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Using Deep Learning to Extrapolate Protein Expression
Measurements

Mitra Parissa Barzine, Karlis Freivalds, James C. Wright, Mārtiņš Opmanis, Darta Rituma,
Fatemeh Zamanzad Ghavidel, Andrew F. Jarnuczak, Edgars Celms, Kārlis Čerāns,
Inge Jonassen, Lelde Lace, Juan Antonio Vizcaíno, Jyoti Sharma Choudhary,*
Alvis Brazma,* and Juris Viksna*

Mass spectrometry (MS)-based quantitative proteomics experiments typically
assay a subset of up to 60% of the ≈20 000 human protein coding genes.
Computational methods for imputing the missing values using RNA
expression data usually allow only for imputations of proteins measured in at
least some of the samples. In silico methods for comprehensively estimating
abundances across all proteins are still missing.
Here, a novel method is proposed using deep learning to extrapolate the
observed protein expression values in label-free MS experiments to all
proteins, leveraging gene functional annotations and RNA measurements as
key predictive attributes. This method is tested on four datasets, including
human cell lines and human and mouse tissues. This method predicts the
protein expression values with average R2 scores between 0.46 and 0.54,
which is significantly better than predictions based on correlations using the
RNA expression data alone. Moreover, it is demonstrated that the derived
models can be “transferred” across experiments and species. For instance, the
model derived from human tissues gave a R2 = 0.51 when applied to mouse
tissue data. It is concluded that protein abundances generated in label-free
MS experiments can be computationally predicted using functional annotated
attributes and can be used to highlight aberrant protein abundance values.
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1. Introduction

Mass spectrometry (MS)-based pro-
teomics is routinely used to measure
the abundance of proteins in biological
samples. However, due to technical
limitations and restrictions in the limits
of detection and dynamic range of anal-
yses performed, complete proteomes of
complex biological samples are never
fully characterized and quantified.[1–3]

Missing protein expression values are
a constant confounding factor in the
downstream analysis.
As schematically shown in Figure 1,

protein expression missing values can be
classified into three categories: i) unob-
served proteins, with no identifiable pep-
tides in any samples and/or MS runs; ii)
intermittently detected proteins, present
in some but not in all experimental
samples and/or MS runs; and iii) am-
biguous and aberrantly expressed pro-
teins, where it is not possible to dis-
tinguish or correctly quantify proteins
based on the detected peptides, due to
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limitations caused by the protein inference. There are various
technical and biological explanations for the lack of experimen-
tal observation of any given protein. Biological explanations in-
clude restricted expression, proteoform complexity, and abun-
dance level. Technical reasons, which are most frequently associ-
ated with peptide observability, include peptide ionization, sam-
ple complexity, and spectral quality, among others.
To cope with missing protein values in proteomics experi-

ments, various methods have been developed to impute the ex-
pression values.[4,5] These approaches try to fill intermittentmiss-
ing values across MS runs using simple or sophisticated models
built on a larger set of data. There are four main approaches for
imputation of missing values. One is to use multidimensional
spectral alignments to match MS1 peaks between runs to in-
crease the number of identifications between runs and assign
real intensity values to missing peptides and proteins. The sec-
ond approach uses fixed constant single-values, which can be a
minimal value, making the assumption that a protein is miss-
ing due to low abundance. Alternatively, an average value can be
used, with the assumption being that a general 1:1 ratio across
runs will cause less bias. The third approach uses local similar-
ity to find peptides or proteins with similar expression profiles
within the same dataset and then use these as the basis for esti-
mating missing values. Finally, the missing values can be recon-
stituted from a global model using methods such as regression,
probabilistic principal component analysis, Bayesian component
analysis, and data normalization techniques. These sophisticated
methods can produce a more nuanced missing value imputation
at a higher computational cost.
A major shortcoming of all the current imputation methods

is that they only deal with intermittently detected proteins, re-
quiring identification and quantification of the protein in some
samples to support the modeling algorithm. With the rise of pro-
teogenomic approaches, it is becoming increasingly common to
perform both proteomic MS and RNAseq analysis in the same
samples. In fact, several recent large-scale studies have com-
pared transcript and protein expression. These studies report a
wide range in the correlation of protein and transcript expres-
sion across different genes, tissues, and samples, which overall
is found to be moderately positive, although exact numbers vary
enormously.[6–8] It has been shown that there are certain classes
of proteins that are more closely regulated at the transcriptional
level than others. Specifically, proteins with highly variable ex-
pression such as metabolic and immune-related proteins often
correlate well, whereas slow turn-over proteins and those in sta-
ble complexes often correlate poorly.[9–11]

