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Abstract

Background: Temperature-taking behaviors vary with levels of circulating infectious illness; however, little is known about
how these behaviors differ by demographic characteristics. Populations with higher perceived risks of illness are more likely to
adopt protective health behaviors.

Objective: We investigated differences in temperature-taking frequency and the proportion of readings that were feverish among
demographic groups (age, gender, urban/rural status) over influenza offseason; influenza season; and waves 1, 2, and 3 of the
COVID-19 pandemic.

Methods: Using data from smart thermometers collected from May 1, 2019, to February 28, 2021, across the United States, we
calculated the frequency of temperature-taking and the proportion of temperature readings that were feverish. Mixed-effects
negative binomial and mixed-effects logistic regression analyses were performed to identify demographic characteristics associated
with temperature-taking frequency and the proportion of feverish readings, respectively. Separate models were fit over five study
periods: influenza offseason (n=122,480), influenza season (n=174,191), wave 1 of COVID-19 (n=350,385), wave 2 (n=366,489),
and wave 3 (n=391,578).

Results: Both temperature-taking frequency and the proportion of feverish readings differed by study period (ANOVA P<.001)
and were the highest during influenza season. During all periods, children aged 2-5 years and 6-11 years had significantly higher
frequencies of temperature-taking than users aged 19-30 years, and children had the highest proportion of feverish readings of
all age groups, after adjusting for covariates. During wave 1 of COVID-19, users over the age of 60 years had 1.79 times (95%
CI 1.76-1.83) the rate of temperature-taking as users aged 19-30 years and 74% lower odds (95% CI 72%-75%) of a reading
being feverish. Across all periods, men had significantly lower temperature-taking frequency and significantly higher odds of
having a feverish reading compared to women. Users living in urban areas had significantly higher frequencies of temperature-taking
than rural users during all periods, except wave 2 of COVID-19, and urban users had higher odds of a reading being feverish in
all study periods except wave 1 of COVID-19.

Conclusions: Temperature-taking behavior and the proportion of readings that were feverish are associated with both population
disease levels and individual demographic characteristics. Differences in the health behavior of temperature-taking may reflect
changes in both perceived and actual illness risk. Specifically, older adults may have experienced an increase in perceived risk
during the first three waves of COVID-19, leading to increased rates of temperature monitoring, even when their odds of fever
were lower than those of younger adults. Men’s perceived risk of circulating infectious illnesses such as influenza and COVID-19
may be lower than that of women, since men took their temperature less frequently and each temperature had a higher odds of
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being feverish across all study periods. Infectious disease surveillance should recognize and incorporate how behavior impacts
illness monitoring and testing.

(JMIR Form Res 2022;6(9):e37509) doi: 10.2196/37509
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Introduction

At-home health monitoring behaviors have the potential to
greatly impact health outcomes. However, health behaviors
differ by demographic and social determinants, including
poverty, gender, and neighborhood social and physical
characteristics [1]. For example, women and older individuals
are more likely to report practicing protective health behaviors
[2] such as taking COVID-19 precautions [3]. Individuals also
alter behaviors in response to circulating illness levels and
associated health recommendations or policies; this was
observed with both increases in mask wearing and social
distancing after the H1N1 influenza outbreak [4], and increases
in handwashing and social distancing during the COVID-19
pandemic [5].

The Health Action Process Approach (HAPA) framework for
health behavior states that perceived risk, particularly of severe
health outcomes, can motivate health behavior change [6,7].
Additionally, changes to perceived risk based on underlying
conditions, attention to media coverage, or knowledge of disease
can impact health behaviors [8,9]. A study of behavior among
individuals in the United States during spring of 2020 guided
by HAPA found that risk perception and self-efficacy were both
predictors of social distancing [10]. A systematic review of
nonpharmaceutical interventions prior to the COVID-19
pandemic found that individuals adopt behaviors partially based
on their perceived vulnerability of respiratory illness [11].

Most respiratory illness-related health behavior studies are
cross-sectional surveys relying on self-reported behavior during
a pandemic or influenza season [12-14]. Temperature-taking
using a smart thermometer is a timely and sensitive surveillance
measure that circumvents the issue of self-reporting. Smart
thermometers record body temperatures and aggregate the
anonymized, deidentified readings along with basic demographic
information [15]. Based on a user’s temperature, symptoms,
and age, they receive illness guidance through an associated
app. Aggregated user temperature data are closely correlated
with traditional influenza surveillance methods [16-18]. Unlike
COVID-19 prevention behaviors such as mask wearing and
social distancing, temperature-taking is not typically performed
in public settings. Therefore, temperature-taking may be less
influenced by social pressures and could therefore better
approximate individual perceptions of risk. Previous studies
using smart thermometers have shown that the number of fevers
and the total number of thermometer readings correlate with
influenza-like illness at the national and regional levels during
both influenza season [16,17] and offseason [16], and with
influenza test positivity at the regional level [17]. Kinsa fever

data were also found to be correlated with confirmed cases
during the first wave of COVID-19 [19].

