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Background and Objective. Oxidative stress has been associated with the progression of periodontitis. However, oxidative stress-
related genes (OS-genes) have not been used as disease-specific biomarkers that correlate with periodontitis progression. This
study is aimed at screening the key OS-genes and pathways in periodontitis by bioinformatics methods. Methods. The
differentially expressed genes (DEGs) were identified using periodontitis-related microarray from the GEO database, and OS-
genes were extracted from GeneCards database. The intersection of the OS-genes and the DEGs was considered as oxidative
stress-related DEGs (OS-DEGs) in periodontitis. The Pearson correlation and protein-protein interaction analyses were used to
screen key OS-genes. Gene set enrichment, functional enrichment, and pathway enrichment analyses were performed in OS-
genes. Based on key OS-genes, a risk score model was constructed through logistic regression, receiver operating characteristic
curve, and stratified analyses. Results. In total, 74 OS-DEGs were found in periodontitis, including 65 upregulated genes and 9
downregulated genes. Six of them were identified as key OS-genes (CXCR4, SELL, FCGR3B, FCGR2B, PECAM1, and ITGAL)
in periodontitis. All the key OS-genes were significantly upregulated and associated with the increased risk of periodontitis.
Functional enrichment analysis showed that these genes were mainly associated with leukocyte cell-cell adhesion, phagocytosis,
and cellular extravasation. Pathway analysis revealed that these genes were involved in several signaling pathways, such as
leukocyte transendothelial migration and osteoclast differentiation. Conclusion. In this study, we screened six key OS-genes that
were screened as risk factors of periodontitis. We also identified multiple signaling pathways that might play crucial roles in
regulating oxidative stress damage in periodontitis. In the future, more experiments need to be carried out to validate our
current findings.

1. Introduction

Periodontitis is one of the most prevalent inflammatory con-
ditions, characterized by bone and attachment destruction.
This condition affects around 50% of the adult population
worldwide and has now become the main cause of tooth loss
in adults [1]. Periodontitis is a multifactorial disease, initi-
ated by plaque bacteria that lead to excessive inflammation,
breakdown of periodontal soft tissues, destruction of alveo-
lar bone, and eventually tooth loss [2]. The development,

progression, and aggressiveness of periodontal destruction
depend on numerous environmental and host-related fac-
tors, both modifiable (for example, smoking) and nonmodi-
fiable (for example, genetic susceptibility) [3]. Currently, the
unequivocal mechanism that describes the development of
periodontitis remains poorly understood, which makes it
difficult for early prevention and control of the disease.

It is proposed that oxidative stress plays an important
role in the pathogenesis of periodontitis [1]. Oxidative stress
is a state of imbalance between oxidants and antioxidants
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production that results in the overproduction of reactive
oxygen species and a comparative deficiency of antioxidants
[4]. Reports from different studies have shown that patients
with periodontitis have increased levels of oxidative stress
markers in gingival crevicular fluid, saliva, and plasma [5].
Nonsurgical periodontal therapy has a beneficial influence
on the levels of the antioxidant markers [6, 7].
Periodontitis-induced oxidative stress can trigger proinflam-
matory mechanisms and importantly osteoclastogenesis,
which then leads to the bone loss that is observed in patients
with periodontitis [8]. It has been reported that oxidative
stress can activate NF-κB signaling pathway to promote
the expression of proinflammatory factors [9]. Antioxidant
therapy can reduce oxidative stress damage and alleviate
alveolar bone loss in periodontitis [5]. However, the exact
pathophysiological mechanism involving oxidative stress is
not yet fully explained in periodontitis.

Oxidative stress is generally regulated by differentially
expressed oxidative stress-related genes (OS-genes) that are
responsible, both directly and indirectly, for the pathogene-
sis of diseases [10, 11]. Up to now, only a small fraction of
OS-genes has been studied intensively and is known to play
an essential role in periodontitis progression [12]. Hence,
identifying more key OS-genes may help validate the under-
lying mechanisms of periodontitis and offer therapeutic
strategies for these patients. With the development of
sequencing, bioinformatics analysis has been widely
employed to identify the interaction between gene expres-
sion signatures and diseases. However, bioinformatics analy-
sis of OS-genes has not been used to discover disease-specific
biomarkers that correlate with periodontitis progression.
Recently, large-scale genome profiles have provided gene
expression data, which provides an excellent chance to iden-
tify potential OS-genes. Therefore, this study is aimed at
finding out the key OS-genes in periodontitis from the point
of view of bioinformatics analysis and providing a reference
for further research of periodontitis.

