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Abstract
Blood-brain barrier (BBB) integrity injury within the thrombolytic time window is be-
coming a critical target to reduce haemorrhage transformation (HT). We have previ-
ously reported that BBB damage was initially damaged in non-infarcted striatum after 
acute ischaemia stroke. However, the underlying mechanism is not clear. Since acute 
ischaemic stroke could induce a significant increase of dopamine release in striatum, 
in current study, our aim is to investigate the role of dopamine receptor signal path-
way in BBB integrity injury after acute ischaemia using rat middle cerebral artery oc-
clusion model. Our data showed that 2-h ischaemia induced a significant increase of 
endogenous tissue plasminogen activator (tPA) in BBB injury area and intra-striatum 
infusion of tPA inhibitor neuroserpin, significantly alleviated 2-h ischaemia-induced 
BBB injury. In addition, intra-striatum infusion of D1 receptor antagonist SCH23390 
significantly decreased ischaemia-induced upregulation of endogenous tPA, accom-
panied by decrease of BBB injury and occludin degradation. More important, inhibi-
tion of hypoxia-inducible factor-1 alpha with inhibitor YC-1 significantly decreased 
2-h ischaemia-induced endogenous tPA upregulation and BBB injury. Taken together, 
our data demonstrate that acute ischaemia disrupted BBB through activation of en-
dogenous tPA via HIF-1α upregulation, thus representing a new therapeutic target 
for protecting BBB after acute ischaemic stroke.
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1  | INTRODUC TION

Ischaemic stroke is a leading cause of morbidity and mortality world-
wide.1 The most feared complication in thrombolytic therapy for acute 
ischaemic stroke is haemorrhagic transformation (HT),2-4 which occurs 
when blood-brain barrier (BBB) integrity is disrupted.5 BBB damage 
during the reperfusion stage has been a key focus for the past decades, 
because HT and oedema will not occur if ischaemic brain is not reper-
fused.6,7 However, it is not well studied for the mechanism underlying 
the BBB injury within the thrombolytic time window. Accumulating ev-
idences demonstrated that HT occurs after thrombolytic reperfusion8 
or post-endovascular treatment9 if the brain regions showed BBB dam-
age during the acute stage and the BBB damage acute ischaemic stroke 
is emerging as both a predictor and a promising target for HT in clinic.10

We have previously checked the spatial and temporal change of 
BBB injury and brain tissue damage. Our results demonstrated that 2-h 
ischaemia induced cortex and dorsal striatum infarction and BBB injury 
in non-infarcted ventral striatum and pre-optical area.11,12 However, it 
is not clear why BBB injury was initially found in non-infarcted area. It 
is noteworthy that our recent results showed that upregulated HIF-1α 
in striatum played important role in BBB injury after acute ischaemic 
stroke.13,14 In addition, HIF-α has been shown to regulate dopamine re-
lease15 which has been shown to play an important role in ischaemic 
stroke-induced brain damage.16 Acute ischaemic stroke-induced do-
pamine release in the striatum was greater (400-fold over pre-isch-
aemic level) than that in the cortex (12-fold over pre-ischaemic level).17 
Dopamine has been shown to be involved in acute 3-nitropropionic 
acid-induced striatal astrocytic cell death and dysfunction of the BBB.18 
However, it is not clear whether ischaemia-induced dopamine release 
could induce BBB damage and the underlying mechanism is not clear.

It has been reported that D1 receptor agonist SKF38393 signifi-
cantly increased endogenous tissue plasminogen activator (tPA) acti-
vation in ventral striatum and activation of post-synaptic dopamine 
D1 receptors by systemic administration of morphine or methamphet-
amine promoted the release of tPA via protein kinase A (PKA) signal-
ling.19 In addition, it has been demonstrated that intra-nigral injection 
of tPA disrupted BBB20 and tPA can increase the permeability of BBB 
via the low density lipoprotein receptor-related protein,2 via plas-
min-mediated activation of the Rho kinase pathway in astrocytes21 
and via activation of platelet-derived growth factor C (PDGF-CC).22

In the current study, we aimed to test the hypothesis that isch-
aemia disrupted BBB through activation of endogenous tPA via 
HIF-1α upregulation-induced dopamine receptor activation.