The demographic and social determinants of the health behavior
of temperature-taking have yet to be examined. We predicted
that demographic groups with greater perceived risks of
influenza or COVID-19 will take their temperature more often.
Using data from smart thermometer users collected between
May 1, 2019, and February 28, 2021, we aimed to understand
how both demographic characteristics and external circulating
illness were associated with temperature-taking frequency and
the percent of readings with a fever. We use temperature-taking
frequency as a proxy for an individual’s perceived risk of illness
and percent feverish readings to determine if there was febrile
illness in the presence of that concern. We sought to explore
how both social determinants of health and external influenza
and COVID-19 levels impacted perceived and actual risks of
febrile illness.

Methods

Data Collection
Kinsa smart thermometers record and store body temperatures
using a smartphone app. Most users purchase their thermometer
through major retailers. Kinsa thermometers are also distributed
free of charge for families in Title 1 elementary schools through
a program called FLUency [20]. Title 1 programs provide
federal funding to schools with high numbers or percentages of
children from low-income families [21]. FLUency school nurses
can use the program to communicate with families about current
illness in the school or grade. When any user takes a
temperature, the reading and timestamp are recorded along with
deidentified, user-entered demographic information, including
age and gender. Readings are geocoded using GPS coordinates
or the IP address of the connected device. Users can assign
temperature readings to different profiles within their account,
allowing for differentiation among readings from multiple users
in the same household.

Study Population
Individuals who recorded at least one temperature reading with
a Kinsa thermometer in the United States from May 1, 2019,
to February 28, 2021, were included in this analysis. Study
periods were defined based on trends of seasonal influenza and
COVID-19: influenza offseason (May 1, 2019, to October 31,
2019), influenza season (November 1, 2019, to February 2,
2020), wave 1 of COVID-19 (February 3, 2020, to May 31,
2020), wave 2 of COVID-19 (June 1, 2020, to October 31,
2020), and wave 3 of COVID-19 (November 1, 2020, to
February 28, 2021). The 2019-2020 influenza season was
considered moderately severe and was dominated by
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A(H1N1)pdm09 viruses [22]. The influenza season ended in
early 2020, likely due to COVID-19 lockdowns and precautions
[22].

Users were only included in a study period if they recorded at
least one temperature reading within that period. Therefore, the
same user would not be included in all study periods if they did
not record a reading in each separate period.

We performed our analyses on users who had no missing
demographic or geographic information. Standardized mean
differences showed that the full population had a similar number
of readings as the complete case population.

Measures
The two outcomes assessed were: (1) the number of readings
per user and (2) the proportion of readings with a fever. The
number of readings provides a measure of how often a user is
potentially concerned about a possible fever and the proportion
of readings with a fever provides a measure of how many
readings were taken because of a true fever. To define the
number of readings per user, we counted each reading a user
took during a given period and then adjusted for varying
amounts of follow-up time. The number of days a user was
active during a study period was calculated from device
activation through to the end of that period. If the activation
date was before the start of the study period, the user was
considered to be active for the entire period. Because users could
take multiple readings on the same day, a sensitivity analysis
was performed that examined the number of distinct days with
at least one temperature reading to circumvent intraday
variability in reading behavior. The second outcome, proportion
of readings with a fever, was defined as the number of readings
>37.8°C divided by the total number of readings for a user
during a period.

Age and gender were self-reported and defined at the first
reading during the period. Age was categorized into 0-1 years,
2-5 years, 6-11 years, 12-18 years, 19-30 years, 31-60 years,
and 61+ years. We assumed that an adult in the household was
driving temperature-taking among individuals 18 years and
under. Any user associated with a device that was distributed
through the school program was categorized as a FLUency user.

Household composition was derived from the ages of registered
users associated with one thermometer: if all users were <18
years old, the household was considered “child only”; if all
users were aged 18 years and older, the household was
considered “adult only”; and if there were users both under 18
years and 18 years and older, the household was categorized as
“multigeneration.” “Child-only” households reflect devices
where a parent/guardian has not created a profile for themself
but has created profiles for their children.

Neighborhood poverty, US region, and urban/rural designation
were determined based on the location with a majority of a
user’s readings. Census tract–level poverty was obtained from
the 2015-2019 American Community Survey and defined as
the percent of residents living below 100% of the federal poverty
level [23]. Poverty was then classified into four categories: 0
to <10%, 10% to <20%, 20% to <30%, and ≥30%. Region was
defined using the 10 regions created by the Centers for Disease

Control and Prevention National Center for Chronic Disease
Prevention and Health Promotion [24]. A user was categorized
as living in an urban area if 50% or more of the land area of
their census tract (based on the 2010 US Census) was classified
as urban [25].

Statistical Analysis
We assessed unadjusted differences in both temperature-taking
frequency and the proportion of readings with a fever across
periods using ANOVA. Differences in the frequency of the

categorical variables across periods were assessed by χ2 tests.