Recently, prediction of protein expression levels in samples de-
rived from cancer patients has been the subject of anNCI-CPTAC
DREAM proteogenomics challenge.[12,13] The teams used linear
and non-linear models to evaluate prediction of proteomes from
genomics data and prior information for unobserved samples.
However, to the best of our knowledge, none of the existing ap-
proaches attempt to estimate the expression of the experimen-
tally unobserved proteins. Here, we close this gap by proposing
a novel method that estimates the expression of unobserved (ab-
sent) proteins, where no expression values are recorded in any
of the given proteomics datasets. Specifically, we describe a novel
method leveraging deep learning (DL) to generate a predictive
model based on existing measured protein expression values,

Significance Statement

Proteomeof eukaryotic organisms is highly complex andhas
dynamic rangeofmanyorders ofmagnitude. It is therefore
not surprising that despite significant technological advances,
proteomicmass spectrometry experiments continue to be
limited in coverage anddepth compared to genomics.Most
proteomics experiments thus quantify only part of thepro-
teome, leavingmanyproteins “unobserved” evenwhen they
maybepresent in theproteome.Here,we show that using
deep learning techniques,we can leverage gene annotation and
RNAseqdata to extrapolate the available protein abundances
tounobservedproteins in a given experiment. Previous stud-
ies have appliedmachine learningmethods to impute partial
missing values across experiments and topredict protein abun-
dance across similar samples. The approachpresentedhere
is the first to attempt topredict unobservedproteins and thus
toprovide amethod for increasing coverageof theproteome,
which is an important development for comparative proteoge-
nomic analyses. Additionally ourmethodhighlights aberrantly
expressedproteins; these can either bedue to biological pertur-
bationor technical and annotational issues in thedata.Overall,
this study further integrates proteomics andgenomics data to
advanceour understandingof their biological relationships.

RNA expression values for all genes in the same or similar sam-
ples, and available gene annotations such as Gene Ontology (GO)
and UniProt keywords. We apply the DL approach beyond impu-
tation of partially missing values or additional samples to predict
all unobserved protein abundances in label-freeMS experiments.
The method predicts the protein expression values with average
R2 scores between 0.46 and 0.54, which is significantly better
than predictions based on correlations using the RNA expression
data alone. Moreover, we show that the derived models can be
“transferred” across experiments and species. Finally, we demon-
strate that such predictive models can highlight aberrant expres-
sion patterns and infer abundances for ambiguous proteinsmore
reliably.

2. Experimental Section

2.1. Datasets and Their Preparation

The label-free MS experiments used in this study included three
human datasets: Tissue13 (13 tissues and 9637 genes, extracted
from the reprocessed Draft Human Proteome,[14,15] NCI60 (46
cell lines and 8000 genes),[16] and Tissue29 (29 tissues and 12 879
genes).[17] The experiment also used a label-free mouse tissue
dataset MouseTissue3 (3 tissues and 6591 genes).[18] All RNA
and proteome datasets were downloaded from EBI’s Expression
Atlas,[19] with proteomics data for Tissue13 (dataset PXD000561
and its re-analysis PXD002967), NCI60 (PXD005940), and Tis-
sue29 (dataset PXD010154) measurements based on raw data
from the PRIDE database.[20–23] For more information on these
datasets and references, see Supporting Information.
Both proteomics and RNAseq abundances are represented as

log transformations. To deal with zero values in RNAseq data, in
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Figure 1. Summary of the approach: a) Using deep learning methods to predict the values for unobserved proteins in MS-proteomics experiments.
Measured protein expression values in combination with context information such as functional annotations and RNAseq measurements are used to
train a neural network which can predict protein expression for all proteins, including those not experimentally measured in any sample. b) The deep
learning network architecture for predicting the protein abundance values based on RNA and gene annotations: Blue nodes represent inputs, the green
nodes outputs, and the orange nodes represent intermediate layers. In parentheses dimensionalities of input and output vectors as well as those of the
network layers are shown.