2  | MATERIAL S AND METHODS

2.1 | Animal model of focal cerebral ischaemia

Sprague Dawley male rats (50-55 days, RRID: RGD_70508) weighing 
270-290 g were ordered from SLAC Company (Shanghai, China). They 
were housed three per cage in a temperature- and humidity-controlled 
vivarium on a reversed 12 hour-12 hour light-dark cycle. Rats had unlim-
ited access to water and food. The animal procedures were in accordance 

with the Soochow University Committee on Animal Care (approval 
#SYXK (SU) 2017-0043). All animal experiments were performed were in 
accordance with the guideline of NIH for the Care and Use of Laboratory 
Animals to minimize animal suffering and to reduce the number of ani-
mals. All animals were anaesthetized with isoflurane (#O2140, MAC 
1.15) and were placed on a thermostatic blanket during MCAO.

Rats (n = 105) were subjected to 2-hour middle cerebral artery 
occlusion (MCAO) using the intraluminal suture occlusion model, as 
we described previously.23 Rats housed in the same cage underwent 
the same manipulations. The MCAO rat model success rate is 100% 
without any accident of intracranial bleeding and no rats died because 
of stroke or surgical complications. Rats were killed with transcardi-
ally being perfused with ice-cold PBS or 4% PFA after 2-hour MCAO/
reperfusion followed by quick removal of the brain.

2.2 | Drug treatment

2.2.1 | Neuroserpin administration

To inhibit tPA activity, specific inhibitor neuroserpin (20 μmol/L, 
3 μL, Cat#13014250; PeproTech Company (Rocky Hill, New Jersey, 
USA), dissolved in PBS) or vehicle was infused into striatum (AP −1.0, 
ML −3.0, DV −7.0) at a rate of 9 μL/h 30 minutes prior to the onset 
of ischaemia, after infusion the needle stayed for another 5 minutes 
before removal.24,25 Simple randomization was employed to allocate 
rats (n = 14) to vehicle and neuroserpin group (n = 7/group).

2.2.2 | SCH23390 administration

To block interaction of dopamine with dopamine receptor 1 in early 
ischaemic BBB damage, the D1 receptor antagonist SCH23390 
(1 mg/mL, 0.64 μL, Cat#D054; Sigma, St. Louis, MO, USA, dissolved 
in saline) or vehicle was infused into striatum (AP −1.0, ML −3.0, DV 
−7.0) immediately prior to the onset of ischaemia. After infusion, 
the needle stayed for another 5 minutes before removal.26 Simple 
randomization was employed to allocate rats (n = 24) to vehicle and 
SCH23390 group (n = 12/group).

2.2.3 | YC-1 administration

YC-1 (Cayman Chemical Company, Ann Arbor, Michigan, USA) is 
dissolved in a solution of 1% dimethyl sulphoxide (DMSO). Rats re-
ceived YC-1 (2 mg/kg) or vehicle via femoral vein at 24 hours and 
30 minutes before ischaemia.14 Simple randomization was employed 
to allocate rats (n = 10) to vehicle and YC-1 group (n = 5/group).

2.3 | Evan's blue (EB) leakage detection

EB (Cat#E2199, Sigma, 2% w/v in PBS) was intravenously injected 
(3 mL/kg) through the left femoral vein immediately after MCAO 
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as we described previously.12 All rats were given 10 minutes reper-
fusion for sufficient EB circulation to the ischaemic brain and less 
reperfusion-induced BBB injury. The rat brain was quickly removed 
after the rat was transcardially perfused with ice-cold PBS.

1. Spatial distribution of BBB injury could be observed by checking 
the EB leakage in ten consecutive 1-mm-thick coronary slices 
as we described previously.