We used mixed-effects negative binomial models to examine
the relationships between explanatory variables and the
overdispersed outcome of frequency of readings per month. A
separate model was fit for each of the five study periods. Since
users were nested within devices, device was treated as a random
effect. All other variables of interest were treated as fixed
effects. The outcome of the number of readings was offset by
the number of days a user was active during the period to obtain
a frequency of readings over time. This offset calculated a more
conservative estimate of variance. We checked for collinearity
among predictor variables by requiring their generalized
variance inflation factors to be less than 5. Age group, gender,
urban/rural status, census tract poverty group, household
composition, region, and FLUency participation were included
in the final model. A predictor was considered significant if the
95% CI of its incidence rate ratio (IRR) did not contain the null
value of 1. The same methods were applied to the outcome of
the distinct number of days with a reading in the sensitivity
analysis.

We used mixed-effects logistic (binomial) regression to examine
the adjusted relationships between our explanatory variables
and the proportion of readings with a fever. A separate model
was fit for each of the five study periods with the outcome of
number of fevers and number of nonfevers recorded per user.
Device was added as a random intercept with all other predictors
treated as fixed effects. A predictor was considered significant
if the 95% CI of its odds ratio (OR) did not contain the null
value of 1.

Statistical analyses were performed in R 4.1.0 (R Core Team,
Vienna, Austria 2021) using the glmmTMB package [26].
Reported regression outputs and ratios are adjusted for all
predictors included in the model.

Ethical Considerations
Upon downloading the app, users were asked to acknowledge
and consent to data collection practices outlined in the Kinsa
Privacy Policy [15]. Users must expressly consent to sharing
geolocation data. All personally identifiable information was
collected and maintained in compliance with state and federal
confidentiality guidelines. This study was approved by an
external institutional review board, Advarra Inc (Pro00065469).
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Results

Descriptive Statistics
There were 122,480 users with full demographic information
in influenza offseason 2019, 174,191 users in influenza season
2019-20, 350,385 users during wave 1 of COVID-19, 366,489
users during wave 2, and 391,578 users during wave 3 (Table
1). The combined study population had a median age of 26 years
(IQR 6-43), with 57.3% women, and primarily resided in urban
(77.8%) and 0-10% poverty tracts (56.0%); 12.9% of users
obtained their thermometer through the FLUency program. The
study populations changed significantly over time (Table 1).
Notably, the median age of the study population increased from
7 years during the influenza offseason to 30 years in wave 1 of
COVID-19.

Temperature-taking frequency differed significantly by study
period (Figure 1; F=141.2, P<.001). The median frequency of
readings was lower during influenza offseason compared to that
during influenza season (1.22 vs 2.06 readings per month).
During the COVID-19 pandemic, the median reading frequency
was the highest during wave 1 (1.79 readings per user per
month) and decreased slightly during waves 2 and 3 (1.76 and
1.23 readings per month, respectively).

The proportion of readings with a fever also differed
significantly by study period (Figure 1; P<.001). The mean
percent of readings that were feverish was the highest during
the influenza season (21.2%) and was the lowest during wave
2 of COVID-19 (5.6%).
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Table 1. Demographic characteristics of the study population with temperature readings, stratified by study period, May 2019 to February 2021.

P valueWave 3 of COVID-
19 (November 1,
2020, to February
28, 2021)

Wave 2 of
COVID-19 (June
1, 2020, to October
31, 2020)

Wave 1 of
COVID-19 (Febru-
ary 3, 2020, to
May 31, 2020)

Flu season
(November 1,
2019, to February
2, 2020)

Offseason (May 1,
2019, to October
31, 2019)

Characteristics

N/Aa391,578366,489350,385174,191122,480Users, n

N/A255,483239,010219,056113,43383,628Devices, n

N/A3 (1-9)4 (1-12)4 (1-13)3 (1-9)3 (1-8)Temperature readings per user,
median (IQR)

N/A105 (72-120)109 (49-153)79 (63-119)69 (32-94)130 (44-184)Follow-up time (days), median
(IQR)

<.001b1.23 (0.51-3.56)1.76 (0.60-5.81)1.79 (0.65-5.75)2.06 (0.72-6.52)1.22 (0.41-3.97)Temperature readings/month,
median (IQR)

N/A2 (1-4)2 (1-5)2 (1-4)1 (1-3)1 (1-3)Days with a temperature read-
ing, median (IQR)

<.001b0.72 (0.34-1.65)0.87 (0.24-1.52)0.81 (0.42-2.10)0.97 (0.46-2.17)0.53 (0.25-1.45)Days with a temperature read-
ing/month, median (IQR)

<.001b0 (0-0)0 (0-0)0 (0-0)0 (0-0.39)0 (0-0.30)Readings with a fever (%), me-
dian (IQR)

N/A29 (9-46)28 (9-46)30 (8-48)8 (3-30)7 (2-30)Age (years), median (IQR)

<.001cAge group, n (%)

18,329 (4.7)20,325 (5.5)18,914 (5.4)17,898 (10.3)20,146 (16.4)0-1

36,221 (9.3)34,784 (9.5)38,276 (10.9)35,372 (20.3)27,520 (22.5)2-5

57,647 (14.7)47,890 (13.1)46,554 (13.3)45,924 (26.4)22,387 (18.3)6-11

28,559 (7.3)27,857 (7.6)23,659 (6.8)14,751 (8.5)7127 (5.8)12-18

59,279 (15.1)58,690 (16.0)42,521 (12.1)16,312 (9.4)13,305 (10.9)19-30

139,048 (35.5)130,512 (35.6)128,326 (36.6)40,624 (23.3)28,935 (23.6)31-60

52,495 (13.4)46,431 (12.7)52,135 (14.9)3310 (1.9)3060 (2.5)61+

<.001cGender, n (%)

