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Lung cancer is a kind of cancer with high morbidity and mortality which is associated with
various gene mutations. Individualized targeted-drug therapy has become the optimized
treatment of lung cancer, especially benefit for patients who are not qualified for lung
lobectomy. It is crucial to accurately identify mutant genes within tumor region from
stained pathological slice. Therefore, we mainly focus on identifying mutant gene of lung
cancer by analyzing the pathological images. In this study, we have proposed a method
by identifying gene mutations in lung cancer with histopathological stained image and
deep learning to predict target-drug therapy, referred to as DeepIMLH. The DeepIMLH
algorithm first downloaded 180 hematoxylin-eosin staining (H&E) images of lung cancer
from the Cancer Gene Atlas (TCGA). Then deep convolution Gaussian mixture model
(DCGMM) was used to perform color normalization. Convolutional neural network (CNN)
and residual network (Res-Net) were used to identifying mutated gene from H&E stained
imaging and achieved good accuracy. It demonstrated that our method can be used to
choose targeted-drug therapy which might be applied to clinical practice. More studies
should be conducted though.

Keywords: lung cancer, targeted therapy, pathological images, convolution neural network, residual network
INTRODUCTION

Lung cancer has the highest morbidity and mortality worldwide, and it became the main cause of
death in China, especially for males (1). According to different biological factors and clinical
presentations, lung cancer could be further divided into two sub-types: small cell lung cancer and
non-small cell lung cancer (2). Non-small cell lung cancer takes up nearly 80 to 85% of all lung
cancers, and small cell lung cancer takes up only 15 to 20% (3). Small cell lung cancer is a kind of
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invasive and malignant neuroendocrine tumor however sensitive
to chemotherapy and radiation therapy. Therefore, the therapy
of small cell lung cancer is relatively effective and with good
prognosis (4). However, most lung cancers are non-small cell
cancers, which contains lung squamous cell carcinoma (LUSC),
lung adenocarcinoma (LUAD), and large cell carcinoma, which
are significantly less sensitive to chemotherapy and radiotherapy
compared to small cell lung cancer (5, 6). Patients with
squamous cell carcinoma do not well response to anti-tumor
drugs therapy because of intolerable toxic complications (7, 8).
However, there are genetic abnormalities carried by patients with
adenocarcinoma who respond well to targeted-drug therapy (9,
10), such as those carry EGFR mutations or ALK rearrangements
(11). Studies have shown that the prognosis of patients is
strongly associated with certain histopathological features (12,
13). The efficacy of targeted-drug therapy depends on the stage
of cancer by pathological diagnosis, therefore it might enhance
the patients’ quality of life and prognosis by identifying gene
mutations (14, 15).

Although many techniques are approved to have significant
advantages on diagnostic imaging, visual inspection of
histological stained slice is still considered as “gold method”
for tumor diagnosis. But, the diagnostic accuracy and treatment
plan generally on the basis of the results of biopsy study. It
requires well-experienced pathologists who can confidently
identify the changes of cell morphology and corresponding
tumor stage of lung cancer by visual inspection of pathological
images (16, 17). Currently, the pathologists can determine the
histological stage of tumor by looking at stained slice under
microscope. However, the pathological report might be subject to
individual bias and staining technique (18).Therefore, cancer
diagnosis usually requires several pathologists to evaluate the
same stained slice in order to increase accuracy of diagnosis
which is time consuming and costly. Furthermore, poorly
differentiated tumors or those in advanced stage also brings
challenges to make a reliable diagnosis, thereby, computer aided
assessment is recommended for diagnosis and designing
therapy plan.

Deep learning means have been used in the medical field for
lots of years (19), which can save time and receive reliable
diagnosis, especially in image assessment. In oncology field, it
has already gained approval for better efficiency, accuracy, and
consistency diagnosis (20). Compared to experienced
pathologist, it has advantage of identifying tumor region by
image segmentation, sub-type classification, as well as
predicting the disease prognosis (21). Pegah Khosravi et al.
established an independent frame according to Convolutional
Neural Networks (CNN), to classify the histopathological slices
from different types of cancer, and gain good results (22). Jakob
Nikolas Kather et al. reported that deep residual learning can
predict microsatellite instability directly from hematoxylin-eosin
staining slice (23). Moreover, the study conducted by Zizhao
Zhang et al. came up with a new artificial intelligence-driven of
histological staining slice diagnostic approach which solved the
problem of interpretable diagnosis (24). Nicolas Coudray et al.
downloaded full-slice images from the cancer genome atlas, they
Frontiers in Oncology | www.frontiersin.org 2
annotate tumor region on one slice, and remaining slices were
divided into training set or validation set. The data from training
set was trained by deep convolutional neural network
(inceptionv3) and finally automatically and accurately classified
data into lung adenocarcinoma, lung squamous cell carcinoma,
or normal lung tissue (3). Those studies demonstrated that deep
learning methods can achieve relatively good results in analyzing
the pathological images of patients.

