a chemo-attractant for GAMs [111,112]. Clinical 

trials have been conducted using a monoclonal antibody against PIGF for recurrent glioma. 

The drug has shown acceptable safety profiles, but, unfortunately, the antibody was not 

shown to have any additive benefit for patients over bevacizumab alone [113]. In 

medulloblastoma, however, PlGF and Nrp1 are both highly expressed. Inhibition of 

signaling via either has been shown to slow tumor progression in murine xenograft models 

[114].

Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a ligand which binds Nrp1 in its 

complex to cMET and activates downstream signaling which promotes cell proliferation, 

angiogenesis, and survival [99]. The overexpression of HGF by glioma cells has been 

correlated with increased tumor microvascularity, increased tumor grade, and worse 

prognosis for patients. Downregulation of HGF in human-derived glioma cells was also 

shown to reduce their proliferative and migratory capacity [115]. Furthermore, Hu et al. 

demonstrated that Nrp1 expression by a subset of human glioma-derived xenografts 
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potentiated their growth in an autocrine fashion via the amplification of pathways 

downstream of cMET and HGF [71]. A phase II clinical trial was conducted with 

rilotumumab, a HGF-blocking antibody, in patients with recurrent GBM, but the antibody 

showed little efficacy as a monotherapy [116]. However, cabozantinib, a small molecule 

inhibitor of both cMET and VEGFR2, underwent phase II clinical evaluation in patients 

with progressive and recurrent GBM, and was reported to result in modest improvements in 

PFS [117]. The drug is currently under evaluation in combination with standard of care RT 

and TMZ for newly diagnosed GBM [118]. The HGF-cMET signaling axis is a promising 

therapeutic target, but it would appear that targeting it in combination to other pathways is 

preferable. As Nrp1, serves to amplify cMET signaling, a similar rationale for targeting it in 

HGG is well substantiated.

3.6. NrpI as a PET tracer and for drug delivery

As Nrp1 is widely expressed in gliomas, the use of PET tracers that bind Nrp1 has been 

investigated in murine models. Using F-18 labelled peptides, Wu et al. were able to show 

that peptides targeting Nrp1 and integrin αvβ3 preferentially bound to glioma tissue [119]. 

This method may hold promise in monitoring glioma progression in patients. Additionally, 

more effective drug trafficking to gliomas has been proposed by packaging 

chemotherapeutics in liposomes coated by Nrp1-binding peptides [120–123]. In a similar 

fashion, targeting Nrp1 in order to deliver gadolinium oxide for MRI and chlorin for 

interstitial photodynamic therapy has been explored in rat xenograft studies. The 

nanoparticles were able to preferentially localize to peripheral tumoral vasculature and may 

hold some promise for translation to the clinic [124].

4. Conclusions

Identifying the contributions of immune cell populations within the TME will further the 

knowledge base by which we treat and develop therapies for GBM. The innate and adaptive 

immune systems are complex, multifaceted schemes. Providing protection from foreign 

pathogens, materializing sustained immunity, and regulating self/non-self-responses are 

immense tasks. Unfortunately, in scenarios of malignancy, the immune system often fails to 

protect the host. Modulating lymphocyte inflammatory responses may prove to be a method 

by which overall adaptive immunity can be coerced into rejection of bulk tumors. 

Additionally, with the advancements of ACT and DC vaccines, tools now exist to selectively 

activate effector cells of the adaptive immune system. Innate immune cells such as microglia 

and macrophages are now also recognized as pertinent players to glioma progression, and 

perhaps by invoking their phagocytic and pro-inflammatory functions, a greater foothold can 

be gained in controlling HGG disease (Figure 1). New targets which can modulate subsets, 

or entire arms, of the immune system need to be identified so that clinicians can combat 

GBM.

Directly targeting Nrp1 in the clinic has only been approached, thus far, for the treatment of 

advanced solid tumors via the use of a humanized monoclonal antibody, MNRP1685A, 

which blocks the binding of VEGF-A, VEGF-B, and PlGF-2 to the B1 domain of Nrp1. The 

antibody was hypothesized to benefit patients through a mechanism similar to bevacizumab, 
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but was unfortunately poorly tolerated and associated with clinically significant levels of 

proteinuria in patients during phase I evaluation [125].

The efficacy and tolerability of other Nrp1-targeting drugs should be considered, and since 

Nrp1 plays so many roles in the glioma microenvironment (Figure 3), pursuing research in 

the development and implementation of Nrp1 antagonists in glioma therapy seems fruitful.
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Figure 1. 
Contributions of immune cell populations in the maintenance, progression, and treatment 

options of glioma. Perivascular association of CD4+ Th and Treg correlates with glioma 

progression and recurrence. Treg populations are responsible for immunosuppressive effects 

within the TME and the periphery. CTLs are inhibited within the TME by relatively high 

Treg populations and PD-L1 ligation. M2 GAMs recruit immunosuppressive T Cells, 

express PD-L1, and contribute to the VEGF mediated angiogenesis feedback loop. 

Conversely, DC vaccines, adoptive cell therapy techniques, and GAM manipulation can 

modulate the immune landscape to exert anti-tumorigenic responses.
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Figure 2. 
Structure and Function of Neuropilin 1. Neuropilin 1 (Nrp1) is a cell surface receptor 

composed of an A1, A2, B1, B2, C, transmembrane (TM), and a C-terminal (C) domain. 

The C-terminal domain contains a SEA motif which binds PDZ adaptor proteins. The A1 

and A2 domains are responsible for binding semaphorins while the B1 and B2 domains have 

been characterized to bind VEGF, TGFβ, PlGF, and HGF. The C domain is an 

oligomerization domain, which allows Nrp1 to interact with its various co-receptors and 

amplify signaling via their associated ligands.
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Figure 3. 
Roles of Neuropilin 1 in the Glioma Microenvironment. Neuropilin 1 (Nrp1) is expressed by 

various cell types which infiltrate the glioma microenvironment, including most glioma-

derived cells (GBM cells), microglia, infiltrating BMDMs, endothelial cells, certain Treg 

subtypes, and certain dendritic cell subtypes (iDCs). GBM cells produce VEGF, TGFβ, and 

HGF/SF which increase the malignancy of the tumors by enhancing the proliferative and 

invasive potential of the GBM cells, mediated via Nrp1 and its associated co-receptors. 

Sema3A in the glioma microenvironment also causes microglial and BMDM migration into 

the tumor and enhances invasion by the GBM cells. VEGF produced by the tumors also 

serves to enhance angiogenesis and increase microglial and BMDM migration into the 

tumor. Microglia and BMDMs are also responsible for the production of VEGF and TGFβ. 

TGFβ can polarize microglia, BMDMs, Tregs, and iDCs to more immunosuppressive, tumor 

supporting phenotypes. Homotypic interactions between Nrp1 on iDCs and Tregs also 

enhances their contact times and allows for stronger stimulation of these immunosuppressive 

Treg subsets.
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