the literature, typically a function log(v + c) is used, where v is
the value of the measurement on the original scale and c is a con-
stant, common for the entire dataset. As in most other studies,
it is used c = 1 (the choice of c is not scale invariant, but c = 1
is sufficiently small for the ranges of the values included in the
datasets considered here).
Two real value matrices were used as input data to our algo-

rithm, where rows correspond to genes/proteins, while columns
correspond to samples (tissues or cell lines). The first matrix con-
tained RNA abundance measurement values and it was assumed
that every gene and every sample in this matrix had a defined

value (i.e., there were no missing or unobserved gene values).
The second matrix contained label-free protein abundances as
quantified in the respective datasets, where some elements,
including entire rows, may be missing. Unobserved or missing
values in the proteomics data were ignored when training the
neural network. In addition, genes were annotated by context
information, specifically using GO terms or UniProt keywords
(KW), where each gene can have more than one term assigned
and the same term can be used to annotate several genes. The
goal was to extrapolate the protein abundance values to all genes
in the matrix using all the available data, as shown in Figure 1.
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2.2. Computational Experiments

For the prediction of protein abundance values, we used a spe-
cially developed DL network. To train the network for a particular
subset of genes, the input given was the measured protein abun-
dances, the RNA expression values, and a binary vector for each
gene, describing context information (such as GO terms and/or
UniProt keywords). The trained network was then used to make
protein abundance predictions, which are based on the equations
p (g) = 𝛼(g) + 𝛽(g) × r(g), where p(g) and r(g) are the protein and
RNA abundances for each gene g, and the coefficients 𝛼(g) and
𝛽(g) are computed from the information provided to the network.
It should be noted that the coefficients 𝛼(g) and 𝛽(g) are specific
to each gene and are derived from the supplied context informa-
tion in a non-linear way. Further details of network architecture
are provided in the Supporting Information.
The gene set for each experiment was partitioned randomly

into ten subsets. Over ten iterations, ten models were then built
using a training set comprising 90% (9 subsets) of the data and
a test set using the remaining 10% (single subset). In each it-
eration, we trained a DL network on all available information
(RNA values, sample identification, and functional annotations)
for each training set. The protein values in the test set were then
predicted by applying the obtained model to the annotations and
RNA values of the genes excluded in the training set. By repeating
the process excluding a different subset, each time we obtained
a predicted abundance value for every protein in the dataset. We
call each of these described experiments a run. For each dataset,
we performed ten runs based on different randomizations of
the initial set to validate the stability of the predictions. In total
100 models were generated and applied for each experiment. We
also considered the problem of the unobserved protein expres-
sion value prediction only using RNA information or excluding
it from the model, that is, only using gene annotations.
Depending on the information used for the training, we

considered several prediction models: RNA (only), GO, KW,
RNA+GO, RNA+KW, RNA+GO+KW, and Randomised (the ab-
breviations indicate the information that is presented to the DL
network). The Randomised model was used as a baseline com-
parison with the predictions, and was based on RNA and context
information being randomly permuted between the genes in the
dataset. The predictions were compared to the measured abun-
dance values for proteins in the test set for which the experimen-
tal measurements were available.
As a natural benchmark for comparison, we also considered

linear regression (LR)-based predictions from the RNAseq val-
ues. Not surprisingly, DLmodels trained using only RNA and LR
model predictions were almost identical (with small fluctuations
for RNA between different runs)—without any context informa-
tion provided to DL network, one can hardly expect better pre-
dictions than LR, and the fact that these values largely matched
at least partially re-confirms that the proposed network design
is conceptually sound. Thus, we further discuss only LR results
because they are a simpler and a more familiar benchmark.
The fact that predictions were based on gene-specific coef-

ficients 𝛼(g) and 𝛽(g) allows precomputation of these on one
dataset and then testing their predictive value for the same or for
homologous genes in different datasets (of the same or different
species).

In the case of the dataset MouseTissue3, the experiments
did not include the models with KW data. However, we tested
the inter-species applicability of the computed gene-specific
coefficients 𝛼(g) and 𝛽(g) for homologous genes. These coef-
ficients were computed from Tissue29 for the two tissues it
shares with the dataset MouseTissue3 (liver and testis) using
the RNA+GO+KW model, and then applied for the prediction
of protein abundances for 5388 homologous genes from the
MouseTissue3 dataset. For detailed description see Supporting
Information.