2. EB leakage was also recruited to quantitate BBB disruption by 
measuring content in the non-ischaemic and ischaemic brain tis-
sue as we reported.23

3. EB leakage combined with occludin IHC was used to check whether 
occludin degradation in the area of BBB damage. The slide was 
scanned in a LSM700 microscope (Carl Zeiss, Weimar, Germany), 
and the coronal image was reconstructed using adobe photoshop. 
EB appeared as red fluorescence on brain sections with excitation 
wavelength of 542 nm and a 560-nm long-pass filter for collecting 
fluorescence emission.27

2.4 | Evaluation of BBB integrity by immunoglobulin 
G leakage

Blood-brain barrier integrity can also be evaluated by checking immu-
noglobulin G (IgG) leakage as we reported previously.12 Briefly, After 
20 minutes fixation with 4% PFA for at room temperature, the 20-μm-
thick section was stained with Cy3-conjugated Affinity Pure Goat 
anti-Rat IgG (1:400, RRID: AB_2632462; Jackson ImmunoResearch 
Laboratories Inc., West Grove, Pennsylvania, USA) for 2 hours, fol-
lowed by mounted with a glass coverslip. The coronal image was 
achieved from a LSM700 microscope (Carl Zeiss).

2.5 | In situ tPA casein zymography

The rat was transcardially perfused with PBS, followed by quick removal 
of the brain, freeze in OCT (Sakura Finetechnical, Tokyo, Japan) and store 
at −80°C. Cryosections (20 μm) were analysed for in situ proteinase activ-
ity as described previously.19 In brief, 100 μl overlays of 1% agarose in 
PBS containing 10 μg/mL of BODIPY TR-X FL casein (Molecular Probes, 
#E6638, Invitrogen, CA, USA) and 5 mmol/L EDTA with plasminogen 
(#P7999; Sigma), were added to pre-warmed tissue and sealed under glass 
coverslips. After 2-hours incubation at 37°C, image of casein fluorescence 
was achieved with a microscope (model Axioskop; Carl Zeiss Vision).

2.6 | Immunostaining

The 20-µm-thick cryosection from each group was fixed with 4% PFA 
for immunostaining analysis for occludin, as we reported previously.23 
Briefly, tissue were pre-incubated in PBS containing 0.1% Triton X-100, 
1% BSA and 5% goat serum for 1 hour at room temperature to block 
non-specific binding sites. The section was then incubated overnight 
with primary antibody of anti-occludin (1:150, RRID: AB_2533977; 

Invitrogen) at 4°C followed by incubation with 488-conjugated sec-
ondary antibody (anti-rabbit, 1:800, RRID: AB-143165) for 2 hours 
at room temperature. Images were achieved from the region and the 
mirrored region of ischaemic and the non-ischaemic hemisphere, re-
spectively, under LSM 700 confocal laser-scanning microscope (Zeiss).

2.7 | Western blot analysis for occludin, tPA and 
HIF-1α

The experiment was done as we have described previously.28 Tissue in 
the regions of interest (ROI 1, tissue damage area; ROI 2, BBB damage 
area) of ischaemic and mirror non-ischaemic hemisphere was collected 
as we described.14 Briefly, protein samples were electrophoresed in 
SDS-PAGE acrylamide gels and transferred onto nitrocellulose mem-
branes (Bio-Rad, Hercules, California, USA). The membranes were in-
cubated for 60 minutes in 5% non-fat milk, followed by incubation 
overnight at 4°C with primary antibodies against occludin (1:300, 
Invitrogen), HIF-1α (1:300; Novus, Centennial, Colorado, USA) and 
tPA (1:500; Abcam). After incubation for another 60 minutes with 
corresponding HRP-conjugated anti-rabbit or anti-mouse antibodies 
(1:3000, RRID:AB_2734136 or #BA1050, Boster) at room tempera-
ture, the membranes were developed with the SuperSignal West Pico 
HRP substrate kit (#WBKLS0500; Pierce, Rockford, Illinois, USA) and 
photographed on a Gel DOCTM XR+ image station (Bio-Rad). Protein 
band intensities were quantitated after normalization to β-actin 
(Cat#M1210-2) or β-tublin (Cat#0807-2).

2.8 | Statistical analysis

All data shown were analysed using Power Analysis and Sample Size 
(PASS) software (version 17.0) and were graphed using GraphPad 
Prism software (version 5). The data are presented as mean ± SEM. 
The number of independent experiments was shown in the figure leg-
ends. The normality of the data was confirmed by the Shapiro-Wilk 
test. No test for outliers was conducted on the data. Comparisons 
among two or four groups were carried out by one-way ANOVA with 
Bonferroni's multiple comparisons post hoc test. A value of P < 0.05 
was considered statistically significant. During sample preparation and 
analysis, the investigators were blinded to the experimental groups.