2. Materials and Methods

2.1. Microarray Data. Two periodontitis-related gene
expression profiles (GSE10334 and GSE16134) with a sam-
ple size greater than 10 were downloaded from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm
.nih.gov/geo/). Both GSE10334 and GSE16134 were based
on the platform of GPL570 (Affymetrix Human Genome
U133 Plus 2.0 Array). The two gene expression profiles
included 424 periodontitis tissue samples and 133 normal
tissue samples in total.

2.2. Differential Expression Analysis. The microarray data
were normalized by the normalize quantiles function of the
preprocess Core package in R software (version 3.4.1). Dif-
ferential expression analysis was performed on the normal-
ized datasets using the limma package (version 3.40.2). We
set jlog 2 fold change ðFCÞj > log 2 1:5 and P value < 0.05 as
the thresholds for identifying differentially expressed genes
(DEGs) in periodontitis.

2.3. Identification of OS-Genes. A total of 1119 OS-genes
were extracted from GeneCards (https://www.genecards
.org) with a relevance score ≥ 7. The intersection of the
OS-genes selected from the GeneCards database and the
DEGs from the periodontitis-related gene expression pro-
files was considered as oxidative stress-related differentially
expressed genes (OS-DEGs) in periodontitis.

2.4. Gene Set Enrichment Analysis (GSEA) of OS-Genes. The
WebGestalt online platform (http://www.webgestalt.org)
was used for GSEA. The expression information of 1119
OS-genes in periodontitis was extracted from the gene
expression profiles and imported into WebGestalt online
platform. Normalized enrichment score was used to indicate
the strength of the enrichment. The level of significance was
defined at FDR ≤ 0:05.

2.5. Correlation Analysis of OS-DEGs. The correlation
between every two OS-DEGs was analyzed via Pearson’s cor-
relation coefficient in GraphPad Prism 8.0.2. The web-based
tools (http://www.bioinformatics.com.cn) were used for data
visualization. As jrj values above 0.7 are statistically seen as
showing a high level of correlation, we set P values < 0.05
and jrj > 0:7 as the thresholds for identifying paired genes
in periodontitis.

2.6. Protein-Protein Interaction (PPI) Network Building and
Hub OS-Gene Analysis. The upregulated and downregulated
OS-DEGs were imported into the STRING database (http://
www.string-db.org/) to obtain the PPI network. The PPI
network was next imported into the Cytoscape software for
visualization and analysis. The TOP 20 hub genes of the
PPI network were identified as hub OS-genes using the cyto-
Hubba tool.

2.7. Identification of Key OS-Genes. Top 20 OS-DEGs with
the largest number of paired genes were then intersected
with top 20 hub OS-genes, and the intersected genes were
defined as key OS-genes. The relationship among key OS-
genes was analyzed by Pearson’s correlation coefficient and
PPI network building.

2.8. Functional and Pathway Enrichment Analysis. To deter-
mine the biological processes and pathways of OS-genes in
periodontitis, ClusterProfiler R package was used for Gene
Ontology (GO) biological processes and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analy-
sis. The GO analysis included three categories: biological
process, molecular function, and cellular component. P
value < 0.05 was considered as statistically significant. KEGG
database was used to view pathways class.

2.9. Relevance Analysis of Key OS-Genes and Oxidative Stress
Biomarkers. The relationships between key OS-genes and
oxidative stress biomarkers, including eight oxidative bio-
markers and five antioxidant biomarkers, were expressed
by relevance scores. These relevance scores were obtained
from GeneCards and imported into GraphPad Prism 8.0.2
for visualization. The biomarkers with a relevance score ≥ 7
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Figure 1: Continued.
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were selected to construct the network of key OS-genes and
oxidative stress biomarkers using Cytoscape software.