226,531 (57.9)210,423 (57.4)198,125 (56.5)100,016 (57.4)69,577 (56.8)Women

165,047 (42.1)156,066 (42.6)152,260 (43.5)74,175 (42.6)52,903 (43.2)Men

<.001cPoverty groupd, n (%)

208,693 (53.3)208,457 (56.9)207,678 (59.3)92,356 (53.0)69,099 (56.4)0 to <10%

116,984 (29.9)100,535 (27.4)96,911 (27.7)54,457 (31.3)36,370 (29.7)10 to <20%

42,959 (11.0)37,045 (10.1)31,512 (9.0)19,192 (11.0)12,046 (9.8)20 to <30%

22,942 (5.9)20,452 (5.6)14,284 (4.1)8186 (4.7)4965 (4.1)≥30%

<.001cDensitye, n (%)

295,074 (75.4)291,516 (79.5)282,673 (80.7)127,192 (73.0)96,212 (78.6)Urban tract (%)

96,504 (24.6)74,973 (20.5)67,712 (19.3)46,999 (27.0)26,268 (21.4)Rural tract (%)

<.001cFLUency groupf, n (%)

66,930 (17.1)33,402 (9.1)31,695 (9.0)46,809 (26.9)7673 (6.3)FLUency user

324,648 (82.9)333,087 (90.9)318,690 (91.0)127,382 (73.1)114,807 (93.7)Non-FLUency user

<.001cHousehold compositiong, n (%)

192,482 (49.2)180,067 (49.1)167,023 (47.7)31,706 (18.2)24,170 (19.7)Adult-only house

77,866 (19.9)71,099 (19.4)70,015 (20.0)78,542 (45.1)53,461 (43.6)Child-only house
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P valueWave 3 of COVID-
19 (November 1,
2020, to February
28, 2021)

Wave 2 of
COVID-19 (June
1, 2020, to October
31, 2020)

Wave 1 of
COVID-19 (Febru-
ary 3, 2020, to
May 31, 2020)

Flu season
(November 1,
2019, to February
2, 2020)

Offseason (May 1,
2019, to October
31, 2019)

Characteristics

121,230 (31.0)115,323 (31.5)113,347 (32.3)63,943 (36.7)44,849 (46.6)Multigenerational house
(%)

<.001cRegionh (comprising state abbreviations), n (%)

44,391 (11.3)53,182 (14.5)39,386 (11.2)14,681 (8.4)11,511 (9.4)1 (CT, ME, RI, MA, NH,
NY, VT)

63,308 (16.2)40,462 (11.0)44,449 (12.7)21,808 (12.5)15,474 (12.6)2 (DC, MD, WV, DE, NJ,
PA, VA)

37,389 (9.5)37,444 (10.2)40,731 (11.6)22,567 (13.0)17,207 (14.0)3 (GA, FL, NC, SC)

17,136 (4.4)12,317 (3.4)12,699 (3.6)10,579 (6.1)5918 (4.8)4 (KY, TN, AL, MS)

61,028 (15.6)61,453 (16.8)57,017 (16.3)28,607 (16.4)19,509 (15.9)5 (IL, WI, IN, MI, MN,
OH)

45,840 (11.7)38,069 (10.4)39,731 (11.3)28,915 (16.6)17,547 (14.3)6 (OK, AR, LA, NM, TX)

18,531 (4.7)18,975 (5.2)16,867 (4.8)11,578 (6.6)7053 (5.8)7 (NE, IA, KS, MO)

13,627 (3.5)13,998 (3.8)12,129 (3.5)4343 (2.5)3345 (2.7)8 (MT, ND, WY, CO, SD,
UT)

75,880 (19.4)73,715 (20.1)70,611 (20.2)26,310 (15.1)20,990 (17.1)9 (CA, NV, AZ, HI)

14,448 (3.7)16,874 (4.6)16,765 (4.8)4803 (2.8)3926 (3.2)10 (AK, ID, OR, WA)

aN/A: not applicable.
bDifferences in continuous variables across study periods assessed via ANOVA.
cDifferences in frequencies of categorical variables across study periods assessed via χ2 test.
dPercentage of population living below the 100% federal poverty level at the census tract level, from the 2015-2019 American Community Survey.
eCategorized as urban if the census tract was part of an urbanized area of 50,000 or more people based on the 2010 US Census.
fReceived the thermometer through Kinsa’s school distribution and engagement program, FLUency.
gBased on ages of profiles associated with the device, with child-only households representing devices where a parent has made profiles for their children
but not themself.
hClassified using the Centers for Disease Control and Prevention National Center For Chronic Disease Prevention and Health Promotion Regions.