3  | RESULTS

3.1 | Spatial distribution of endogenous tPA after 
acute ischaemia stroke

Endogenous tPA has been shown to modulate BBB integrity.29 In situ 
tPA Casein zymography was used to detect spatial distribution of 
tPA activity after 2-hour ischaemia, and our data demonstrated that 
2-hour ischaemia induced significant increase of tPA activity (green) 
in ventral striatum and pre-optical area of ischaemic hemisphere 
(Figure 1A-D).
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3.2 | Effect of intra-striatum infusion of neuroserpin 
on 2-h MCAO-induced BBB damage

Our published paper demonstrated that 2-hour MCAO injured brain 
tissue in parietal and insular cortex and dorsal striatum (ROI 1) and dis-
rupted BBB in ventral striatum and preoptic area (ROI 2).11,12 Recently, 
our results showed that inhibition of HIF-1α alleviated BBB damage 
and tight junction protein occludin degradation in ROI2.14 In this 
study, we checked if ischaemia-induced BBB damage could be reduced 
through inhibition of tPA activity. Neuroserpin was intra-striatum ad-
ministered as described.24,25 EB leakage was recruited to check BBB 
permeability. Representative images of EB leakage in coronal brain sec-
tion were shown in Figure 2C and obvious EB leakage in the ipsilateral 

hemisphere of brain was seen in the MCAO rats. Neuroserpin treat-
ment significantly reduced 2-hour MCAO-induced BBB disruption, in-
dicated by a significant reduction of EB leakage (Figure 2D).

We recently demonstrated that occludin degradation contributed 
to the BBB disruption after 2-hour ischaemia.12 To determine whether 
the rapid disruption of occludin was due to ischaemia-induced tPA 
upregulation, we next checked the effect of neuroserpin on occludin 
expression. Occludin was degraded in the ventral striatum and preop-
tic area (ROI 2, Figure 2F), but not in cortex or dorsal striatum (ROI 
1, Figure 2E) and neuroserpin treatment significant decreased 2-hour 
ischaemia-induced occludin degradation (Figure 2F), indicating that 
2-hour ischaemia-induced occludin degradation was mediated by up-
regulated tPA.

F I G U R E  1   Spatial distribution of 
endogenous tPA after 2-h MCAO. A, 
Representative representation of tPA 
activity showed increased tPA in the 
ventral striatum and preoptic area 
of ischaemic hemisphere after 2-h 
MCAO detected by in situ tPA casein 
zymography. Corresponding enlarged 
view of the box in left (B) and right (C) side 
of (A). tPA activity in non-ischaemic and 
ischaemic hemisphere was quantitated 
and expressed as relative fluorescence 
intensity after normalization to the non-
ischaemic (NI) hemisphere, n = 3/group (D)

A

B C

D
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3.3 | Effect of SCH23390 on 2-hour ischaemia-
induced endogenous tPA upregulation as well as the 
expression of dopamine 1 receptor

D1 receptor activation has been to activate endogenous tPA in drug 
abuse19 and D1 receptor antagonist was used to block interaction of 
dopamine and D1 receptor. Here, we explored the effect of blocking 
the interaction between dopamine and D1 receptor on tPA expression. 
Two-h ischaemia significantly upregulated the expression of endoge-
nous tPA in ROI2 (Figure 3B, right panel) but not ROI 1 (Figure 3B, left 
panel) and D1 receptor antagonist SCH23390 significantly inhibited 
this effect (Figure 3B).

Ischaemic release of DA from striatum is associated with early 
transient changes in D1-mediated DA neurotransmission.17 Here, we 
checked the expression of D1 receptor after 2-hour MCAO and our 
results showed that no significant change was observed after 2-hour 
MCAO (Figure 3C).