Currently, there are different types of cancer therapy, which
range from the traditional radio-logical and broad spectrum
chemotherapy, to targeted-drug therapy. “Target therapy” is to
apply advanced technology to accurately deliver drugs to the
tumor region in order to specifically eliminate malignant cells
without damaging normal tissue cells. The basis of “target
therapy” is aiming to design an individualized treatment plan
targeting to specific malignant cells by applying current
knowledge of cancer biology and pathogenesis at the cellular
and molecular levels. Therefore, it is necessary to develop novel
machine learning methods for diagnosis and design treatment
plan which might increase the efficiency, accuracy, and
consistency of diagnosis.

This paper aimed to predict the mutated genes which are
potential candidates for targeted-drug therapy by developing a
novel algorithm according to convolutional neural network for
lung cancer. In this study, we used hematoxylin-eosin (H&E)
stained pathological slice of lung cancer which were downloaded
from the TCGA, thereby, deep convolution Gaussian mixture
model DCGMM was used to perform color normalization.
Convolutional neural network (CNN) and residual network
(Res-Net) were employed for training data. The average
probability of the bio-markers of lung cancer was received
through the model, with the highest accuracy rate of the MET
which was reached 86.3%. It provided an approach to develop
effective targeted therapy on basis of mutant genes of lung
cancer, however, it need further studies to evaluate the
effectiveness and reliability of designed model before applying
to clinical practice.
MATERIALS AND STUDY FRAMEWORK

Data Set Preparation
We downloaded H&E histopathology images of lung cancer from
the Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/
repository/) as our data set. Then we used cBioportal (http://
www.cbioportal.org/index.do) to download H&E image SNP
data, Cancer Genomics Portal provides a visualization tool for
analyzing of cancer gene data. cBioPort was used to perform
molecular and cytological studies for genetic, epigenetic, gene
expression, and proteomics research. The clinical data of H&E
image lung cancer patients were downloaded from the
International Cancer Genome Collaborative Group (ICGC)
(https://dcc.icgc.org/).

We used the python package OpenSlide to analyze the
histopathological images as SVS format. The experienced
pathologists examined the H&E stained image and identified
April 2021 | Volume 11 | Article 642945
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the abnormal or suspected area which may have diagnostic
significance. They also discarded low-quality slices which have
blurred background or contained other tissues around, such as
inflammatory cells, micro-vessels, microfibers and lymphoid, etc.
Then cBioPortal was performed to identified potential mutant
genes associated with lung cancer as bio-markers, such as AKT1,
ALK, BRAF, FGFR1, FGFR2, HRAS, KRAS, MET, etc. Moreover,
we labeled the H&E stained slice with the potential lung bio-
markers as 1, otherwise, labeled as 0.

Study Framework
This study applied previously designed framework, as show in
Figure 1 [Study flow chart (a) Download images from The Cancer
Genome Atlas database; (b) identify tumor areas; (c) color
normalization; (d) bio-marker recognition; (e) heat map], which
is DeepIMLH to annotate the tumor region of lung cancer on
H&E stained slices, thereby to identify mutated genes as the
potential bio-markers for targeted-drug therapy of lung cancer.
As shown below, this study included five steps. Firstly, 180
hematoxylin and eosin (H&E) stained whole slice images (WSI)
of lung cancer were downloaded TCGA; secondly, the experienced
pathologists annotated the tumor area on the H&E stained slices
and WSI were further divided into tiles of 512*512 pixels window;
thirdly, the performance analysis of image model is usually
compromised to subjective bias due to many factors such
staining technology and processing procedure, the quality of
biopsy sample, etc. In order to prevent the potential bias,
Gaussian mixture model was used for color normalization of
H&E stained slices. Thereby, all the images were through
subsequent model training. Fourthly, WSI contained mutant
Frontiers in Oncology | www.frontiersin.org 3
bio-markers of targeted therapy was annotated and further input
for training by a new convolutional neural network (CNN) model
combined with residual blocks. Finally, the trained tiles were
classified and summarized to full slices for extraction of heat maps.

Identify Tumor Areas
In order to identify the tumor area, experienced pathologists
firstly annotated 180 H&E stained whole slide images (WSI) of
lung cancers which were downloaded from the TCGA, as show
in Figure 2A (Download images from TCGA). The experienced
pathologist can annotate the boundary of tumor area, such as
abnormal cell nuclei, cell shape under the microscope. The area
surrounded by the blue-yellow circle in the Figure 2B
(Professional pathologist annotated tumor region) was the
boundary of tumor area. Before the CNN model training, the
full slide image was divided into small pieces of the same size
with a 512*512 pixel window, which was shown in Figure 2C
(Segmented WSI with 512*512 sliding window). Downloaded
WSI always have some background noise, since they came from
different biopsy samples and have different background. In order
to reduce significant interference in subsequent training, we
remove the background noise, blank or large fuzzy areas.
Python’s OpenCV was used to calculate the ratio of the area of
blurred background of the tile over the total area of slice. The
threshold was set in order to remove samples which is less than
the threshold. It was shown as Figure 2D (Block noise reduction
processing). Python’s OpenCV software package was also used to
segment H&E stained slices. Finally, it was integrated into the
new data-set and split into a training set and a verification set
according to a 1:1 ratio.
FIGURE 1 | Study flow chart (A) Download images from The Cancer Genome Atlas database; (B) identify tumor areas; (C) color normalization; (D) biomarker
recognition; (E) heat map.
A B DC