2.10. Risk Evaluation of Key OS-Genes. Univariate logistic
regression analysis was used to calculate the odds ratio
(OR) and 95% confidence interval (CI) for the association
between key OS-genes expression and the risk of peri-
odontitis. Multivariate logistic regression analysis was used
to screen independent variables among key OS-genes, and
receiver operating characteristic (ROC) curve was per-
formed to study their essential effect on the disease. The
risk score formula for each patient was constructed based
on the estimated regression coefficient value of key OS-
genes in multivariate logistic regression.

3. Results

3.1. Recognition of DEGs of Periodontitis. The RNA expres-
sion profile datasets (GSE16134 and GSE10334) were nor-
malized as shown in Figure 1(a). The differences between
samples were significantly reduced after batch correction
(Figures 1(b) and 1(c)). A total of 623 DEGs were identified,
including 405 upregulated and 218 downregulated genes

(Figure 1(d)). Additionally, a heatmap of the DEGs is shown
Figure 1(e).

3.2. GSEA of OS-Genes. The expression information of 1119
OS-genes was used to perform GSEA. The Hallmark gene
set database showed that most of the upregulated genes
were involved in epithelial mesenchymal transition, TNFA
signaling via NF-κB, inflammation, interferon gamma
response, and IL6 STAT3 signaling during acute phase
response. The downregulated genes were involved in
androgen response, MYC targets, variant 1, and peroxi-
somes (Figure 2(a)). The KEGG gene set database demon-
strated that the upregulated genes were involved in
osteoclast differentiation, IL-17 signaling pathway,
cytokine-cytokine receptor interaction, leukocyte transen-
dothelial migration, and cell adhesion molecules. The
downregulated genes were involved in histidine metabo-
lism, lysine degradation, arginine and proline metabolism,
tyrosine metabolism, and signaling pathways regulating
pluripotency of stem cells (Figure 2(b)).

3.3. Identification and Enrichment Analysis of OS-DEGs.
After conducting a combined analysis of OS-genes and
DEGs of periodontitis, 74 genes were screened out as OS-
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Figure 1: Identification of differentially expressed genes (DEGs) in periodontitis. (a) The boxplot of the normalized data. (b) PCA results
before batch removal for multiple datasets. (c) PCA results after batch removal. (d) The volcano plots of the DEGs. (e) The heatmap of the
DEGs.
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Figure 2: Gene set enrichment analysis (GSEA) of 1119 oxidative stress-related genes (OS-genes). (a) Hallmark gene set database. (b) KEGG
gene set database.
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Figure 3: Identification of oxidative stress-related differentially expressed genes (OS-DEGs). (a) Venn diagram of the intersection of
oxidative stress-related genes (OS-genes) and differentially expressed genes (DEGs) in periodontitis. (b) Heatmap of the OS-DEGs. (c)
Histogram of the OS-DEGs.
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DEGs in periodontitis, including 65 upregulated genes and 9
downregulated genes (Figure 3(a)). The distribution of OS-
DEGs is shown in Figures 3(b) and 3(c).

GO enrichment analysis revealed that upregulated OS-
DEGs were significantly enriched in response to oxidative
stress, response to molecule of bacterial origin, leukocyte
cell-cell adhesion, response to lipopolysaccharide, regulation
of leukocyte cell-cell adhesion, positive regulation of cell
activation, and regulation of inflammatory response
(Figure 4(a) and Supplementary Figure S1-S3). KEGG
pathway enrichment analysis showed that these genes were
significantly enriched in TNF signaling pathway, IL-17
signaling pathway, osteoclast differentiation, and NF-kappa
B signaling pathway (Figure 4(b) and Supplementary
Figure S4).

GO enrichment analysis demonstrated that downregu-
lated OS-DEGs were significantly enriched in nitric oxide
biosynthetic process, nitric oxide metabolic process, reac-
tive nitrogen species metabolic process, and regulation of
inflammatory response (Figure 4(c)). The enriched path-
ways for these genes were base excision repair, tyrosine
metabolism, and primary immunodeficiency (Figure 4(d)).