3.4 | SCH23390 alleviated 2-hour ischaemia-
induced BBB injury and loss of occludin

Dopamine has been shown to be involved in the dysfunction of the 
BBB,18 and we showed that D1 antagonist SCH23390 could inhibit 

F I G U R E  2   Neuroserpin treatment 
significantly reduced Evan's blue (EB) 
leakage into the ischaemic brain as well 
as occludin degradation after 2-hour 
MCAO. A, Diagram of the experimental 
procedure. B, Coronal section of the 
rat brain, the cortical part of the grey 
line is the ROI 1 area region of interest 
(ROI) 1 (cortex and dorsal striatum), the 
ventral striatum and the preoptic area of 
the grey line are the ROI 2 area. C, Ten 
consecutive sections showed EB leakage 
from vehicle or neuroserpin-treated rats, 
n = 7/group. D, EB leakage in the brain 
tissue was quantitated according to the 
external EB standard curve. EB leakage 
was expressed as per gram of brain tissue 
(μg/g). E, F, Representative Western blot 
images of occludin in region of interest 
(ROI) 1 (E) and 2 (F) in ischaemic (I) and 
non-ischaemic (NI) hemisphere. Ratios of 
occludin (I/NI) (E) (F) were quantitated. 
After 2-h MCAO, occludin was 
significantly decreased in ROI 2 but not 
ROI 1 and pretreatment with tPA inhibitor 
neuroserpin could prevent this increase. 
#P < 0.05 vs. Vehicle group, *P < 0.05 vs. 
ROI 1 group. (#P < 0.05 vs. vehicle group). 
Data were expressed as mean ± SEM, 
n = 6/group
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2-hour ischaemia-induced endogenous tPA upregulation. Therefore, 
we examined the effect of D1 antagonist SCH23390 on the integrity 
of BBB and occludin expression. Figure 4B showed the EB leakage in 
consecutive coronal brain slices and obvious EB leakage in the ipsi-
lateral hemisphere of brain was seen after 2-hour MCAO (Figure 4B) 
and intra-striatum infusion of SCH23390 dramatically reduced the 
EB leakage proportion of the total area (Figure 4B). IgG leakage is 
another indicator for BBB damage.12 Our results demonstrated that 
2-hour ischaemia induced significant IgG leakage and SCH23390 sig-
nificantly inhibited this effect (Figure 4C).

To determine the effect of SCH23390 on occludin degradation, 
immunofluoresence and Western blot were used to detect the oc-
cludin expression. Our immunofluoresence result showed that 

SCH23390 treatment significantly alleviated 2-hour MCAO-induced 
occludin loss in ROI 2 (Figure 5C). Western blot data confirmed the 
immunofluoresence results and 2-h ischaemia produced a significant 
decrease of occludin expression in ROI 2 (Figure 5B), but not ROI 1 
(Figure 5B). Pretreatment with SCH23390 significantly inhibited this 
change (Figure 5B).

3.5 | Effect of HIF-1α inhibition on endogenous 
tPA expression

We recently showed that inhibition of HIF-1α alleviated BBB dam-
age,13,14 reduced tight junction protein occludin degradation14 and 

F I G U R E  3   Effect of blocking D1R on 
2-h ischaemia-induced tPA and D1R. A, 
Diagram of the experimental procedure. 
Representative Western blot revealed tPA 
(B) and D1 receptor (C) expression treated 
with SCH23390 or vehicle. The band 
intensity of tPA and D1R was quantitated 
after normalization to the β-tublin. Two-
hour MCAO induced a significant increase 
of tPA level in ROI2 (right panel), but 
not ROI1 (left panel). Pretreatment with 
SCH23390 prevented tPA upregulation 
(*P < 0.05, compared with the ROI 1, 
#P < 0.05 vs. Vehicle group). Data were 
expressed as mean ± SEM, n = 5/group. C: 
representative Western blot revealed no 
significant change of D1R both ROI 1 and 
ROI 2 after 2-h MCAO
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inhibited MMP-2 activity.13,14 In addition, HIF-1α has been shown to 
be a key role in the control of dopamine release.15 We next checked 
the effect of HIF-1α inhibition on 2-hour MCAO-induced tPA up-
regulation. Our results showed that inhibition of HIF-1α with YC-1 
significantly reduced 2-hour MCAO-produced tPA upregulation 
(Figure 6).