FIGURE 2 | Tumor region recognition model (A) Full slice image downloaded from TCGA; (B) Professional pathologist annotated tumor region; (C) Segmented WSI
with 512 * 512 sliding window; (D) Block noise reduction processing.
April 2021 | Volume 11 | Article 642945
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Color Normalization
H&E staining is a commonly used staining technique which are
widely used in the tumor diagnosis and staging. However, this
method might subject to inconsistent color fixing due to
specimen preparation standard, staining technique, H&E
reagents, the thickness of section, etc. The color difference of
image is one of the most important factors in the training process
of the CNN. Therefore, unsupervised deep convolution Gaussian
mixture model (DCGMM) was applied to standardize the color
of H&E stained slices.

In order to evaluate the efficiency of trained by DCGMM, these
images should have consistent colors and unchanged features such
as morphology, pixels, and structure after training, as show in
Figure 3 [Color normalization model of H&E stained image; the
image was normalized by DCGMM, (a) Original images, (b) Color
normalized images]. Color standardization is primarily based on
the Gaussian distributed to average the original image, which can
be converted to white and color. Figure 3 was a frame diagram of
color normalization of H&E stained slices. The upper three images
in Figure 3 were the original images without color normalization,
the lower three pictures were those after color normalized.
Comparing the original images with the target images, we can
indicate the model only normalize the color of the image without
changing in the size, pixels, and position of these images.
Moreover, the model is unsupervised, it does not require any
assumptions of the data or any label.

Bio-Marker Recognition
In order to identify the bio-markers of lung cancer H&E stains,
we used Tensorflow 2.0.0 software package to train the
convolutional neural network model. The convolutional neural
network can use back propagation to adjust the parameters of the
convolutional neural network, extract the features of the image,
and classify the images according to the extracted features. This
is an effective gradient descent algorithm that can automatically
update the weights during training.
Frontiers in Oncology | www.frontiersin.org 4
We first input the processed lung cancer H&E stain slides and
bio-markers to the input layer of the deep convolutional neural
network, and then output them to the convolutional layer to
extract image features. The convolutional layer is composed of 32
n*n convolution kernels. Secondly, enter the excitation layer
containing the ReLu excitation function, and then enter the next
hidden layers until all the features of the H&E stained slice are
extracted. In order to improve the generalization ability of the
network and accelerate the training of higher learning rates, we
add a batch normalization layer to the convolutional neural
network. However, this will increase the depth of the
convolutional neural network, and cause the problem of gradient
disappearance, which will slow down network training speed and
classification accuracy. So we introduced a residual network with
jump connections to solve the above problems. In addition, the
optimization function and loss function used in the convolutional
neural network are “adam” and “sparse categorical cross entropy”
respectively. The output in here are slides with characteristics of
different lung cancer bio-markers for targeted therapy.

Heat Map
In order to generate the heat map, we firstly scanned the whole
slide images with 512*512 slicing windows of lung cancer bio-
markers. Then the results of each slides were obtained through
the CNN + Res-Net model by applying pixels of sliding windows.
Moreover all the values of passed pixels were summed and
calculate their average as bio-marker probability of targeted
therapy for lung cancer. We used probability visualization to
convert the probability of targeted therapeutic markers of pixels
in to color values. The probability value was mapped in the range
of (0, 1) to RGB color from pure blue color (0, 0, 255) to pure red
color (255, 0, 0) linearly. Therefore the red color in the heat map
indicated the higher the probability of bio-marker appearance,
the blue color indicated lower the probability of bio-markers
appearance. A WSI has multiple tiles, and each tile can predict
corresponding result probability by the model. We integrate the
A

B

FIGURE 3 | Color normalization model of H&E stained image. The image was normalized by the depth convolution Gaussian mixture model (DCGMM), (A) Original
images, (B) Color normalized images.
April 2021 | Volume 11 | Article 642945
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results of all tiles through the fusion algorithm to obtain the final
probability result of the corresponding WSI. Define the average
probability of the first n windows as the recognition score.
Predict the occurrence probability of lung cancer bio-markers
by setting critical thresholds. Among them, those higher than the
threshold are considered positive, otherwise they are considered
negative. We use the highest value as a hyper-parameter and
determined by cross-validation. The hyper-parameters of model
were determined by providing hyper-parameter dictionary with
using the Grid-Search-CV class in scikit-learn. The resulting heat
Frontiers in Oncology | www.frontiersin.org 5
map is shown in Figure 4 (Heatmap of the tumor region applied
in the CNN model by using TCGA dataset. The above image is
the original image, the under image is the heat map). The up
picture of Figure 4 was the original H&E staining slice, and the
under picture was the corresponding heat map.
RESULTS

In order to calculate the average probability of different bio-
markers from lung cancer H&E full slices, we firstly downloaded
180 lung cancer H&E stained whole slide images from TCGA.
The clinical characteristics of the patients were shown in Table 1.
The experienced pathologists annotated the tumor area of H&E
stained slices, segmented and noise reduction. Then we selected
1800 512*512 small blocks with good quality. Thereby 1,800
small pieces were randomly divided into two sets which were
training set and verification set. Finally, we obtained the heat-
maps of different bio-markers of lung cancer H&E full slices and
the AUC (area under ROC curve) values by 2-fold cross-
validation were by DeepLRHE model. The process was shown
in Figure 1.