3.4. Correlation Analysis of OS-DEGs. A total of 203 pairs of
OS-DEGs were identified in periodontitis (P values < 0.05,
jrj > 0:7) (Supplementary Figure S5). As shown in
Figure 5(a), PECAM1, CD79A, and NCF4 possessed more
than 20 paired genes. SELL, FCGR2B, NEFL, C3, XBP1,
CXCR4, CYBA, ADA, RORA, HMGCR, ITGAL, and LYN
possessed more than 10 paired genes.

GO enrichment results showed that top 20 OS-DEGs
with the largest number of paired genes were involved in
phagocytosis, regulation of inflammatory response, and
immune response (Figure 5(b) and Supplementary
Figure S6-S8). KEGG enrichment results demonstrated that
these genes were associated with B cell receptor signaling
pathway, cell adhesion molecules, leukocyte
transendothelial migration, neutrophil extracellular trap
formation, and osteoclast differentiation (Figure 5(c) and
Supplementary Figure S9).

3.5. Identification and Enrichment Analysis of Hub OS-
Genes. The PPI network of the OS-DEGs was built according
to the STRING database, including 74 nodes and 509 edges
(Figure 6(a)). The targets were sorted by target connectivity
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Figure 5: Identification and enrichment analysis of the paired genes. (a) Top 20 paired genes were screened from the oxidative stress-related
differentially expressed genes (OS-DEGs). (b) The top 10 lists of GO enrichment analysis of the top 20 paired genes. (c) The top 15 lists of
KEGG pathway enrichment analysis of the top 20 paired genes.
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from large to small in the PPI network; the top 20 are shown
in Figure 6(b). Using cytoHubba, we obtained the top 20 hub
OS-genes, including IL6, IL1B, PECAM1, CD38, FCGR3A,
ITGAL, CD69, SELL, FCGR3B, CXCL8, GZMB, CXCR4,
CCR7, VCAM1, LCK, FCGR2B, SELP, MMP9, CXCL1,
and PTGS2 (Figure 6(c)).

Figure 6(d) and Supplementary Figure S10-S12 showed
that top 20 hub OS-genes were mainly enriched in several
biological processes, for example, leukocyte cell-cell
adhesion, regulation of acute inflammatory response,
response to molecule of bacterial origin, and response to
lipopolysaccharide. Figure 6(e) and Supplementary
Figure S13 show that top 20 hub OS-genes were mainly
enriched in several pathways, such as IL-17 signaling
pathway, NF-κB signaling pathway, TNF signaling
pathway, and osteoclast differentiation.

3.6. Identification of Key OS-Genes. The intersection of top
20 hub OS-genes and top 20 paired OS-genes revealed six
key OS-genes, including CXCR4, SELL, FCGR3B, FCGR2B,
PECAM1, and ITGAL (Figure 7(a)). There was a signifi-
cantly positive correlation among the key OS-genes
(Figure 7(b)). The key OS-genes in PPI network were closely
linked and could act as a whole (Figure 7(c)). All of the six

key OS-genes were upregulated in periodontitis
(Figure 7(d)).

3.7. Functional Enrichment Analysis of Key OS-Genes. For
GO enrichment analysis, key OS-genes were significantly
enriched in leukocyte cell-cell adhesion, neutrophil degranu-
lation, phagocytosis, and many immune responses
(Figure 8(a)). The networks of key OS-genes with GO terms
showed that PECAM1, SELL, and ITGAL commonly regu-
lated cell-cell adhesion via plasma-membrane adhesion mol-
ecules, cellular extravasation, leukocyte cell-cell adhesion,
neutrophil activation involved in immune response, and
neutrophil degranulation (Figure 8(b)).

GO networks analyses revealed that leukocyte cell-cell
adhesion, neutrophil degranulation, and neutrophil activa-
tion involved in immune response were the main biological
processes involved in key OS-genes (Figure 8(c)). Secretory
granule membrane was the most significantly enriched cellu-
lar component (Figure 8(d)), and immune receptor activity
was the main molecular function associated with key OS-
genes (Figure 8(e)).