4  | DISCUSSION

Blood-brain barrier integrity at the time of reperfusion plays a criti-
cal role in determining the prognosis of thrombolysis with tPA and 
endovascular treatment.8,9,30-32 The tightness of BBB after acute 
ischaemic stroke is a promising target10,33 to reduce HT in patients 
with intravenous tPA8 or post-endovascular treatment in clinic.9 In 
this study, our result showed that (a) 2-hour MCAO disrupted BBB 
in non-infarcted striatum accompanied by endogenous tPA up-
regulation and inhibition of tPA with neuroserpin reduced the BBB 
damage; (b) D1 receptor antagonist SCH23390 significantly allevi-
ated BBB damage by preventing tPA upregulation and occludin deg-
radation; (c) inhibition of HIF-1α with YC-1 significantly decreased 
2-hour ischaemia-induced tPA upregulation; and (d) endothelial cell 
contributed the major tPA secretion after 2-hour OGD. Taken to-
gether, these observations provide strong evidence that blocking in-
teraction of dopamine with D1 receptor reduced ischaemia-induced 

HIF-1α-mediated BBB damage by regulating endogenous tPA during 
acute cerebral ischaemia (Figure 7).

Our results showed that 2-hour ischaemia induced BBB dam-
age accompanied by a significant increase of endogenous tPA and 
neuroserpin significantly reduced BBB damage, indicating that en-
dogenous tPA plays an important role in BBB damage after acute 
ischaemia stroke. This is consistent with previous study showing that 
endogenous tPA plays an important role in the BBB damage after 
ischaemic stroke2,21,22 as well as pathogenesis of HT in mice34 and 
rat.35 Since endogenous tPA has also been demonstrated to induce 
BBB damage after peripheral thermal injury36 and traumatic brain 
injury37 and neuroserpin has been shown to reduce cerebral infarct 
volume, protect neurons from ischaemia-induced apoptosis,24 and 
increase the therapeutic window for tissue-type plasminogen acti-
vator administration in a rat model of embolic stroke,38 endogenous 
tPA could be a promising target to reduce BBB damage after various 
stress.

Our current results showed that endogenous tPA upregulation 
was found in the ventral striatum, but not in the cortex and blocking 
the interaction between dopamine and D1R-reduced tPA upregu-
lation, suggesting that ischaemia-induced tPA upregulation was 
resulting from D1R activation in the striatum. It has been reported 
that half hour after ischaemia, dopamine reached a peak39 and isch-
aemic stroke-induced release of DA from the striatum was greater 
than that from the cortex.17 It is worth of note that extracellular tPA 

F I G U R E  4   Effect of blocking D1R on 
2-h MCAO-induced BBB disruption A, 
Diagram of the experimental procedure. 
Rats received SCH23390 5 min before the 
onset of 2-h MCAO. B, Ten consecutive 
sections showed EB leakage from vehicle 
or SCH23390-treated rats. C, EB leakage 
was quantitated and expressed as average 
area proportion of section measured 
(%). SCH23390 treatment significantly 
reduced 2-h MCAO-induced EB leakage 
(**P < 0.01, compared with the Vehicle 
group, n = 6/group. C, Representative 
representation of IgG leakage (red 
fluorescence). There was a significant 
leakage of IgG in the ventral striatum after 
2-h MCAO, and SCH23390 treatment 
significantly reduced ischaemia-induced 
IgG leakage, n = 3/group
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activity is significantly increased by activation of the D1R pathway19 
and tPA is involved in cholinergic interneurons excitation which 
is mediated by activation of D1R in the striatum.40 Since striatum 
received dopamineric projection from substantia nigra, increased 
endogenous tPA in striatum could be resulted from the increase 
of dopamine in substantia nigra and to reduce or block the effect 
of dopamine would be another strategy to reduce acute ischaemic 
stroke-induced BBB damage.