2.3. Measures of Prediction Accuracy

We assessed the prediction accuracy using the R2 score, which
has been adapted almost exclusively in all the related work (and
in most cases is simply derived from Pearson’s correlation coef-
ficient r by taking R2 = r2). For a given dataset, R2

Davg is the av-
erage score over the whole dataset, R2[t] is the score for a spe-
cific tissue (or cell line) t. R2

Tavg denotes the average score over all
tissues, and R2

Max and R2
Min refer to the highest and lowest pre-

diction accuracies for tissues within a given dataset. The exact
formulas for computation of the R2 scores are provided in Sup-
porting Information. We introduce the notions of R2(g, t), which
show the contribution of gene g to the overall prediction accuracy
R2
Davg, R

2[t](g), showing gene contribution to prediction accuracy
for specific tissueR2[t], andR2

avg(g)—average contribution of gene
to prediction accuracy over all tissues.

3. Results

3.1. Predictions on the Human Datasets

For the three human datasets, we tested all seven DL network-
based prediction models and compared them to the LR as a
benchmark as well as to the Randomisedmodel. As already noted
in Experimental Section, the LR and RNA only models produced
almost identical results, therefore the latter is not discussed. The
prediction accuracy generated for these datasets is summarized
in Table 1 and Figure 2.
The first notable observation is that both KW and GO gene an-

notations alone provided better predictions of protein abundance
than RNA (LR) abundances alone. The impact of KW andGOwas
roughly similar, although in most cases GO performed slightly
better. However, despite the fact that RNA on its ownwas a poorer
predictor, theGO or KWpredictions improved significantly when
they were used together with RNA expression values. These ob-
servations were consistent across all three human datasets. The
best predictions were obtained by theRNA+KW+GOmodel with
R2
Davg values ranging between 0.49 and 0.54 (compared to the LR

range of 0.16–0.32). At an individual tissue level, the best predic-
tions were obtained for liver. Note that in this tissue, the correla-
tion between protein and RNA abundances were also the highest.
A noticeable outlier was bonemarrow in theTissue29 dataset with
R2 = 0.347, but for most of the tissues, t score R2[t] was close
to the average value. The same was true for the NCI60 dataset,
which had two cell lines as outliers: HCT116 and X7860, with R2

equal to 0.236 and 0.357, respectively. The improvement of the
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RNA+KW+GOmodel over the LRmodel was higher in the case
of the tissue datasets than for the cell line dataset.
The DL network can be trained on a dataset with any num-

ber of samples (tissues); however, the number of available sam-
ples has very limited impact on prediction accuracy, and even
data on a single tissue give similar accuracy as the use of the
whole dataset. Regarding the number of data points (proteins)
for the datasets tested, it was observed that the prediction ac-
curacy remained practically stable with less than 50% of ran-
domly selected data points removed, and then started to drop
significantly, if sizes of data sets were further reduced (e.g.,
for Tissue13 dataset with 9637 proteins, the prediction accuracy
changes little until the reduced dataset contains at least 5000 pro-
teins, but can start to drop rapidly, if smaller size subsets are
chosen).
We also assessed the stability ofR2

Davg over different runs (from
ten runs in total for each dataset), obtaining standard deviation
(SD) values ranging between 0.04 and 0.06 for the different pre-
dictionmodels and datasets, showing that the predictions are sta-
ble. The R2 values shown here represent averages over these ten
test runs. For the complete data of all experimental results cover-
ing all tissues and cell lines see Supporting Information.
As one can observe in Figure 2, all the DL models (apart from

Randomised) clearly outperformed LR. For the best prediction
model RNA+GO+KW, the ratio of gene pairs from all samples
that could be predicted with theR2(g, t) score of at least 0.5 ranged
from 72% (NCI60) to 77% (Tissue29), and from 51% to 59% in the
case of the 0.8 score threshold. As a rough approximation, these
R2(g, t) thresholds can be interpreted as correlations of 0.7 and
0.9, respectively.
Note that for R2

avg (g), similar percentages of proteins reached
a 0.5 threshold, but percentages decreased for larger thresholds
(34% to 49%, for scores of 0.8). Notably, similar behavior patterns
persisted for all prediction models and all three human datasets.
A possible explanation for this is that for different tissues or

cell lines, the highest prediction accuracy is achieved on the dif-
ferent set of genes. Figure 3 shows the relationship between the
density of relative variability of protein concentrations among tis-
sues (SD divided by the mean protein abundance values) and the
prediction accuracy R2(g, t) for the Tissue29 dataset.
A modest trend could be observed in the results: Better predic-

tions were obtained for proteins with larger abundance variabil-
ity between different tissues. A possible explanation is that the
concentrations of such proteins are more affected by the levels
of RNA expression and the accuracy of the experimental quan-
tification. The figure also shows that better predictions were ob-
tained for proteins with lower abundances. Overall, our results
show that the abundances of proteins not measured experimen-
tally can be predicted in silico from gene annotations and RNA
expression values of the respective genes.