3.8. Pathway Enrichment Analysis of Key OS-Genes. KEGG
pathway enrichment analysis for key OS-genes revealed that

6 8 10
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Figure 6: The protein-protein interaction (PPI) network and hub gene analyses. (a) The PPI network of the oxidative stress-related
differentially expressed genes (OS-DEGs). (b) The connectivity rank of genes. (c) The relationship between hub OS-genes. (d) The top 10
lists of GO enrichment analysis of the hub OS-genes. (e) The top 15 lists of KEGG pathway enrichment analysis of the hub OS-genes.
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they were significantly enriched in leukocyte transendothe-
lial migration, cell adhesion molecules, Fc gamma R-
mediated phagocytosis, osteoclast differentiation, and neu-
trophil extracellular trap formation (Figure 9(a)).
Figure 9(b) revealed that these pathways were primarily
involved in “infectious diseases” and “immune system.”

KEGG networks analyses showed that neutrophil extra-
cellular trap formation, Staphylococcus aureus infection,
natural killer cell mediated cytotoxicity, leukocyte transen-
dothelial migration, and osteoclast differentiation were the
main pathways involved in key OS-genes (Figure 9(c)).
The networks of key OS-genes with KEGG pathways dem-
onstrated that PECAM1, ITGAL, and CXCR4 commonly
affected leukocyte transendothelial migration. PECAM1
together with ITGAL and SELL participated in cell adhesion
molecules (Figure 9(d)).

3.9. The Relevance Analysis of Key OS-Genes and Oxidative
Stress Biomarkers. GeneCards database demonstrated that
six key OS-genes were mainly related to oxidative biomark-

ers, but not to antioxidant biomarkers, the relevance scores
are shown in Figure 10(a). The networks of key OS-genes
with oxidative stress biomarkers revealed that five out of
six key OS-genes, such as CXCR4, SELL, FCGR2B,
PECAM1, and ITGAL, were associated with reactive oxygen
species (ROS). Four key OS-genes (CXCR4, SELL, PECAM1,
and ITGAL) were involved in total oxidant status (TOS)
(Figure 10(b)).

3.10. Risk Evaluation of Key OS-Genes. To determinate the
association between key OS-genes expression and the risk
of periodontitis, we conducted univariate logistic regres-
sion analysis. As shown in Figure 11(a), all six key OS-
genes were associated with increased risk of periodontitis.
Multivariate logistic regression analysis was used to screen
independent variables among key OS-genes, and CXCR4,
FCGR3B, FCGR2B, PECAM1, and ITGAL were finally
screened (Figure 11(b)). Then ROC curves were next
established for these genes. The area under the curve
(AUC) for CXCR4, FCGR3B, FCGR2B, PECAM1, and
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Figure 7: Identification of key oxidative stress-related genes (OS-genes). (a) Venn diagram of the intersection of OS-DEGs paired genes and
hub OS-genes. (b) Heatmap of the correlation among key OS-genes. (c) The PPI network of the key OS-genes. (d) The expression levels of
the key OS-genes.
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ITGAL was 0.91, 0.87, 0.87, 0.92, and 0.85, respectively.
When these genes were combined, the AUCs increased
to 0.94 (Figure 11(c)).

The risk score (Risk Score = CXCR4 × 2:91 + FCGR2B ×
ð−1:75Þ + PECAM1 × 6:41 + ITGAL × ð−1:93Þ + FCGR3B ×
1) was obtained by logistic regression analysis. As shown in
Figure 11(d), the risk score was significantly higher in peri-
odontitis patients compared with the controls. Based on
the Youden index, patients were allocated into the high-
risk and low-risk groups (Figure 11(e)). The percent of peri-
odontitis patients in the high-risk group (95.60%) was signif-
icantly higher than that (20.69%) in the low-risk group
(Figure 11(f)).