It is well known that tight junction proteins claudin-5, occludin 
and zonula occludens-1 (ZO-1) play critical roles in the integrity of 
the BBB after focal ischaemia.41 In our current study, we only de-
tected the change of occludin. Because our previous study showed 
that after 2-hour oxygen-glucose deprivation (OGD), occludin was 
degraded by secreted MMP-2 and claudin-5 was redistributed from 
cell membrane to cytoplasm.42 In addition, 4-hour OGD induced NO-
dependent claudin-5 degradation.33 Furthermore, we confirmed that 

F I G U R E  5   Effect of blocking D1R on 
2-h MCAO-induced tight junction protein 
occludin degradation. A, Diagram of the 
experimental procedure. B, Western blot 
was used to assess occludin expression 
in the non-ischaemic (NI) and ischaemic 
(I) hemispheric tissue. A representative 
Western blot revealed occludin protein 
expression in ROI 1 (upper panel) and ROI 
2 (middle panel) treated with SCH23390 
or vehicle. The band intensity of occludin 
was quantitated after normalization to 
the β-tublin. Two-h MCAO induced a 
significant decrease of occludin level 
in ROI 2 (*P < 0.05 vs. ROI 1), but 
not in ROI 1 (P > 0.05). Pretreatment 
with SCH23390 prevented occludin 
degradation (#P < 0.05 vs. Vehicle group). 
Data were expressed as mean ± SEM, 
n = 5/group for Western blot. C, 
Representative of immunofluorescence 
and EB leakage of the tight junction 
protein occludin. Consistent with the 
results of Western blot, there was no 
significant change in the expression 
of occludin (green fluorescence) in the 
ROI 1 region, after ischaemia there is 
no EB leak (red fluorescence). In the 
ROI 2 region, the expression of occludin 
(green fluorescence) was significantly 
reduced after ischaemia, and significant 
EB leakage (red fluorescence) treatment 
with SCH23390 was effective in reducing 
ischaemia-induced tight junction protein 
occludin degradation and EB leakage. 
IHC results showed occludin degradation 
in the area where EB leakage occurred. 
Pretreatment with SCH23390 significantly 
prevented occludin degradation as well as 
EB leakage. n = 3/group for IHC results. 
Data were expressed as mean ± SEM
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2-hour MCAO induced occludin but not claudin-5 degradation.12 In 
our current study, duration of ischaemia is 2 hours and endogenous 
tPA will not disrupt the BBB through disruption claduin-5. In addition, 
a recent study reported that brain-derived endothelial cell was suscep-
tible to OGD-induced injury in a duration-dependent manner as was 
the presence of ZO-1 protein, cells exposed to 2 hour OGD failed to 
show any changes in protein, whereas 4 hour OGD led to marked de-
crease.43 In addition, another in vivo study showed that 12- or 24-hour 
focal MCAO did not significantly change the expression of ZO-1.44 So 
far, no study investigated the change of ZO-1 after acute ischaemia 
stroke. In our current study, we aim to investigate the BBB damage 
within the thrombolytic time window and the duration of ischaemia is 
2-hour; therefore, the expression of tight junction protein ZO-1 could 
not be affected by the related factors. An another study to investigate 
the expression and distribution of ZO-1 is warranted.

Our results showed that there was no significant D1R change 
after 2-hour ischaemia. Rogozinska et al reported that 1 day after 
stroke, D1R density decreased by 36% in the lesion core relative 

to sham-operated controls, and no alterations in D1R binding were 
found in penumbra and other investigated regions45; another study 
demonstrated that a significant reduction in [3H] SCH23390 bind-
ing was found in the striatum from 48 hours after ischaemia.46 
Therefore, it is unlikely that 2-hour MCAO would induce significant 
change in D1R. Since after acute ischaemic stroke, dopamine release 
in the striatum was greater than that in the cortex,17 and dopa-
mine release could be quite different between ROI1 and ROI2 after 
2-hour ischaemia.

Our results showed that D1 receptor antagonist SCH23390 sig-
nificantly reduced 2-hour MCAO-induced BBB damage, suggesting 
that acute ischaemic stroke-induced dopamine release destroyed BBB 
damage. Dopamine has been shown to be involved in acute 3-nitro-
propionic acid-induced striatal astrocytic cell death and dysfunction 
of the BBB.18 Our results showed that SCH23390 did not affect the 
expression of DR1, and according to a previous study by Yamamoto 
et al,47 the neuroprotection afforded by SCH23390 was likely medi-
ated by blocking the interaction between dopamine and DIR.