Figure 1. The number of thermometer readings (A) and proportion of readings with a fever (B) aggregated by week, May 2019-February 2021. Study
periods are separated by vertical lines (influenza offseason; influenza season; COVID-19 pandemic waves 1, 2, and 3).

Temperature-Taking Frequency Regression
During all study periods, the age groups of 0-1, 2-5, and 6-11
years had significantly higher rates of temperature-taking than

those of users aged 19-30 years (Table 2). During influenza
season, users aged 6-11 years had elevated rates of
temperature-taking (IRR 2.25, 95% CI 2.18-2.31) and users
aged over 60 years had suppressed rates of temperatures-taking
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(IRR 0.94, 95% CI 0.89-1.00) compared to users aged 19-30
years. During wave 1 of the COVID-19 pandemic, these age
patterns reversed, with users aged over 60 years taking
temperatures at a significantly increased rate (IRR 1.79, 95%
CI 1.76-1.83) compared to those of young adults. During
COVID-19 waves 2 and 3, users aged over 60 years continued
to have significantly higher frequencies of temperature-taking
(Table 2).

Men had a significantly lower rate of temperature-taking
compared to women during all periods (Table 2), and the

difference was the largest during influenza offseason (IRR 0.91,
95% CI 0.90-0.93). Users living in urban census tracts had an
increased rate of temperature-taking compared to that of rural
users during all periods except wave 2 of COVID-19, when
urban users had 0.95 (95% CI 0.93-0.96) times the rate of
temperature-taking compared to rural users. Similar trends for
age, gender, and population density were observed in the
sensitivity analysis using the outcome of distinct days with at
least one reading (Multimedia Appendix 1).
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Table 2. Characteristics associated with temperature-taking frequency from multivariable mixed-effects negative binomial regressions, May 2019-February
2021.

Incidence rate ratio (95% CI)aVariable

Wave 3 of COVID-19
(November 1, 2020,
to February 28, 2021)

Wave 2 of COVID-
19 (June 1, 2020, to
October 31, 2020)

Wave 1 of COVID-19
(February 3, 2020, to
May 31, 2020)

Flu season (Novem-
ber 1, 2019, to
February 2, 2020)

Offseason 2019
(May 1, 2019, to
October 31, 2019)

Age (ref: 19-30 years)

1.36 (1.32-1.39)1.34 (1.30-1.37)1.78 (1.73-1.83)1.65 (1.59-1.70)2.41 (2.33-2.50)0-1 years

1.29 (1.26-1.31)1.26 (1.23-1.29)1.71 (1.67-1.74)2.23 (2.16-2.29)2.37 (2.29-2.45)2-5 years

1.08 (1.06-1.10)1.11 (1.09-1.14)1.40 (1.37-1.43)2.25 (2.18-2.31)1.90 (1.84-1.97)6-11 years

0.92 (0.90-0.94)0.94 (0.92-0.96)1.03 (1.01-1.06)1.67 (1.61-1.72)1.40 (1.34-1.47)12-18 years

1.08 (1.07-1.10)1.02 (1.01-1.04)1.32 (1.30-1.34)0.96 (0.93-0.99)0.92 (0.90-0.95)31-60 years

1.28 (1.26-1.31)1.28 (1.25-1.31)1.79 (1.76-1.83)0.94 (0.89-1.00)1.05 (0.98-1.11)>60 years

0.95 (0.94-0.96)0.96 (0.95-0.97)0.93 (0.92-0.94)0.94 (0.92-0.95)0.91 (0.90-0.93)Gender, men (ref: women)

1.03 (1.02-1.04)0.95 (0.93-0.96)1.08 (1.06-1.10)1.12 (1.09-1.14)1.06 (1.03-1.09)Density, urban (ref: rural)b

Poverty (ref: 0 to <10%)c

1.00 (0.99-1.02)1.02 (1.00-1.03)1.03 (1.01-1.04)0.98 (0.96-1.00)0.98 (0.95-1.00)10% to <20%

0.95 (0.93-0.97)0.99 (0.97-1.01)1.07 (1.05-1.09)0.97 (0.94-1.00)0.97 (0.94-1.01)20% to <30%

0.93 (0.91-0.95)0.97 (0.94-1.00)1.09 (1.06-1.12)0.95 (0.91-0.99)0.98 (0.93-1.03)≥30%

0.67 (0.65-0.68)1.31 (1.28-1.34)0.72 (0.70-0.73)0.65 (0.63-0.66)6.00 (5.73-6.29)FLUency user (ref: non-FLUen-

cy)d

Household composition (ref: adult-only)e

0.70 (0.69-0.71)0.66 (0.64-0.67)0.51 (0.50-0.52)0.49 (0.48-0.51)0.48 (0.46-0.49)Child-only

0.67 (0.66-0.68)0.56 (0.55-0.57)0.50 (0.50-0.51)0.53 (0.51-0.54)0.58 (0.57-0.60)Multigenerational

Region (ref: 1 [Northeast])f

0.85 (0.84-0.87)0.91 (0.89-0.93)0.90 (0.88-0.92)0.88 (0.84-0.91)0.94 (0.90-0.98)2 (DC, MD, WV, DE, NJ,
PA, VA)