Table 1 showed clinical information of patients whose H&E
stained slices we downloaded from TCGA. The total patients
number is 180, with 55% are female and 45% are men. The mean
age was 68-year-old, and 42% of the patients were diagnosed as
lung cancer at year over 70-year-old. Moreover, 13% of patient
survived less 1 year with known cases. Among the 180 patients,
8% were diagnosed as lung adenocarcinoma, and 42% were lung
squamous cell carcinoma.

Performance Evaluation
By using the DeepIMLH model, we can get the average
probability of different bio-markers from 180 lung cancer H&E
stained slice. Table 2 showed the accuracy of five frequently
mutated genes which were predictable by the DeepIMLH model.
The ALK, BRAF, and KRAS mutations might not been conceived
due to imbalance of negative and positive samples. As shown in
FIGURE 4 | Heatmap of the tumor region applied in the CNN model by using
TCGA dataset. The above image is the original image, the under image is the
heat map.
TABLE 1 | Clinical Characteristics of the Study Patients.

Characteristics Distribution of clinical information number of patients

Gender Male 99
Female 81

Age at diagnosis 30–40 2
41–50 13
51–60 25
61–70 63
>70 77

Survival time (years) 0–1 25
1–2 14
2–3 16
3–4 5
>4 6

Unknown 114
Cancer
sub-type

LUAD 105
LUSC 75
April 2021 | Volum
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Table 2, the highest accuracy rate was MET with reached 86.3%,
followed by FGFR1 83.2%, FGFR2 82.1%, HRAS 78.7%, the
lowest was AKT1 of 72.3%.

ROC Curve of Bio-Markers
The AUC value of the lung cancer bio-markers in this study was
the average probability of each bio-marker on the lung cancer
H&E stained full slice image. The ROC curve of each bio-marker
was shown in Figure 5 (ROC curve with 512*512 image blocks by
two times cross-validation, sub figures of A–Dwas the ROC curve
of mutated gene MET, FGFR1, FGFR2, HRAS respectively). The
ROC chart was drawn with the false positive rate (FPR) as the
Frontiers in Oncology | www.frontiersin.org 6
X-axis and the true positive rate (TPR) as Y-axis. The area under
the ROC curve was the AUC value. Only the ROC curves of MET,
FGFR1, FGFR2, and HRAS bio-marker were shown here because
of higher accuracy. Those markers may have effects on predicting
the sensitivity to targeted therapy and disease prognosis. Targeted
therapy has been rationally designed to suppress specific
mutations and gain more effective clinical treatment.

As shown in Figure 5A, the AUC value of MET was reaching to
86%. The MET is proto-oncogene, by binding with its ligand
hepatocyte growth factor (HGF) signaling pathway, it mediates
wound healing and hepatic cell regeneration, and plays a critical
role in the process of embryonic development. However, the non-
regulated MET signaling pathway can cause abnormal cell
proliferation, apoptosis, migration, even have potential for
oncogenesis, malignancies. In non-small cell lung cancer, some
of patients present MET mutation, including MET protein over
expression, MET mutation or rearrangement, which lead to non-
regulated downstream signaling pathway (25). Patients with MET
mutation might not respond to therapy combining various targets
or standard therapy withMET inhibitor. MET inhibitors have been
went through clinical trials, the clinical data was promising now,
TABLE 2 | Accuracy of lung cancer biomarkers.

Cancer type Bio-marker Accuracy

Lung cancer AKT1 72%
Lung cancer FGFR1 83%
Lung cancer FGFR2 82%
Lung cancer HRAS 79%
Lung cancer MET 86%
A B

C D

FIGURE 5 | ROC curve with 512*512 image blocks by 2 times cross-validation, sub figures of (A–D) was the ROC curve of mutated gene MET, FGFR1, FGFR2,
HRAS respectively.
April 2021 | Volume 11 | Article 642945
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which showed that MET mutation is a potential bio-marker to
predict the response to target-drug therapy, as well as prediction of
disease prognosis (26). Moreover, large clinical trial still ongoing to
evaluate the predictive role in lung cancer therapy. In recent years,
there have been endless researches on MET inhibitors. Among
them, Volitinib, Tepotinib, and Capmatinib (also known as
INC280) are the three drugs with relatively large research data (27).

