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Computational design of novel proteins with well-defined functions is an ongoing topic in computational biology. In this work, we
generated and optimized a new synthetic fusion protein using an evolutionary approach. The optimization was guided by directed
evolution based on hydrophobicity scores, molecular weight, and secondary structure predictions. Several methods were used to
refine the models built from the resulting sequences. We have successfully combined two unrelated naturally occurring binding
sites, the immunoglobin Fc-binding site of the Z domain and the DNA-binding motif of MyoD bHLH, into a novel stable protein.

1. Introduction

Protein design methods use trial and error or more
sophisticated methods like directed evolution or inverse
folding to generate novel scaffolds or to find novel protein
sequences folding into a defined scaffold, respectively. Given
the intimate relationship between a protein’s structure and
function, a way to design proteins with targeted properties
is to start from a desired structure and find sequences able
to fold into it, imposing additional constraints in the process
[1]. On the one hand, it is known that, in general, similar
sequences fold into similar structures [2]; on the other hand,
there are many cases of nearly identical structures known,
sharing no sequence similarity at all [3]. However, the aim
of computational design methods is not finding all possible
solutions, but at least one solution that fits the required
properties. One of the methods that have been proposed is
a multiobjective optimization, in which protein stability and
catalytic activity are simultaneously optimized [4, 5].

In convergent evolution, nonhomologous proteins evolve
in separate biological contexts to catalyze the same or similar
reactions. There exist two types of convergent evolution:
(1) mechanistic analogs that uses the same mechanisms to
perform related reactions and (2) transformational analogs
catalyzing exactly the same reaction. However, analogous

proteins may have structural homology although this is
not a prerequisite. Prominent examples are the antifreeze
glycoproteins [6], protein phosphatases [7], and glutaminyl
cyclases [8].

Several methods have been proposed to design novel sta-
ble proteins, such as multi-objective optimization, in which
protein stability and catalytic activity are simultaneously
optimized. For instance, Gronwald et al. [4] used a multi-
objective optimization to build new stable peptides based on
the villin headpiece (VH) sequence, which is known to be
stable in vitro. VH is derived from a single protein domain
of 35 residues [9]. The algorithm of Gronwald et al. consists
of four steps. First, the sequences carrying point mutations
are modeled on a given template structure, and subsequently,
molecular dynamics simulations are carried out for 10 ns.
After simulation, the fitness of each model is evaluated, and
the best models are selected for further optimization.

The limits of current methods is the incorporation of
molecular dynamics simulations into the multi-objective
optimization. Due to the fact that molecular dynamics sim-
ulations are very expensive regarding computational time,
new fitness functions have to be introduced without loosing
predictive power. Thus, a preprocessing and prescreening
of amino acid sequences is necessary due to the huge
dimension of the potential sequence space. In classification
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studies, amino acids are often represented by so called
descriptors, mapping each amino acid to a numerical value.
These descriptors range from physicochemical properties,
for example, hydrophobicity, molecular weight, or isoelectric
point, to more complex arrangements. It has been shown
that the composition of the descriptor set is one of the most
crucial parts in classifier development [10]. However, we
tested several of these descriptors in different classification
studies, ranging from functional classification and identi-
fication of protein families [11, 12], coreceptor prediction
of HIV-1 [13], and HIV-1 drug resistance prediction [14].
Hydrophobicity was one of the most important physico-
chemical properties, due to the fact that it is involved in
protein interactions, for example, by forming hydrophobic
cores. However, molecular weight is also important due
to potential steric incompatibilities within protein cores.
Furthermore, we found out that electrostatic potentials are
also good descriptors, because they are also involved in
protein interactions [13].

While most protein design methods focus on divergent
evolution, and thus aim at improving characteristics of a
specific protein such as stability and binding affinity, we
used directed evolution to create a novel synthetic protein
combining two unrelated naturally occurring binding sites:
the immunoglobin Fc-binding site of the Z domain and the
DNA-binding motif of MyoD bHLH. The resulting protein
should be able to bind to both the Fc region of human
antibodies and to DNA simultaneously. We compare our
multiobjective optimization scheme to that of Gronwald
et al. [4] with respect to computational efficiency and overall
number of sequences investigated.

2. Materials and Methods

2.1. Protein Z and MyoD. Protein Z is derived from staphy-
lococcal protein A and holds an IgG Fc-binding domain. It
consists of a three-helix bundle built from 58 amino acids.
Helix 1 and 2 contain the Fc-binding region, whereas helix 3
is necessary for Fab binding [15]. Chain B of PDB file 1LP1
[16] was used as a model for protein Z. In this study, we
transplanted the DNA-binding region of MyoD intro helix 3
of protein Z. MyoD is a bHLH domain DNA-binding protein
[17]. The protein-DNA complex structure (PDB: 1MDY)
was used in this study.