F I G U R E  6   Effect of HIF-α inhibition 
on tPA expression after 2-h ischaemia. A, 
Diagram of the experimental procedure. 
Rats received YC-1 before the onset 
of ischaemia. B, Western blot was 
conducted to detect tPA in ROI1 (left 
panel) and ROI2 (right panel) expression 
in the non-ischaemic (NI) and ischaemic 
(I) hemispheric tissue. A representative 
Western blot revealed tPA expression 
treated with YC-1 or vehicle. The band 
intensity of tPA was quantitated after 
normalization to the β-tublin (B). Two-h 
MCAO induced a significant increase of 
tPA level in ROI 2 (C), but not in ROI1 (B). 
Pretreatment with YC-1 prevented tPA 
upregulation (#P < 0.05 vs. Vehicle group). 
Data were expressed as mean ± SEM, 
n = 5/group

F I G U R E  7   Summary. Blocking 
interaction of dopamine with D1 receptor 
reduced ischaemia-induced HIF-1α-
mediated BBB damage by regulating 
endogenous tPA during acute cerebral 
ischaemia
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Glutamate toxicity has been shown to play critical roles in isch-
aemic stroke and BBB damage. For example, blockade of NMDA or 
AMPA receptors could attenuate the BBB disruption in focal cerebral 
ischaemia, supporting a role of ionotropic glutamate receptors in BBB 
disruption.48 In addition, non-competitive AMPA receptor antagonist 
perampanel affords protection against ischaemic stroke through clau-
din-5-mediated regulation of BBB permeability.49 Since D1 receptor 
toxicity may involve DARPP-32-dependent phosphorylation of NMDA 
receptor NR1,50 there may exist interaction between dopamine and 
glutamate system in BBB damage after 2-hour ischaemia.

We have previously shown that inhibition of HIF-1α decreased 
2-hour ischaemia-induced BBB damage, tight junction protein occlu-
din degradation and MMP-2 activity13,14; in current study, we showed 
that inhibition of HIF-1α upregulation with YC-1 alleviates 2-hour 
MCAO-induced tPA upregulation, suggesting that HIF-1α inhibition 
may reduce tPA upregulation through controlling dopamine. Ischaemia 
has been shown to induce a significant increase of HIF-1α accompa-
nied by an increase of tyrosine hydroxylase expression and activity15 
and HIF-1α has been reported to upregulate tyrosine hydroxylase and 
dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells.51 Of 
note, HIF prolyl hydroxylase inhibition has been shown to augment 
dopamine release in the rat brain in vivo.52 Combined with our results, 
we proposed that downregulating of HIF-1α may inhibit tPA through 
regulating interaction of dopamine with D1 receptor via controlling 
tyrosine hydroxylase and dopamine transporter.

Plasminogen activator inhibitor (PAI-1) could inhibit t-PA activity; 
therefore, the upregulated tPA may be accompanied by decreased 
PAI-1. Our unpublished data in another manuscript showed that acute 
ischaemia-induced decreased expression of PAI-1 in the brain area 
that showed the damage of the BBB. It has also been reported that 
HIF-1α may inhibit the PA activity through stimulating the expression 
of PAI-1 in normal articular chondrocytes.53 So, HIF-1α may not only 
affect tPA’s expression but also affect tPA’s activity. Therefore, inhi-
bition of HIF-1α could be another strategy to reduce acute ischaemic 
stroke-induced BBB damage.

One may concern about the specificity of YC-1 as YC-1 is also an 
activator of soluble guanylyl cyclase54 and YC-1 has shown protec-
tive effect against white matter axons injury that is induced by nitric 
oxide toxicity and metabolic stress.55 We have discussed this issue 
and exclude the possibility that YC-1 could affect the BBB integrity 
through modulating NO in our published paper.13

In summary, blocking interaction of dopamine with D1 recep-
tor reduced ischaemia-induced BBB damage by regulating endog-
enous tPA during acute cerebral ischaemia. These results extend 
our knowledge about the BBB damage within the thrombolysis time 
window and may provide new strategy and target to decrease acute 
ischaemia-induced BBB damage, extend thrombolysis time window 
and reduce occurrence of HT.
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