As shown in Figures 5B, C, the AUC values of FGFR1 and
FGFR2 were 83 and 82%, respectively. The fibroblast growth
factor receptors (FGFRs) play a critical role in tumor genesis, cell
proliferation, angiogenesis, cell migration, apoptosis, and
survival. Early studies showed that inhibition of FGFRs can
decrease cell proliferation and induce cell apoptosis in both in
vitro and in vivo models with FGFR mutations, moreover, other
studies also chose FGFRs as target for anticancer medical
therapy. For an example, multiple kinase FGFR/vascular
endothelial growth factor receptor (VEGR) inhibitor gained the
promising results in breast cancer with FGFR/FGFR3
amplification (28). Moreover, early clinical trials also
demonstrated that choice FGFR inhibitors may conquer the
drug toxicity. To be specific, FGFR1, an oncogenic receptor
tyrosine kinase (RTK), plays fundamental roles in the process
of cancer prognosis. Under normal physiological condition,
FGFR1 signaling pathway is triggered by many growth factors,
leading to receptor dimerization and transphosphorylation,
thereby, activated FGFR1 pathway leads to the down-
streaming pathway including RAS/MAPK which is critical
pathway in almost cancer development. FGFR1 is frequently
amplified in lung cancer and is a latent curative target in many
solid tumor as well. Clinical application of FGFR combined with
FGF target remains unclear. FGFR inhibitors primarily target the
cytoplasmic kinase domain, they also might target the
extracellular ligand binding domain (29). Patients with FGFR
mutation is potential a candidate for clinical trial for FGFR
inhibitors. Clinical studies have shown the primary reason for
the resistance of FGFR inhibitors may cause by bypass signal
activation. The pharmacological or genetic mutation of FGFR
induced autophagy; the mechanism remains unknown, which
may involve both inhibition of ERK/MAPK pathway and decline.

As shown in Figure 5D, the AUC value of HRAS is 79%. The
HRAS gene is an oncogene and a member of the RAS oncogene
family, which also includes two other genes: KRAS and NRAS.
The RAS gene codes for small membrane bound proteins and
hydrolyze GTP and participates in the cascade of protein kinase,
transmits signal to neclei (30). Activation of RAS gene family
might convert those protogenesis to drive cancer development.
These genes play important role in cell proliferation,
differentiation, and apoptosis. Mutated RAS coded proteins are
the key drivers in many cancers and the distribution of RAS
mutation varies between the difference of somatic tumors.
Studies have shown that if the RAS gene is mutated, Atradigen
is one of the proven effective RAS inhibitor drugs in the world.

As shown in Table 2, the accuracy of AKT1 was 72%. The
AKT1 gene encodes a serine/threonine protein kinase, which can
be activated by extra cellular signals through a phosphatidylinositol
3-kinase (PI3K) (31). Currently, three members of the AKT family
Frontiers in Oncology | www.frontiersin.org 7
are found, naming AKT1/PKB a and AKT2/PKB b and AKT3/
PKB g respectively. AKT1 is a core factor in PI3K/AKT signaling
pathway, and PI3Ks can specifically cause the three hydroxyl
groups of phosphatidylinositol (PI). The production of second
messenger inositol such as PIP3, PIP3 can promote AKT
transferring to the cell membrane and can be activated by
PDK1/PDK2. The activated AKT relocates in the cytoplasm,
nucleus, or other organelles of the cell, large number of substrate
proteins would be phosphorylated. Thereby, AKT signaling
pathway can regulate multiple cell functions, however, the
abnormally activated AKT signaling can cause tumorigenesis.
For AKT1 gene mutations, everolimus and other mTOR
inhibitors that have been on the market have good efficacy (32).
DISCUSSION

With the in-depth understanding of tumor molecular biology,
targeted therapy has become one of the most popular treatment
options for lung cancer. Some studies have showed the impact of
targeted therapy in small cell lung cancer, including single drug or
combined chemotherapy (33), such as anti-angiogenic drugs (such
as bevacizumab, sunitinib), histone deacetylase inhibitors, as well as
target-induced cell apoptosis drugs. The precise medicine currently
is a hotspot of study area for patients with non-small cell lung
cancer. The key of targeted therapy is to accurately analyze the
pathological images. This analysis tool primarily depends on the
clearly identifying pathological area by experienced pathologists.
The visual inspection is time-consuming and subject to individual
bias. Therefore, computer-aided diagnostic systems have developed
rapidly for this clinical field, especially in the clinical application of
multiple layer neural networks under deep learning. Deep learning
networks can convert structured information, amid it can
automatically identify and extract relevant features. However,
there were also some challenges, such as important feature loss,
over fitting, hyper-parameter adjustment, and other problems,
which may affect the subsequent diagnosis and treatment design.
Therefore, the application of deep neural networks on pathological
images diagnosis has always been controversial.