4. Discussion

In recent years, increasing evidence has shown that oxidative
stress plays an important role in the pathogenesis of various
types of chronic inflammation, including periodontitis [13].
It has been demonstrated previously that protecting peri-
odontal tissues or cells from oxidative stress by blocking
OS-gene activation in inflammation can reduce periodontal
tissue loss [12]. Although many publications have reported
on oxidative stress biomarker levels in patients with peri-
odontitis, very few studies evaluate the OS-genes in the path-
ogenesis of periodontitis [8]. In the present study, by
performing multiple bioinformatics analysis methods, we
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Figure 8: GO enrichment analysis of key oxidative stress-related genes (OS-genes). (a) The top 10 lists of GO enrichment analysis of the key
OS-genes. (b) The networks of key OS-genes with GO terms. (c–e) The relation of biological processes (c), molecular function (d), and
cellular component (e) involved in key OS-genes.
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firstly identified six key OS-genes (CXCR4, SELL, FCGR3B,
FCGR2B, PECAM1, and ITGAL) in periodontitis, whose
expression levels were significantly upregulated. Moreover,
several pathways such as osteoclast differentiation and leu-
kocyte transendothelial migration may be the potential
mechanisms of key OS-genes in the pathogenesis of
periodontitis.

Periodontitis is a chronic infectious disease in which the
periodontal bacteria initiate the host immune response lead-
ing to the destruction of the periodontal tissue [14]. In other
words, infection of periodontal bacteria and host immunity
jointly contribute to the pathological processes of the peri-
odontal destruction. In this study, the results of GSEA
showed that these OS-genes were mainly involved in inflam-
mation, interferon gamma response. GO enrichment analy-
sis showed that the OS-DEGs were mainly enriched in
terms that were related to infection and immune response,
such as response to molecule of bacterial origin, response
to lipopolysaccharide, leukocyte cell-cell adhesion, and regu-
lation of leukocyte cell-cell adhesion. Interestingly, the hub
OS-genes have been also found to be associated with the
above biological processes. These results indicate that OS-
genes play a critical role in various stages of periodontitis
progression.

Up to date, numerous studies have revealed several sig-
naling pathways involved in the development of periodonti-
tis, such as NF-κB signaling pathway [15], IL-17 signaling
pathway [16], and Wnt/β-catenin signaling pathway [17].
Our previous study has shown that NF-κB signaling is
involved in periodontal ligament stem cells osteogenesis fol-
lowing inflammatory stimulation [18]. IL-17 signaling path-
way is related to the metabolism of the alveolar bone [16]. In
our study, GSEA results showed that the OS-genes in peri-
odontitis mainly participated in leukocyte transendothelial
migration, osteoclast differentiation, and IL-17 signaling

pathway. This finding is according with our results from
KEGG pathways enriched analysis of OS-DEGs and hub
OS-genes. Besides, NF-κB signaling pathway is another
mechanism associated with these genes. In addition, the
top 20 paired OS-genes and key OS-genes have been also
found to be associated with leukocyte transendothelial
migration and osteoclast differentiation. These findings sug-
gest that such signaling pathways may be an important
mechanism of OS-genes in the pathogenesis of periodontitis.

Platelet endothelial cell adhesion molecule-1 (PECAM1),
also termed CD31, is a member of the immunoglobulin gene
superfamily of cell adhesion molecules [19]. PECAM-1 is
vital to the regulation of inflammatory responses, and inhi-
bition of PECAM1 has been documented to alleviate symp-
toms of several inflammatory diseases such as arthritis,
atherosclerosis, and pulpitis [20]. Furthermore, PECAM1
has been identified a potential biomarker for periodontitis
diagnosis and prognosis [21]. The current study found that
PECAM-1 was significantly upregulated in periodontitis tis-
sues compared to normal tissues, and possessed up to 25
paired genes in 74 OS-DEGs. One of PECAM-1’s most
prominent functions is its role in mediating the final steps
of transendothelial migration of leukocytes across endothe-
lial cells [22]. In addition, we found that PECAM-1 was sig-
nificantly associated with endothelial cell differentiation,
endothelium development, and leukocyte cell-cell adhesion.
The present data indicate that PECAM1 may play a central
role in the pathogenesis of periodontitis partially through
exerting effects on both leukocytes and endothelial cells.