1.04 (1.02-1.07)0.90 (0.88-0.92)0.83 (0.81-0.85)0.86 (0.83-0.90)1.04 (1.00-1.09)3 (GA, FL, NC, SC)

0.96 (0.93-0.99)0.87 (0.84-0.90)0.80 (0.77-0.83)0.86 (0.82-0.90)0.92 (0.87-0.98)4 (KY, TN, AL, MS)

0.92 (0.90-0.94)1.01 (0.99-1.03)0.88 (0.86-0.90)0.87 (0.84-0.91)0.99 (0.95-1.03)5 (IL, WI, IN, MI, MN, OH)

0.98 (0.96-1.00)0.79 (0.77-0.81)0.82 (0.80-0.84)0.80 (0.77-0.83)0.96 (0.93-1.01)6 (OK, AR, LA, NM, TX)

0.84 (0.82-0.87)0.93 (0.90-0.96)0.82 (0.79-0.85)0.77 (0.73-0.80)0.88 (0.84-0.93)7 (NE, IA, KS, MO)

0.87 (0.84-0.89)0.92 (0.89-0.95)0.89 (0.85-0.92)0.91 (0.85-0.96)0.90 (0.84-0.97)8 (MT, ND, WY, CO, SD,
UT)

0.95 (0.93-0.97)0.81 (0.79-0.82)0.87 (0.85-0.89)0.98 (0.95-1.02)1.03 (0.99-1.07)9 (CA, NV, AZ, HI)

0.98 (0.95-1.01)0.84 (0.81-0.86)0.97 (0.94-1.00)0.79 (0.75-0.84)1.01 (0.94-1.07)10 (AK, ID, OR, WA)

aEach study period consisted of a unique population and was analyzed separately. Values shown are the adjusted incidence rate ratios for temperature-taking
and their associated 95% CIs. Reference groups are listed next to the name of the predictor.
bPercentage of population living below the 100% federal poverty level at the census tract level from the 2015-2019 American Community Survey.
cCategorized as urban if the census tract was part of an urbanized area of 50,000 or more people based on the 2010 US Census.
dReceived the thermometer through Kinsa’s school distribution and engagement program, FLUency.
eBased on ages of profiles associated with the device, with child-only households representing devices where a parent has made profiles for their children
but not themself.
fClassified using the Centers for Disease Control and Prevention National Center For Chronic Disease Prevention and Health Promotion Regions
(corresponding state abbreviations are in parentheses).
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Percent of Readings With Fever Regression
During all study periods examined, users aged 2-5 and 6-11
years had higher odds of having a feverish reading compared
to users aged 19-30 (Table 3). Users aged 31-60 years and users
aged over 60 years had significantly lower odds of having a
feverish reading during all study periods. Users aged over 60
years had the lowest odds of having a feverish reading during
wave 1 of COVID-19, with 0.26 (95% CI 0.25-0.28) times the
odds compared to users aged 19-30 years.

Men had significantly increased odds of having a reading that
was feverish compared to women during all periods, and this

increased with each subsequent period (Table 3). By wave 3 of
COVID-19, men had 27% (95% CI 24%-29%) higher odds of
a feverish reading compared to women. Urban users had
elevated odds of feverish readings compared to rural users in
influenza offseason (OR 1.05, 95% CI 1.01-1.10) and influenza
season (OR 1.12, 95% CI 1.09-1.16) (Table 3). This relation
shifted during wave 1 of COVID-19 when urban users had 0.90
(95% CI 0.86-0.94) times the odds of feverish readings as rural
users. There was no association during wave 2, but by wave 3,
urban users again had increased odds of feverish readings
compared to rural users (OR 1.18, 95% CI 1.12-1.24).
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Table 3. Characteristics associated with proportion of feverish readings from multivariable mixed-effects logistic regressions, May 2019-February
2021.

Odds ratio (95% CI)aVariables

Wave 3 of COVID-19
(November 1, 2020,
to February 28, 2021)

Wave 2 of COVID-19
(June 1, 2020, to Octo-
ber 31, 2020)

Wave 1 of COVID-19
(February 3, 2020, to
May 31, 2020)

Flu season (November
1, 2019, to February
2, 2020)

Offseason 2019 (May
1, 2019, to October
31, 2019)

Age (ref: 19-30 years)

2.09 (1.98-2.21)2.03 (1.93-2.14)1.05 (1.00-1.10)0.83 (0.79-0.86)0.56 (0.53-0.58)0-1 years

2.01 (1.93-2.10)2.57 (2.46-2.69)1.93 (1.86-2.00)1.61 (1.55-1.67)1.69 (1.61-1.76)2-5 years

1.09 (1.04-1.14)1.37 (1.30-1.43)1.80 (1.74-1.87)2.08 (2.00-2.15)1.93 (1.85-2.02)6-11 years

0.73 (0.69-0.77)0.95 (0.90-1.01)1.26 (1.20-1.31)1.41 (1.35-1.47)1.33 (1.25-1.41)12-18 years

0.93 (0.90-0.97)0.80 (0.77-0.84)0.73 (0.71-0.76)0.83 (0.80-0.86)0.85 (0.82-0.89)31-60 years