Our study has some limitations. Firstly, TGCA database only
includes cases in United States, which might result in ethnicity
difference. Since the smokers are significantly higher in China
than United States, therefore, the occurrence of lung cancer
might cause by other influencing factors in addition of gene
mutations. Moreover, the insufficient number of H&E-stained
whole slide images we downloaded led to the imbalance of
negative and positive samples which may affect the probability
of some bio-markers. Moreover, non-specific features of H&E
images, such as blood vessels, poorly stained areas, lung tissue
necrosis areas, and overlapping blurred areas have been removed
in our model, however, the blood vessels also indicate early
metastasis, and staining technique may cause sample imbalance.
Finally, our model did not include an independent verification
subset to evaluate our model, which may have certain effects on
our results.
April 2021 | Volume 11 | Article 642945
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METHODS

Deep Convolution Gaussian Mixture Model
The deep convolution Gaussian mixture model (DCGMM) is an
unsupervised clustering algorithm which is based on the
Gaussian mixture algorithm combined with a deep convolution
network. The Gaussian mixture algorithm means a probability
distribution algorithm with the below form:

P yjqð Þ = oK
k=1akf yjqkð Þ                         (1)

Here, ak is the weight coefficient of each Gaussian
distribution function, also known as the mixing coefficient,
must satisfy 0≤ ak ≤1 and oK

k=1ak = 1; f(y|qk) is the density
of Gaussian distribution, and qk = (mk,s 2

k ). ∅ (yjqk) = 1ffiffiffiffi
2p

p
sk
exp

( − (y−mk)2

2s 2
k

) is Kth sub-model.
Gaussian Mixture Model (GMM) is widely used in many

cases, moreover the expectation maximization (EM) algorithm is
an effective method to learn the parameters in GMM. GMM is
divided into two steps similar to K-means:

Step E: Estimate the probability which is generated by each
sub-model. For each data xi, the probability generated by the k-th
sub-model (that is, the responsiveness of the sub-model k to the
appearance data xi) is

g i, kð Þ = pkN(xijmk,ok)

oK
j=1pjN(xijmj,oj)

(2)

Step M: Based on the maximum likelihood estimation.

mk =
1
Nk
oN

i=1g i, kð Þxi                                           (3)

ok =
1
Nk
oN

i=1g i, kð Þ xi �mkð Þ xi �mkð ÞT                                          
(4)

WhereNk = oN
i=1g(i, k)  and pk can also be estimated as Nk/N.

From formula (1), the natural log-likelihood function could
be represented as

lnP Y ja , qð Þ = oM
m=1ln oK

k=1ak
Âo(yjqk)

� �
(5)

Here M is the total count of pixels in the input picture (Y =
{y1, y2,…, yM}). Given GMM, the goal is finding targeted
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parameters (qk, Sk, ak). A common approach is using an EM
algorithm to iteratively evaluate responsibilities [formula (3)]
and re-estimate the parameters.

Some recent studies have made some new developments on
traditional GMM. GMM can be applied to auto encoder neural
networks for low-dimensional representations (34), or stacks of
multiple GMM layers can be constructed on top of each other in
a hierarchical architecture (35). Therefore, deep convolutional
Gaussian mixture model (DCGMM) combines the parameters of
the CNN with the parameters of the GMM to optimize
the model.

The Deep Convolutional Gaussian Mixture Model
(DCGMM) combines the Gaussian Mixture Model (GMM)
into the color allocation of the image through the high image
representation ability of the Convolutional Neural Network
(CNN) to perform the color normalization of the image. We
use convolutional neural networks to estimate the liability
coefficient. Then the parameters of DCGMM are optimized by
gradient descent method and log-likelihood function (Equation
5). In fact, DCGMM first replaces the E step in the EM algorithm
with a convolutional neural network, and then uses the existing
responsibility parameter estimation to estimate the q and S of the
multivariate Gaussian distribution like the M step in the EM
algorithm. Finally, the training of DCGMM is mainly carried out
through gradient descent method and back propagation.

Convolutional Neural Networks
Previous studies have shown that Convolutional Neural Networks
(CNN) is the leading deep learning method for tumor diagnosis.
The earliest application of neural network was a multilayer
perceptron (MLP) with multiple levels of conversion. The
traditional neural network contains input layer, hidden layers,
and the output layer, and if it includes multiple hidden layers, it is
known as a “deep neural network” (36). A complete convolutional
neural network basically includes five components: input layer,
convolutional layer, pooling layer, fully connected layer, and
output layer, as seen in Figure 6 (convolutional neural network
structure, A complete convolutional neural network basically
includes five components: input layer, convolutional layer,
pooling layer, fully connected layer, and output layer). Firstly,
the data came from input layer, then it was further input into
convolutional layer which was the kernel content of the entire
neural network especially in the sequential process. Generally, the
FIGURE 6 | Convolutional neural network structure, A complete convolutional neural network basically includes five components: input layer, convolutional layer,
pooling layer, fully connected layer and output layer.
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convolution of node matrix from previous layer of the neural
network is converted into node matrix on next layer of the neural
network, and the depth of the node matrix is increased to achieve
a deeper expression. The convolution layer generally has an
excitation function to help express complex features through
rectified linear unit (ReLu). The crucial function of the pooling
layer is the extract features for dimensional reduction through
ReLu excitation layer. The pooling sample layer does not change
the depth of the feature matrix, but it can reduce the size of the
matrix and simplify the constitution of the neural network. The
fully connected layer is located after multiple convolution pooling
processes to achieve the final classification result. The output layer
is used to receive the probability distribution of the results. The
training of convolutional neural network primarily contains
forward propagation and back propagation. Among the training
course, the parameters can be constantly changed in order to
obtain greatest simulation effect. With increasing the deep of the
exploration of convolutional neural networks, a series of
optimized and improved structural models have emerged, such
as fully convolutional neural networks, deep convolutional neural
networks, etc. Deep convolutional neural network is a valid and
steady mean for the image processing (37). In order to maintain
the optimal pixels, shape, and other characteristics attribution of
image, the deep convolutional neural network improves the
network constitution through the local features and local
perceptions, shared weights, spatial or temporal pool
sampling (38).