3.2. Predictive Value of Specific Annotation Terms

Since protein abundance prediction accuracy improved with GO
and KW functional annotations, we conclude that this context
information plays a role in the estimation. Therefore, we ex-
plored if there are particular sub-categories of genes that can
be predicted with greater accuracy than others. Focusing on the
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Figure 2. Percentages of genes (on the y axes) that can be predicted with R2 scores above a certain level (on the x axes). Data are shown for all three
datasets, seven prediction models, and average scores R2(g, t) and R2avg(g). For briefness, only R

2 values within the range [0.0, 1.0] are shown (i.e., all

the curves eventually reach 100% mark, however, at a very low R2 values, ranging between −30 and −10).

Tissue29 dataset, we examined this in two ways. First, the av-
erage correlation for each functional GO or KW category was
calculated by comparing the values of each gene across the tis-
sues between the original experimental protein abundances and
the predicted values. Second, the mean absolute percentage er-
ror (MAPE) of the predicted versus experimental protein expres-

sion was calculated for all genes in each functional category. Fig-
ure 4 shows the GO and KW terms ranked by correlation and
MAPE. A wide range in the correlation scores and MAPE val-
ues between functional terms were found. The full table of an-
notational terms and their average correlation and MAPE can
be found in Supporting Information. The best correlating terms

Proteomics 2020, 20, 2000009 © 2020 The Authors. Proteomics published by Wiley-VCH GmbH2000009 (6 of 12)
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Figure 3. Representation of the relationship between variability of protein concentrations among tissues (SD divided by the mean value) and the pre-
diction accuracy R2(g, t) (a), and between prediction accuracy and protein abundance (b).

mostly relate to metabolism and high turn-over proteins, which
are strongly regulated at the transcriptional level. The poorest
correlating terms contained proteins which are known to be dif-
ficult to experimentally quantify using MS, such as transmem-
brane proteins. This finding followed the general pattern ob-
served in previous comparisons between the proteome and the
transcriptome.[9–11]

We also found some evidence that some high abundance
errors and poor correlation values found could in part be at-
tributed to the accuracy of the experimental protein detection
and quantification. An interesting example is the “olfaction” term
(GO:0004984). These proteins (olfactory receptors, which are
present in olfactory receptor neurons and are responsible for the
sense of smell) are notoriously difficult to detect and due to their
well-known tissue specificity, it is highly likely that these repre-
sent experimental false-positive identifications rather than poor
predictions.[24] When more stringent peptide confidence mea-
sures were applied, as it was the case in the original analysis of
this dataset, these proteins were removed from the dataset. The
high error rate can be attributed to the fact that the predicted
abundance is very low (less than 0.1, suggesting the protein is
not present in these tissues), whereas the experimental values
were significantly higher and probably incorrect. Another cate-
gory of proteins showing poor correlation are serum proteins,
which suggests contamination by blood in some experimental
tissues.

3.3. Model Transferability to Mouse

Next, our aim was to test whether the models were transferable
from human to a different species. In the case of the mouse
datasetMouseTissue3, fourDLmodels were tested. The results are
summarized in Table 2 and Figure 5. The results were similar to
those found in human data with R2

Davg = 0.45 for the RNA+GO
model in comparison to a 0.3 value obtained for the LR model.
The percentages of genes predictable with scores above 0.5 and
0.8 were 70% and 50%, respectively (62% and 40% for LR). Nev-
ertheless, predictions arising from GO annotations only gave re-
sults similar to LR, which could be explained by the sparser GO
annotations available for mouse.
We used the 𝛼(g) and 𝛽(g) coefficients assigned to genes by