2.2. Design Process. We employed a genetic algorithm (GA)
with a multiobjective fitness function based on secondary
structure alignments and hydrophobicity and molecular
weight comparisons. In an iterative process, sequences were
assessed by the fitness function, best-ranked sequences were
selected, recombined, and mutated to get new sets of
sequences. The resulting sequence sets were refined in a
second step. ERIS [18] was used to model sequences onto
the wild-type structure and to calculate their free energy.
The models with the lowest free energy were subsequently
evaluated using molecular dynamics simulations (Figure 1).

2.3. Multiobjective Optimization. Multiobjective optimiza-
tion has been widely applied in protein design [4], providing

a heuristic solution for optimization problems without the
need for problem specific domain knowledge.

The quality of a solution is not represented by a single
value, but rather as a vector representing the quality for each
criterion. This can be formulated as

{
f1(x), f2(x), . . . , fn(x)

} ∈ Rn, (1)

with fi being the corresponding fitness functions and x the
target protein.

In contrast to natural or real numbers, vectors do
not have a natural order. To compare vectors with each
other, which is necessary for the optimization process, we
identify all vectors dominated by another one. One vector
dominates another vector if it is bigger in at least one
component and equal at the remaining components. This
can be mathematically expressed by x and y being the vectors
to be compared:

(i) x = y � xi = yi, for all i = 1, . . . n,

(ii) x > y → ∃i ∈ 1, . . . ,n with xi > yi and xj ≥ yj ,
for all i /= j,

(iii) if x has greater and smaller components than y, the
vectors do not dominate each other.

For instance, x = (3, 1, 2) dominates y = (3, 1, 1),
because x3 > y3. However, z = (4, 0, 2) neither dominates
x nor y, because z2 < y2 = x2.

All vectors that are not dominated by other vectors build
the first Pareto frontier. Dominating vectors are removed
from the set, and the next Pareto frontiers are calculated iter-
atively, thus leading to a Pareto rank count. Vectors having
a lower Pareto rank count are more likely selected for a new
generation. Two individuals are chosen and combined using
1-point-crossover at a random position leading to a new
individual. This novel individual is subsequently mutated at
a random position. All individuals, including those from the
current generation and the newly generated ones, are ranked
based on their fitness, and the best individuals are selected
for further evolutionary optimization, whereas the worst
individuals are discarded. Thus, the number of individuals
per generation is fixed (here: 600 individuals).

2.4. Scoring Functions. Secondary structure predictions were
carried out with GAMESSP, a secondary structure pre-
dictor based on the GAME-framework [19]. GAMESSP
is a multiple-expert-based secondary structure prediction
software based on the PSIPRED algorithm [20], where each
expert represents an independent artificial neural network.
We used a basic secondary structure alphabet, namely, alpha-
helix, beta-sheet and loop. GAMESSP was modified to
use a local version of the SwissProt Database [21] due to
performance purposes. As GAMESSP is written in Java, it
can be easily adapted. The secondary structure predictions
of the query and the target protein were aligned using a local
alignment algorithm [22] to achieve a fitness score.

Hydrophobicity predictions were based on a sliding
window procedure with a window size of seven [23]. The
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Figure 1: Chart of the design process. We employed a genetic algorithm (GA) with a fitness function based on secondary structure
alignments and hydrophobicity and molecular weight comparisons. The resulting sequence set of this iterative process was refined using
ERIS to build and rank the models which were then simulated using molecular dynamics simulations in order to estimate stability according
to [4]. Amber and Brownian dynamics simulations are applied for testing and refinement of the final optimized protein models.

generated protein sequences were then ranked by the differ-
ence of the hydrophobicity integrals

∣
∣
∣∣

∫ n

0
fquery(x)dx −

∫ n

0
ftarget(x)dx

∣
∣
∣∣, (2)

with function f defined by the hydrophobicity values of
the amino acids as splines and n being the length of the
sequence. We used the hydrophobicity integrals instead of
the single discrete values for the amino acid sequences to
capture neutralizing effects of neighboring amino acids.

In the same manner, the molecular weight scores were
calculated using the molecular weights of the amino acids.

2.5. Modeling New Sequences. The sequences from the first
Pareto frontier were modeled on the query structure using
ERIS [18]. ERIS was developed to handle more than one
mutation with no loss of accuracy to predict protein stability.
Protein Z (Chain B of PDB file 1LP1 [16]) was used as a
template. ERIS performs free energy calculations by using
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1LP1: KFNKEQQNAFYEILHLPNLNEEQRNAFIQSLKDDPSQSANLLAEAKKLNDAQAP

105 115 125

1MDY: ...TTNADRRKAATMRERRRLSKVNEA...