Since the significance of the neural network studying process is to
study the data allocation, once the apportion of training data is
inconsistent to the test data, the generalization capacity of the
network will sharply decrease. In addition, once the apportion of
each heap of training data is inconsistent, the network must study to
fit the inconsistent allocations in each iteration, that will significantly
decrease the training rate of the network. Once the neural network
starts training, the parameters will be changed. In addition to the
input layer, the input data allocation of every layer of the subsequent
network has been changed. During the training process, the updated
of the training parameters from the former layer will cause the
changes of input data in the latter layer. Although stochastic gradient
descent (SGD) is simple and effective for training deep networks, it
requires human settings and wastes time to adjust parameters for
instance learning rate, weight attenuation coefficient, parameter
initialization, dropout ratio, etc. (39). Moreover, the input of every
layer is influenced by the parameters of all former layers, causing the
layer ceaselessly adjust the novel allocation, which is, the distribution
of internal nodes in the deep network during the training process
(Internal Covariate Shift). If the allocation of training data keeps
changing during the training process, it will slow down the training
efficiency, and network will be deeper as well. Thereby, Batch
Normalization (BN) layer in the convolutional neural network is
recommended to improve the generalization capacity and expedite
training process when data distribution of middle layer changes
during the training process (40). By using normalization as part of
the model architecture, normalization is performed for each training
batch, which is, with inputting at each layer of the network, a
normalization process is performed before entering the next layer of
Frontiers in Oncology | www.frontiersin.org 9
the network. The BN algorithm independently normalizes each
scalar feature, which is, the mean is 0 and the variance is 1. The
formula is as follows:

x,k =
xk � E xk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xk

� �q         (6)

Where, E[xk] is supposed to the mean value of every batch of
training data neurons xk, and the denominator is the standard
deviation of the activation level of every batch of data neurons xk.

If only each input of the layer is normalized, it may change the
representation of layers. Therefore, in order to maintain the
identity transformation, we used transformation reconstruction
and introduced the learn-able parameters g and b, thereby:

yk = g kx,k + bk

                                                    
(7)

When g k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½xk�

p
, bk = E½xk� the data was restored back.

Therefore, we added a batch normalization (BN) layer to the
CNN model, which would greatly increase the training rate and
accuracy of the convolutional neural network.

Residual Net
Adding batch normalization will grow the depth of the
convolutional neural network. The depth of the deep learning
has significant influence on the final classification and
recognition. Therefore, the traditional idea is that with
increased depth the network, the performance is better. But in
fact, when the stacking of conventional networks (plain network)
is deeper, the effect is worse. One of the reasons is that the
network is deeper, it is more likely to cause the gradients
disappear and gradients explode. However, the shallow
network cannot significantly improve the recognition effect of
the network, therefore, we introduced Res-Net to solve this
problem (41). By adding shortcut connections, the residual
network becomes easier to be optimized. Several layers of
networks including the shortcut connection is called a residual
block which is exhibited in Figure 7.

As seen in Figure 7 (Residual block), x represented as the
input, and M(x) represented as the output of the residual block
before the activation function of the second layer, i.e. M(x) =W2/μ
(W1 * x), where W1 and W2 respectively mean the weight of the
first layer and the second layer, μ means the ReLu activation
function. The output of final residual block was μ(M(x) + x).

As there is no shortcut link, the residual block is a common 2
layer network. The network in the residual block can be the fully
connected layer or the convolutional layer. Suppose that the
output of the second layer network precedes the activation
function is N(x). If the output of layer 1 is the input x in the
layer 2 network, then for the network no shortcut link, it should
be updated to N(x) = x. For the network no shortcut link, which
is the residual block, if we want the output to be x, only need to
optimize M(x) = N(x)-x to 0. The optimization of the latter is
much easier compare to the preceding formula. The residual
network is composed of much residual blocks. For an
April 2021 | Volume 11 | Article 642945
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assumption, a big neural network with an input of X and an
output activation value of B[l]. If we add two more layers to
initial network, the ultimate output result will be B[l + 2]. The
two layers could become a residual module. The ReLU activation
function is used throughout the network, and any activation
values are bigger than or equal to 0. For big networks, whether
the residual block is jointed to the middle or the end of the neural
network will not influence the property of the network, and these
residual blocks are relatively easy to learn the identity function.
Moreover, they could increase the learning efficiency. As the
activation function of the neuron, Relu defines the nonlinear
output of the neuron after linear transformation wTx + b.
Namely, for the input vector x from the foregone layer of the
neural network into the neuron, the neuron applying the linear
Frontiers in Oncology | www.frontiersin.org 10
adjustment activation function will output max (0, wTx + b) to
the rear layer of neurons or as the output of the entire neural
network (depends on the site of the current neuron in the
network institution).