DL network trained on human data (specifically for the human
Tissue29 dataset for two tissues—liver and testis) and applied
these to homologous genes in mouse tissues. Such homologues
were available for 5388 of 6591 mouse genes measured in the
MouseTissue3 dataset.
Unexpectedly, we observed that the coefficient computed by

the RNA+GOmodel trained on human data provided better pre-
dictions than the same model trained on the mouse dataset, in-
dicating that models derived from larger sets with more compre-
hensive GO annotations appear to be applicable to homologous
genes. No-tissue specificity of the gene specific coefficients was
observed. The best predictions were obtained from coefficients

Proteomics 2020, 20, 2000009 © 2020 The Authors. Proteomics published by Wiley-VCH GmbH2000009 (7 of 12)
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Figure 4. Comparison of the predictive accuracy within the different functional annotation categories. For this analysis, the average Pearson’s correlation
value between the predicted and observed protein abundances across the 29 human tissues in the Tissue29 dataset was computed. a) The plot displays
functional annotation terms ranked by their average gene correlation across the tissues. b) The plot displays the MAPE values for each term. The terms
were filtered to only include those ones containing at least five identified proteins that had values for at least 25% of the tissues. The ten best and worst
terms in the two analyses (with a minimum of 30 genes represented by the term) are shown on each plot.

computed by the DL network without including tissue informa-
tion. In principle, this is consistent with observations from re-
lated work where such coefficients were assigned directly from
the measurements.[25,26] However, given that we used data from
only two common tissues, this does not allow us to reach reliable
conclusions. Tissue-specificity of expression of some genes has
been used to derive marker sets.[27] The challenge now is how
such tissue-related information can be extracted from available
gene annotation data.

4. Discussion

Deep learning approaches have recently been applied to predict
gene expression levels in a different context;[28] nevertheless
to the best of our knowledge, existing approaches for protein
abundance prediction focus on imputing partially missing values
or as is the case with the NCI-CPTAC DREAM proteogenomics
challenge, to infer proteomes in new samples from genomics
datasets. Our method is aimed at extrapolating the measured
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Table 2. The minimal, maximal, and average prediction accuracy for mouse datasets coming from mouse
gene expression values and/or GO annotations, and from the coefficients assigned to mouse genes by
training DL prediction models on the human Tissue29 dataset.

Model R2Min R2Max R2Tavg R2Davg

LR 0.208 0.385 0.304 0.306

GO 0.194 0.337 0.262 0.264

RNA+GO 0.338 0.546 0.450 0.451

HM_RNA+KW 0.415 0.551 0.475 0.473

HM_RNA+GO 0.424 0.548 0.494 0.492

HM_RNA+GO+KW 0.445 0.577 0.515 0.513

Figure 5. Percentages of mouse genes (on the y axes) that can be predicted above R2 thresholds (on the x axes) within the range [0.0, 1.0] using R2(g, t)
and R2avg(g) scores. Data are shown for four prediction models as well as for the HM_RNA+GO+KW “model”, which applied coefficients computed
from the human Tissue29 dataset to predict abundance of homologous mouse proteins on the basis of RNA expression data alone.

experimental values to unobserved proteins (Figure 1). One
previous protein abundance prediction approach used linear
regression applied to RNA levels measured for 512 genes in
Daoy medulloblastoma cells.[29] The authors reported accuracy
R2 = 0.29. A higher prediction accuracy R2 = 0.41 was reported
in a dataset of 5279 genes in the NIH3T3 mouse fibroblast cell
line.[30] The predictions here were based on gene-specific coeffi-
cients that were assigned based on measurements of translation
and degradation rates at three different timepoints. The authors
also reported that these rates were similar for homologous
genes, which is consistent with our observation that models
trained on human data can be applied to homologous mouse
genes. In comparison, the R2 values that we obtained using
the RNA+GO+KW model for all the four datasets exceeded the
reported R2 = 0.41; moreover, our assignment of gene specific
coefficients are obtained purely in silico from GO and KW
annotations rather than from custom-designed lab experiments.
Another study involving 9 human cell lines and 11 tissues[25]

assigned gene-specific coefficients based on RNA-to-protein con-
version rates. This approach achieved a high prediction accuracy
R2 of up to 0.8, but only for a small set of 55 “hand-picked” genes.
In such cases of tailored small sets, higher accuracy should be
expected.