0.65 (0.62-0.69)0.48 (0.45-0.52)0.26 (0.25-0.28)0.53 (0.48-0.58)0.73 (0.66-0.81)>60 years

1.27 (1.24-1.29)1.14 (1.12-1.17)1.06 (1.05-1.08)1.06 (1.05-1.08)1.06 (1.04-1.08)Gender, men (ref: women)

1.18 (1.12-1.24)1.00 (0.95-1.06)0.90 (0.86-0.94)1.12 (1.09-1.16)1.05 (1.01-1.10)Density, urban (ref: rural)b

Poverty (ref: 0 to <10%)c

1.15 (1.10-1.21)1.19 (1.13-1.25)1.14 (1.10-1.19)1.02 (0.99-1.05)1.00 (0.96-1.04)10% to <20%

1.26 (1.17-1.35)1.29 (1.20-1.40)1.18 (1.11-1.25)1.05 (1.01-1.10)1.00 (0.95-1.06)20% to <30%

1.26 (1.15-1.38)1.30 (1.17-1.43)0.99 (0.91-1.07)1.02 (0.96-1.08)0.99 (0.92-1.08)≥30%

0.59 (0.55-0.63)0.72 (0.66-0.78)1.84 (1.74-1.94)0.80 (0.78-0.83)0.19 (0.17-0.21)FLUency user (ref: non-

FLUency)d

Household composition (ref: adult-only)e

3.08 (2.91-3.26)5.83 (5.49-6.20)13.66 (13.04-14.31)1.80 (1.73-1.88)2.21 (2.10-2.33)Child-only

1.98 (1.86-2.09)2.62 (2.46-2.79)4.36 (4.16-4.57)1.51 (1.45-1.58)1.60 (1.52-1.69)Multigenerational

Region (ref: 1 [Northeast])f

1.02 (0.94-1.11)1.34 (1.22-1.46)1.17 (1.10-1.26)0.99 (0.94-1.05)1.00 (0.94-1.07)2 (DC, MD, WV, DE,
NJ, PA, VA)

1.56 (1.43-1.71)1.89 (1.72-2.07)1.25 (1.16-1.34)1.06 (1.00-1.12)1.02 (0.95-1.09)3 (GA, FL, NC, SC)

1.77 (1.57-1.99)2.06 (1.81-2.34)1.23 (1.12-1.36)0.89 (0.83-0.95)0.93 (0.85-1.02)4 (KY, TN, AL, MS)

1.10 (1.02-1.19)1.24 (1.14-1.34)1.20 (1.13-1.28)0.88 (0.83-0.92)0.85 (0.80-0.91)5 (IL, WI, IN, MI, MN,
OH)

1.73 (1.59-1.89)1.98 (1.81-2.17)1.27 (1.19-1.37)1.00 (0.95-1.05)0.97 (0.91-1.04)6 (OK, AR, LA, NM,
TX)

1.37 (1.22-1.54)1.31 (1.17-1.48)1.24 (1.13-1.35)0.87 (0.82-0.93)0.81 (0.74-0.88)7 (NE, IA, KS, MO)

1.10 (0.97-1.25)1.12 (0.98-1.28)0.81 (0.72-0.90)0.85 (0.78-0.93)0.81 (0.73-0.90)8 (MT, ND, WY, CO,
SD, UT)

1.42 (1.31-1.53)1.57 (1.45-1.70)0.99 (0.93-1.06)1.07 (1.02-1.13)0.99 (0.93-1.05)9 (CA, NV, AZ, HI)

0.86 (0.76-0.98)0.73 (0.64-0.82)0.58 (0.53-0.64)0.91 (0.84-1.00)0.79 (0.72-0.88)10 (AK, ID, OR, WA)

aEach study period consisted of a unique population and was analyzed separately. Values shown are the odds ratios with their associated 95% CIs.
Reference groups are listed next to the name of the predictor.
bPercentage of population living below the 100% federal poverty level at the census tract level from the 2015-2019 American Community Survey.
cCategorized as urban if the census tract was part of an urbanized area of 50,000 or more people based on the 2010 US Census.
dReceived the thermometer through Kinsa’s school distribution and engagement program, FLUency.
eBased on ages of profiles associated with the device, with child-only households representing devices where a parent has made profiles for their children
but not themself.
fClassified using the Centers for Disease Control and Prevention National Center For Chronic Disease Prevention and Health Promotion Regions.
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Discussion

Principal Findings
Using data collected from smart thermometers, we analyzed
temperature-taking behaviors through periods prior to and during
the COVID-19 pandemic. We found that both the frequency of
readings and proportion of feverish readings varied with age
group, gender, urban/rural status, and circulating illness. The
differences observed between demographic groups reflect a
combination of changes in both actual illness risk and perceived
risk that can only fully be understood through dual examination
of the number of readings and the percent of those readings with
a fever.

Users aged over 60 years experienced the largest shift in
temperature-taking behaviors over the study period: during the
influenza season, they were less likely to take their temperatures
than young adults (aged 19-30 years), whereas through all three
waves of COVID-19 assessed in the study, they had an elevated
frequency of temperature-taking and reduced proportion of
feverish readings.