Seed: KFNKEQQNAFYEILHLPNLNEEQRNAFIQSLKDDPSQSRRKAATMRERRRLSKV

||||||||||||||||.. ::||:|:|||::| : | :|| ||| ||| | :.|

JW70: KFNKEQQNAFYEILHLTTTHQEQQNTFIQAVKRNNSAARRVAATARERARAASV

Figure 2: 1LP1: sequence of the Z domain. 1MDY: part of the sequence of MyoD. Red marked amino acids are used as part of the seed
sequence. Seed: seed sequence for the optimization. The blue and magenta marked amino acids are fixed during optimization. The initial
population was created by randomly mutating black marked amino acids. JW70: selected model of the optimization aligned to the seed
sequence.

prerelaxation of a template. Models of each sequence were
built using flexible backbones.

2.6. MD Simulations of the Protein Models. Simulations
of the protein models (build with ERIS) were performed
using Gromacs 4.0.7 [24]. NVT ensembles were used for
simulation of 20 ns. The leap-frog algorithm was used as an
integrator with a 2 fs time step. Fast Particle-Mesh Ewald
electrostatics (PME) were used with a 0.9 nm cutoff and
the Van-der-Waals cutoff was set to 1.4 nm. Temperature
coupling was set to Nose-Hoover, the reference temperature
was set to 300 K. H-bonds were constrained using the linear
constraint solver (LINCS). Protein stability was assessed by
analyzing RMSD and RMSF.

2.7. MD Simulations of the Protein-DNA Complex. Simula-
tions of the protein-DNA complexes were performed using
Amber 10 [25]. Protein and DNA were described with the
Amber99SB force field. Protons were added using the LEAP
module. Each protein-DNA complex was immersed in an
octahedral box of TIP3P water molecules that extended at
least 10 Å outside the complex. Simulations were performed
with the pmemd module in Amber 10. The SHAKE algo-
rithm has been used to allow for an integration time step
of 2 fs. Long-range interactions were treated with PME. The
nonbonded cutoff was set to 9 Å. Langevin thermostat and
Berendsen barostat were used. First, water molecules and
hydrogens were minimized with 100-step steepest descent
followed by 100-step conjugate gradient keeping all other
atoms restrained with a force constant of 100 kcal/mol Å2.
The solute was then minimized with 1000-step steepest
descent followed by 1000-step conjugate gradient with no
restraints. The system was gradually heated from 0 to 300 K
over 10 ps in the NVT ensemble. 10 ns production simulation
were carried out in the NPT ensemble.

2.8. Brownian Dynamics Simulations. Brownian dynamics
simulations were carried out with BrownDye
(http://brown-dye.ucsd.edu/) using the Northrup-Allison-
McCammon method [26]. Protein-DNA reaction sites of the
studied complexes were defined based on structural protein-
DNA interactions described elsewhere [27]. Interacting
atom pairs between molecules were defined as such if they
formed a polar interaction at less than 4.5 Å distance. During

diffusion simulations, successful association of molecules
was assumed if three or more interacting atom pairs of
diffusing and fixed molecules were closer than 5.5 Å. Each
experiment consisted of 25.000 trajectories from which
association rate constants were computed with BrownDye
with a ionic strength of 0.3 mol/L.

3. Results and Discussion

We have successfully combined two independent binding
sites into a given protein scaffold (PDB: 1LP1) using a
genetic algorithm for sequence optimization. The fused
sequence of the Z domain and MyoD was used as a start
sequence (see Figure 2). Helix 3 of the Z domain (residue
42 to 57) was replaced by a DNA-binding helix of MyoD
(residue 110 to 125). Amino acids essential for binding
of Fc (5,9–11,13,14,28,31) and DNA (110,111,114,115,117–
119,121) were conserved, while remaining positions were
mutated during the optimization. The initial population
consisted of randomly mutated seed sequences.

We simulated 1000 and 2000 generations, with each
generation consisting of 600 individuals. A mutation rate
of 0.01 led to a Pareto frontier of 67 and 86 individuals,
respectively. Individuals were ranked using ERIS, and we
carried out MD simulations of both the ten best ranked
and the ten worst ranked individuals. After MD simulations,
the models were aligned to the wild-type structure of the
Z domain using residues 6–17 and 22–33 (Helix 1 and 2).
Cα RMSD of Helix 3 (residue 39–53) was calculated and
smoothed using spline interpolation (see Figure 3).