Recently, an NCI-CPTAC DREAM proteogenomics challenge
has focused on the prediction of protein expression levels across
samples from cancer patients, using genomics data combined
with protein annotational information.[12,13] Various predictive
linear and non-linear models were evaluated using isobaric la-
beled (iTRAQ) proteomics and RNAseq datasets generated by
CPTAC. These models attempt to infer protein expression sam-
ples based on the transcript abundances supplemented with pro-
tein features such as interactions and conservation attributes. Of
the various approaches they examined, the best method was an
ensemble approach using a random forest algorithm and achiev-
ing an R score of 0.53, which is comparable to what we achieve
for the prediction of unobserved proteins.[13]

As noted, our approach is aimed at extrapolating label-free
global protein expression values to the full proteome, including
the experimentally unobserved proteins, and thus our results are
not directly comparable with these existing methods.[31] Never-
theless, we can achieve the accuracy of R2 scores between 0.46
and 0.54.
In our study, we have solely applied our method to label-free

MS proteomics datasets that used MS1 intensity-based quantifi-
cation (iBAQ). This particular type of experimental protein ex-
pression data was selected because currently it is the most widely
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used approach for protein expression data in public databases.
We have opted to use datasets analyzed using MaxQuant, as it re-
flects a prominent workflow in label-free proteomics. Obviously,
our predictions of the true protein abundances are only as good
as the data for the experimentally measured proteins. There are
a myriad of methods and tools for assessing the true protein
abundance in proteomics experiments; however, there are lim-
ited ways to assess the accuracy of protein quantification on a
large scale without using synthetic or purified protein standards.
Although some benchmarking proteomics datasets have been
generated, the complication for using them in our approach is
that data are needed with proteins behaving in context of their bi-
ological annotations, and with a suitable paired RNAseq expres-
sion dataset. To the best of our knowledge, such a benchmark-
ing dataset does not yet exist. As it is essential for our method
that meaningful protein annotations and complementary RNA
expression data are available, the application of our method to
peptide-level quantifications would be problematic.
In theory, since the neural network is trained on each dataset

independently, our method could potentially be extended to sup-
port other experimental methodologies for protein quantification
such as labeledMS approaches and absolute quantification exper-
iments. However, further testing and optimization would likely
be needed in these cases, which are beyond the scope of this
study.
In most applications of our method, an independent model

will be trained for each dataset for which values are to be pre-
dicted. However, we have examined the possibility of using a
model trained on one dataset to predict values in a different exper-
iment and demonstrated that ourDLmethod provides a good pre-
dictive model across datasets, even across different species, such
as human and mouse (exploiting gene homology mappings). In
fact, training the DL on larger more comprehensive datasets and
applying it to a smaller dataset can yield better accuracy in the
prediction. For instance, the model trained on a larger human
dataset transferred to mouse gave a better prediction of values
than the model trained on a small mouse dataset. It has to be
noted that the prediction accuracy varies between proteins; more-
over, the particularly difficult-to-predict proteins depended on
the biological sample. Nevertheless, the prediction models were
relatively stable across datasets and a model learned from one
dataset could be applied to predict unobserved proteins in an-
other dataset.
It may seem surprising that GO or KW annotations are bet-

ter predictors of the unobserved protein abundances than the
RNA measurements. A possible explanation for this is that gene
annotation terms provide links between proteins that have re-
lated functions, are parts of the same protein complexes, or are
co-regulated and thus are present in similar samples in similar
abundances. It is important to note, however, that when com-
bined with information coming from gene annotations, RNA
measurements improved the predictions accuracy significantly.
We have investigated the performance of the method for dif-

ferent protein subsets by looking at the correlation of predicted
protein values to experimental protein values across tissues, tak-
ing the average correlation for each annotational term. Addition-
ally, we calculated the average MAPE for proteins in each subset.
These subsets of proteins showed a range of accuracies between
the different functional annotational terms. There appear to be

two factors driving the extremes in accuracy between terms. The
best correlating and most accurately predicted proteins appear
to include annotational terms, such as metabolism and immune
response. Such proteins are known to be strongly regulated at
the transcriptional level.[11] This is explained by the fact that the
predictive power of the RNAseq values is at its best for these cat-
egories and is significantly boosting the prediction accuracy for
these proteins.
For the least accurate functional categories, there seems to be