Our other key OS-genes, C-X-C chemokine receptor
type 4 (CXCR4) is a 352 amino acid rhodopsin-like G
protein-coupled receptors [23]. Recently, it was found that
CXCR4 plays a key role in mediating oxidative stress-
induced podocyte damage, proteinuria, and glomerulo-
sclerotic lesions [24]. Interestingly, CXCR4 neutralization

Oxidative stress-related genes

Pathways

(d)

Figure 9: KEGG pathway enrichment analysis of key oxidative stress-related genes (OS-genes). (a) The lists of KEGG pathway enrichment
analysis of the key OS-genes. (b) The pathways’ class counts. (c) The relation of KEGG pathways. (d) The networks of key OS-genes with
KEGG pathways.
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in periodontal inflammation has been shown to significantly
suppress alveolar bone resorption [25]. Moreover, previous
study also suggested that CXCR4 can inhibit nitric oxide
release from infiltrating macrophages and is involved in
modulation of the mechanical sensitivity in the periodontal
tissue in periodontitis [26]. In this study, CXCR4 was found
to be one of the most highly overexpressed key OS-genes in
periodontitis tissues. It could regulate chemokine receptor
activity, response to chemokine, C-C chemokine receptor
activity, and C-C chemokine binding. Therefore, we can rea-
sonably speculate that the chemotactic activity may account
for the effects of CXCR4 in the pathogenesis of periodontitis.

Importantly, the six key OS-genes not only work alone
but also have connections with each other. For example,

PECAM1 can combine with CXCR4 to trigger inflammatory
cell infiltration and inflammation progression [20]. Both
PECAM1and SELL are pro angiogenic genes, their physio-
logical interactions account for the pathogenesis of chronic
rhinosinusitis [27]. Moreover, SELL together with ITGAL
is related to cell adhesion and migration [28]. Our PPI net-
work and enrichment analysis show that PECAM1 and
CXCR4 may interact with each other, and are commonly
enriched in endothelial cell differentiation and endothelium
development. CXCR4 may interact with PECAM1, and both
of them participate in leukocyte transendothelial migration.
Our analysis indicates that the combined effects of the six
key OS-genes on periodontitis are more significant than a
single gene.
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Figure 10: The relevance analysis of key OS-genes and oxidative stress biomarkers. (a) Heatmap of the relevance score of each key OS-
genes. (b) The network of key OS-genes with oxidative stress biomarkers.

24 Oxidative Medicine and Cellular Longevity



CXCR4

SELL

FCGR3B

FCGR2B

PECAM1

ITGAL

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

8.36 (5.75 – 12.15)

5.4 (4.01 – 7.29)

6.49 (4.54 – 9.28)

6.55 (4.65 – 9.24)

43.46 (22.37 – 84.43)

15.27 (9.38 – 24.85)

0 20 40 60 80

P-value Odds ratio

Odds ratio

(a)

CXCR4

FCGR3B

FCGR2B

PECAM1

ITGAL

< 0.001

0.010

0.010

< 0.001

0.010

4.81 (2.62 – 8.85)

1.72 (1.13 – 2.62)

0.39 (0.2 – 0.76)

31.9 (11.13 – 91.4)

0.35 (0.15 – 0.81)

P-value Odds ratio

0 20 40 60 80

Odds ratio

(b)

CXCR4
FCGR3B
FCGR2B
PECAM1

ITGAL
Combination
Reference line

Se
ns

iti
vi

ty

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

1-Specificity

(c)

Control Periodontitis

70

p < 2.22e–16

60

50

40

Ri
sk

 sc
or

e

(d)

Youden index 

79.05%
Specificity 86.36%

Sensitivity

92.68%

55.64

Risk score

40.82 73.05

120

90

60

30

0

Pe
rc

en
ta

ge
 (%

)

(e)

Figure 11: Continued.

25Oxidative Medicine and Cellular Longevity



5. Conclusions

In conclusion, through a series of bioinformatics analysis,
we finally screened six key OS-genes that are significantly
associated with the increased risk of periodontitis. We also
identified multiple signaling pathways that might play cru-
cial roles in regulating oxidative stress in periodontitis.
This study provides novel research targets for studying
the pathogenesis and progression of patients with
periodontitis.
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