Comparison With Prior Work
The significant switch in behavior among older adult users could
reflect increases in perceived risk during COVID-19. Adults 65
years and older have higher odds of COVID-19–related concerns
[2], and outcomes of hospitalization and death have been the
most severe among older adults [27]. Additionally, individuals
are more likely to take preventative action if they have a higher
perceived risk of a negative health outcome [28]. We
hypothesize that the observed shift in temperature-taking
behaviors among older adults is related to increased monitoring
for signs of possible COVID-19 infection, given its potential
severe outcomes, even in the absence of other symptoms. The
proportion of older adults among Kinsa users also increased
over the three waves of COVID-19 (Table 1), likely as older
adults bought and used thermometers more during the pandemic
due to increases in perceived risk.

Users aged 2-5 years and 6-11 years had both increased rates
of temperature-taking frequency and increased odds of those
readings being feverish compared to young adults during all
study periods. Child temperature-taking likely reflects parental
behavior and concern. Typically, we would expect that as
temperature-taking frequency increases, the percent of feverish
readings would decrease because the denominator becomes
larger. However, our findings suggest that during the COVID-19
pandemic, children were more likely than young adults to have
a fever of any origin, as children’s temperatures were taken
more often and each of those readings had a higher odds of
being feverish. Similar to testing for COVID-19, only by
examining both the frequency of readings and the percent of
those readings with a fever can patterns of behavior and disease
be separated [29]. Before the COVID-19 pandemic, children
were found to experience febrile illness more often in an average
year than adults [16], which may contribute to the observed
increased odds of feverish readings. Because children were less
likely to experience severe disease from COVID-19 [30], it is
possible that child temperature-taking was undermeasured due
to reduced perceived risk from caretakers. A reduced risk of

severe outcomes in children may also explain why children
were tested for COVID-19 less often than adults [18].

In line with previous research on most personal health behaviors
[31,32], men took their temperature less frequently than women
across all study periods (Table 2). Lower rates of monitoring
likely explain why when men did take their temperature, they
had higher odds of being feverish (Table 3). Prior research has
found that men were less likely to pay attention to global
pandemics than women [33] and less likely to be concerned
about COVID-19 during the first two waves of the pandemic
[2]. Globally, women have been tested for COVID-19 more
frequently than men [34]. Similarly, within the United States,
men were tested for COVID-19 less often and had a higher test
positivity rate than women [35]. The increased odds of fever
we observed in men likely reflects both a decreased perceived
risk among men and increased temperature-taking behavior
among women.

Urban users had higher rates of temperature-taking than rural
users during all study periods, except for wave 2 of the
pandemic. Additionally, during wave 1 of COVID-19,
researchers found that urban residents reported increases in
other health behaviors such as mask wearing and social
distancing compared to rural residents [36]. It is likely that either
urban users overmonitored their temperatures or rural users
undermonitored theirs, since the odds of urban users having
feverish readings decreased during wave 1 compared to rural
users. Rural areas were more heavily impacted by wave 2 of
COVID-19 in terms of cases, hospitalizations, and deaths [37];
accordingly, urban users may have had a decreased perceived
risk relative to rural users, leading to their decrease in
temperature-taking frequency during this time.

Our study has many strengths that contribute to the literature
on surveillance and health behavior. We have a large sample
size across multiple illness seasons. Because our behavioral
data are not reliant on self-report, we gained an accurate,
real-time measure of temperature-taking behavior that is not
subject to recall bias. Furthermore, fever data from smart
thermometers have been correlated with both COVID-19 cases
and influenza-like illness levels [16-19]. Unlike cross-sectional
studies that were initiated after the start of the COVID-19
pandemic, we examined data across a previous influenza season,
offseason, and multiple waves of COVID-19.

Limitations
There are also limitations to our study design worth noting. The
series of cross-sectional studies do not represent the same
population over time and therefore could reflect changes in the
user populations rather than changes in user behavior. Future
studies should follow a cohort across multiple illness seasons.
Because we condition on owning and using a smart
thermometer, our study population may not be representative
of the US population that does not own a smartphone. However,
we capture a wide range of socioeconomic status (Table 1). We
also did not have individual-level data on poverty, race,
education, or occupation, which could confound some of the
observed associations. Additional factors, besides demographics
and illness risk, may have impacted the results if a user took a
temperature each time they had a possible fever. Users also
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could have misassigned fevers to family members if they forgot
to switch profiles before taking a temperature.

Conclusions
Unlike survey data, temperature-taking provides real-time
insights into individual behaviors and concerns about circulating
infectious disease. Thermometer usage rises with disease
circulation, as the highest frequencies were observed during
influenza season and wave 1 of COVID-19. Demographic

groups react differently to changes in disease levels, with rural
residents and young men taking their temperature less often.
These behavioral shifts likely reflect perceived risk more than
actual risk. Future studies should investigate how upstream
factors such as media coverage impact perceived risk and
temperature-taking behavior. Public health surveillance should
consider how these behaviors affect testing and health
monitoring in interpreting disease levels in different
demographic groups.
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