Figure 8 (Residual neural network flow chart, showed two-
layer residual neural network. The activation is performed on the
L layer to obtain B[l+ 2]) showed two-layer residual neural
network. The activation is performed on the L layer to obtain
B[l+ 1], and the activation was performed to gain B[L + 2]. And B
[l + 2] = μ (D[l + 2] + C[l]), where D[l + 2] = E[l + 2] * B[l + 1] +
C[l + 2], B[l + 1] = μ (D [l + 1]), D[l + 1] = E[l + 1] * B[l] + C[l + 1].
If E[l + 2] = 0 and C[l + 1] = 0, then we can get that B[l + 2] =
μ (B[L]). When B[l]> = 0, B[l + 2] = B[l]. It is equivalent to
establishing a linear relationship between B[l] and B[l + 2] when
FIGURE 7 | Residual block.
FIGURE 8 | Residual neural network flow chart, showed two-layer residual neural network. The activation is performed on the L layer to obtain B[l+ 2].
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E and C are 0. Moreover, it is equivalent to directly copying the
feature information of the B[l] layer to the B[l + 2] layer without
affecting the network performance as well. For the residual
network, as the network is deeper, the training error becomes
smaller. This way could attain deeper layers of the network,
which assists work out gradient disappearance and gradient
explosion, allowing us to train deeper networks while ensuring
good performance. In fact, the residual network consists of
several shallow networks and does not fundamentally figure
out the issue of gradient disappearance, instead to avoid the
gradient disappearance. Since it composed of several shallow
networks, the shallow network will not have the problem of
disappearing gradients during the training process, but it can
accelerate the convergence rate of the network.

The Receiver Operating Characteristics
There are many ways to calculate the property of the model.
Generally, the performance of the model is measured by the
accuracy, recall, accuracy and F1 score, and the curve (AUC)
under the receiver operating characteristics (ROC). This study
used precision measurement receiver operating characteristics
(ROC) to estimate the performance of the CNN model. The ROC
curve was drawn via plotting the true positive rate (TPR) and false
positive rate (FPR) under kinds of threshold putting, which is, the
bight generated with FPR as the x axis and TPR as the y axis. The
true positive rate (TPR) is also called sensitivity, that is the ratio of
all actual positive samples that are exactly recognized as positive. Its
expression is the same as expression of recall rate. The false positive
rate (FPR) is also called specificity, which is the ratio of negative
samples that are falsely identified as positive in actual negative
samples. The strict mathematical definition is as follows:

FPR = Sensitivity =
FP

TN + FP
(8)

TPR = Specificity =
TP

TP + FN
        (9)

Here, true positive (TP) is the count of samples that are
forecast as positive and actually are positive, false positive (FP) is
the count of samples that are forecast as positive and actually are
negative. True negative (TN) is the count of samples that are
forecast to be negative and really negative. False negative (FN) is
the count of samples that are forecast to be negative and really
is positive.

From the definition of FPR and TPR, it indicates the near the
drawn ROC curve is to the upper left, the result is better. From a
geometric angle of observe, with the bigger the region under the
ROC curve, it indicates better model. Therefore, we used the area
under the ROC curve, which is, AUC (Area Under Curve) value
to measure performance of the model (42).

Cross-validation
In order to conduct the reliable) and stable of CNN model, we
used 2-fold cross-validation to increase the accuracy of the CNN
algorithm by adjusting the hyper-parameters of the algorithm to
gain the best scores. We split the data into two subsets, and one
Frontiers in Oncology | www.frontiersin.org 11
set was used as the training set to train data by CNN algorithm,
and the other was used as a test set to predict the trained
algorithm, thereby to find the error of the sample prediction,
and summarize their squares afterwards. The above process was
performed repeatedly until all samples were exactly predicted.

The hyper-parameters were adjusted which primarily included
the number of filter cores, sample size, number of layers, and loss
function of the CNN algorithm. For the adjustment of hyper-
parameters, we firstly determined the activated function as Relu
according to its mechanism, and determined the type of loss
function and weight initialization afterward, and encoded method
of the “output layer.” Secondly, according to the “broad strategy,”
a simple structure was previously constructed to determine the
number of “hidden layers” in the neural network and the number
of neurons in each “hidden layer.” Thereby for the remaining
hyper-parameters, we randomly selected a possible value, in order
to adjust the learning rate without considering the regular terms in
the loss function to reach a relatively appropriate threshold for the
learning rate, then selected half of the threshold as the initial value.
Then determine the size of the small batch of samples through
experiments. Use the determined learning rate and verification
data to select appropriate regularization parameters, and then
return to re-optimize the learning rate. The overall observation of
these experiments can determine learning rounds.
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