After 1000 generations of optimization, ERIS was able
to separate low from high RMSD sequences (see Figure 3,
left) very well. This is probably due to a widely spread Pareto
frontier. After 2000 generations, optimization led to a narrow
Pareto frontier, and thus ERIS was not able to distinguish the
sequences anymore (see Figure 3, right). In addition, RMSF
calculations of sequences optimized for 2000 generation
showed improved stability of Helix 3 in comparison to
the sequences that were optimized for 1000 generations.
We then selected a model (JW70) with an all-atom RMSD
of about 5 Å compared to the wild-type structure and an
RMSD of about 1 Å to its starting structure, which implied
a well-conserved geometry. Simulations of the seed sequence
modeled on the 1LP1 structure as a negative control, showed
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Figure 3: RMSD plots of the best (solid line) and worst (dashed line) sequences ranked by ERIS after 1000 generation (a) and 2000
generations (b), respectively. Models after 20 ns MD simulations were aligned to the wild-type structure of the Z domain using residues
6–17 and 22–33 (Helix 1 and 2). Cα RMSD of Helix 3 (residue 39–53) was calculated and smoothed using spline interpolation.

(a) (b)

Figure 4: (a): JW70 after 20 ns MD simulation (blue) aligned to the structure of the Z domain from 1LP1 after 10 ns MD simulation
(orange). (b): model of the seed sequence after 20 ns MD simulation (purple) aligned to the Z domain from 1LP1 (orange). Helix 3, which
contains the new DNA-binding site, is shown on top.

dislocation of the three helices and thus potential negative
effects to the functionality of the protein (see Figure 4).

As mentioned before, four Amber simulations were
performed to check the models DNA-binding abilities.
Protein-DNA interactions were modeled based on the 1MDY
structure. We analyzed the interactions of DNA with our
optimized fusion protein (JW70) as well as the interaction
of DNA with the Z domain as a negative control, the seed
sequence before optimization, and the MyoD-binding helix
as a positive control. Both JW70 and the positive control
bound stable to the DNA over 10 ns of simulation, while the
negative control diffused from the DNA. The model of the
seed sequence also bound to the DNA but lost its stability
and partially unfolded.

In order to further assess the relative DNA-binding
ability, we performed several Brownian dynamics (BDs)
simulations to estimate the relative association rate constants
(kon) of our models to the wild-type structure. As reference
the wild-type protein-DNA complex (PDB: 1MDY) was
used. The kon of the reference WT complex was estimated
to be 4.66·108 M−1 s−1. The negative control protein, the
native Z-Domain, did not associate with the DNA molecule
in any of the 25.000 simulations, which is feasible considering
its negative net charge and the absence of a DNA-binding
site. All models generated during the optimization process,
including the seed model achieved protein-DNA association,
however, at varying estimated rates. Table 1 summarizes the
results. The most promising model JW70 showed a similar
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Table 1: Brownian dynamics simulation results.

model kon(M−1 s−1) net charge rel. kon (WT)

WT 4.66 · 108 +5 1.000

Negative 0 −2 0.000

Seed 1.17 · 108 +5 0.251

JW15 3.06 · 108 +7 0.657

JW19 1.60 · 107 +3 0.034

JW56 4.61 · 107 +5 0.099

JW70 4.56 · 108 +5 0.978

Table 2: Method comparison.

method residues individuals generation sequences CPU time

GHH [4] 36 8 15 2 · 120 1 year

current
study

54 600 2000 1.2 mil 2 months

association rate relative to the WT (4.56·108 M−1 s−1). The
model seed, which was shown to retain DNA-interaction
during a 10 ns MD simulation before partially unfolding,
showed a reduced but still considerable kon of around 25%
relative of that estimated for the WT. All of these proteins
have net charge of +5. In order to explore the effect of the net
charge on the estimated kon, we included three more model
into the analysis. JW19, JW56, and JW15 have net charges
of +3, +5, and +7, respectively. Although there seems to be
a logical trend of models with higher net charge associating
with the target DNA more often, none of the other tested
models achieved rates similar to JW70 and the WT.

In comparison to Gronwald et al. [4], we used a
fusion protein of 56 residues instead of villin headpiece (36
residues). However, computational efficiency can be clearly
compared (see Table 2). Gronwald et al. analyzed two runs of
the multi-objective optimization with 15 generations, each
consisting of 8 individuals. Thus, they carried out 240 MD
simulations for 10 ns. The total CPU time was about of 1
year [4]. Our algorithm was able to analyze 600 individuals in
2000 generations, resulting in a total number of 1.2 million
protein sequences. These huge number of sequences was
analyzed in only 2 months, reflecting the high computational
efficiency of our method compared to that of Gronwald et al.

4. Conclusion

We have applied multi-objective optimization guided by
directed evolution to combine the MyoD DNA-binding
motif into the Z domain conserving the scaffolds structure.
Simulations showed that the optimization of the sequences
based on hydrophobicity, molecular weight, and secondary
structure predictions improved structural stability while
maintaining protein functionality. The use of simple fitness
functions reduces the optimization complexity, and thus
allows to optimize more individuals over more generations
resulting in a better sampling of the sequence space.
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