a different explanation. These terms generally reflect categories
of proteins that would correlate very poorly with RNAseq values.
These include tissue-specific protein sets, potentially proteins
coming from contaminations in the sample, or proteins that are
difficult to detect by experimental MS approaches. Additionally,
one key example we can note is olfaction-related proteins, which
are notoriously difficult to identify via MS and have very high
tissue specificity. However, olfactory receptors have been iden-
tified in the datasets used here. These are highly likely to be false
positives, especially since these identifications are not present in
the original analyses of these experiments, where stricter pep-
tide confidence filtering was applied. These proteins display very
low accuracy between predicted and experimental values. In this
sense, the predicted expression is more realistic than the ob-
served experimental values. This demonstrates the power of our
method for identifying aberrant protein expression where some
confounding factors, such as false-positive identifications, vari-
ant proteins, and proteinmodifications, are impacting the experi-
mental quantification. Due to the nature of the predictivemethod
we are applying, a protein will always be given a predicted expres-
sion value, and hence there will always be a background noise
even if the protein is not biologically present in that sample. This
is worth noting when the predictions are applied to truly unob-
served proteins, and a minimum predicted expression threshold
should therefore be imposed.
To test our predictions, we excluded 10% of the proteins in

each round of training and then built 100 different models for
each dataset and only looked at the predictive accuracy of pro-
teins masked from the training set. This was done to enable the
investigation of the accuracy of predicted proteins unobserved
in all samples, extending the proteome coverage, based on the
RNAseq and the functional annotational relationships to the rest
of the proteomics experimental data. However, this approach is
not suitable for examining the accuracy of the imputation for par-
tially missing proteins. Although the model can be applied for
this purpose, we have not explored this application here and can
only hypothesize that performance would not necessarily be bet-
ter than existing approaches. To take full advantage of the deep
learning methodology for imputation, further optimization and
testing would also be required.
The fact that a model trained using the human data pre-

dictedmouse proteins better than using themodel trained on the
mouse model demonstrates that the accuracy of the predictions
can be improved by having a larger input dataset with more com-
plete functional annotation. To assess the accuracies of any given
model when applying themethod to new datasets, a similar cross
validation strategy should be implemented, leaving a fraction of
the data out of each model over multiple iterations. This should
provide a good indication for the overall accuracy for unobserved
proteins in any particular functional category.
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Given that our protein abundance measurement predictions
are tested by masking a subset of the proteins that actually are
measured experimentally, the question as to what extent our con-
clusions could be reliably transferred on the truly unobserved
proteins can arise. Is it possible that the truly unobserved pro-
teins have properties different from those of the measured ones
and therefore our computational predictions are not reliable?
This possibility is difficult to test directly; however, the observa-
tion that ourmodels can be transferred between datasets with dif-
ferent sets of proteins absent in different experiments provides
indirect evidence that our predictions do apply to all proteins. We
also highlight that in the assessment of the accuracy of annota-
tions, the predicted values can actually be used to expose aberrant
protein abundance values (i.e., in the case of the olfactory recep-
tors) and situations where a false identification or quantification
has occurred in the experimental data.
In our computational study to train DL networks, we specifi-

cally use GO or UniProt KW as contextual information; in prin-
ciple, our method allows for using any context information that
can be associated with genes, for instance, protein sequence, do-
main features, and/ or KEGG pathways, among others. Taken to-
gether, this study demonstrates that our method can be used to
estimate the abundance for proteins that are unobserved in label-
free MS experiments and to reveal instances where measure-
mentsmay not be reliable. This provides greater coverage of path-
ways and protein networks for improved downstream analysis.
Additionally, it can highlight unobserved or aberrantly expressed
proteins with biological relevance that can be targeted in further
experiments.

5. Associated Data

The datasets used for the study are obtained from the
following Expression Atlas datasets: Tissue13 from E-
PROT-1 (coming from PRIDE datasets PXD000561 and
PXD002967) and E-MTAB-2836 (RNA expression); NCI60
from E-PROT-25 (PRIDE dataset PXD005940) and E-MTAB-
2770 (RNA expression); Tissue29 from E-PROT-29 (PRIDE
dataset PXD010154) and E-MTAB-2836 (RNA expression);
MouseTissue3 from E-PROT-13 and E-GEOD-43721 (RNA
expression). Pre-processed datasets and the developed soft-
ware are available at GitHub: https://github.com/IMCS-
Bioinformatics/DLNetworkForProteinAbundancePrediction.
More details about datasets and software are provided in
Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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