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Neurotoxicity can be detected in live microscopy by morphological changes

such as retraction of neurites, fragmentation, blebbing of the neuronal soma

and ultimately the disappearance of fluorescently labeled neurons. However,

quantification of these features is often difficult, low-throughput, and imprecise

due to the overreliance on human curation. Recently, we showed that

convolutional neural network (CNN) models can outperform human curators

in the assessment of neuronal death from images of fluorescently labeled

neurons, suggesting that there is information within the images that

indicates toxicity but that is not apparent to the human eye. In particular,

the CNN’s decision strategy indicated that informationwithin the nuclear region

was essential for its superhuman performance. Here, we systematically tested

this prediction by comparing images of fluorescent neuronal morphology from

nuclear-localized fluorescent protein to those from freely diffused fluorescent

protein for classifying neuronal death. We found that biomarker-optimized

(BO-) CNNs could learn to classify neuronal death from fluorescent protein-

localized nuclear morphology (mApple-NLS-CNN) alone, with super-human

accuracy. Furthermore, leveraging methods from explainable artificial

intelligence, we identified novel features within the nuclear-localized

fluorescent protein signal that were indicative of neuronal death. Our

findings suggest that the use of a nuclear morphology marker in live

imaging combined with computational models such mApple-NLS-CNN can

provide an optimal readout of neuronal death, a common result of

neurotoxicity.
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Introduction

Neuronal death is frequently used to assess neurotoxicity in vitro

(Kepp et al., 2011; Linsley et al., 2019a). A plethora of cell death

indicators, dyes, and stains have been implemented to measure

neuronal death in the assessment of neurotoxicity, yet application of

these reagents in live microscopy can introduce artificial toxicity.

Recently, we established a novel family of genetically encoded death

indicators (GEDI) that acutely mark a stage at which neurons are

irreversibly committed to die (Linsley et al., 2021a). TheGEDIbiosensor

was engineered to signal only when intracellular Ca2+ reaches a level at

which the cell has irreversibly committed to death, providing

unparalleled accuracy and specificity. However, the GEDI approach

has two main limitations. First, it requires that cells be transfected with

the GEDI reporter, and second, the GEDI construct emits in two

fluorescent channels, which limits the use of co-expressed biosensors.

To address these limitations we previously developed analysis

techniques that are informed by GEDI biosensors to classify and

quantify neuronal death using images of fluorescent neuronal

morphology alone (Kim et al., 2014). Using convolutional neural

networks (CNNs), we generated generalizable models that

learned the signature of dead cells from a quantified label

derived from the GEDI biosensor (Kim et al., 2014). Rather

than generating large, labeled datasets of images though human

curation and/or annotation, as is usually required for training

CNNs (Hughes et al., 2018; Sullivan et al., 2018), we used

quantification of the GEDI signal directly as a classification

label, a technique we named biomarker-optimized

convolutional neural networks (BO-CNNs). The resulting

model showed superhuman accuracy at live/dead

classification, and dramatic improvement in the speed of

analysis.

Cell death is thought to occur when a cell has either lost

membrane homeostasis or when the nucleus disintegrates

(Galluzzi et al., 2009; Galluzzi et al., 2018). When membrane

homeostasis is lost, a cell displays cytoplasmic shrinkage and

plasma membrane blebbing and vacuolization, morphological

alterations that are commonly used to classify cell death (Galluzzi

et al., 2018). In contrast, labels that bindDNAupon disintegration of

the nucleus and reflect chromatin condensation (pyknosis) or DNA

fragmentation (karyorrhexis), such as DAPI or propidium iodide,

often reflect a distinct signal from cell biology that can be used to

classify the subroutine of cell death (Hou et al., 2016). By recording

when extracellular Ca2+ has permeated into a cell to an irreversible

level, the GEDI biosensor effectively reports loss of membrane

homeostasis (Linsley et al., 2021a). Intriguingly, BO-CNNs

trained to the GEDI biosensor appeared to use signal

corresponding to the membrane and the nucleus to make live/

dead classifications, despite the nuclear signal being difficult to

distinguish by eye (Linsley et al., 2021b). This suggested that the

nuclear morphology signal may actually be ideal for live/dead

classification, perhaps by reflecting the collapse of the nuclear

envelope. Nuclear morphology signal is often preferable to cell

morphology signal in live imaging experiments, particularly when

tracking cells in dense cell culture or tissue (Hadjantonakis and

Papaioannou, 2004; Kim et al., 2014; Tomer et al., 2015; Alladin

et al., 2020), and the ability to detect death based on nuclear

morphology could enable analysis of toxicity in these

experiments as well.

Here, we compared the informativity of nuclear and

morphology signals for indicating irreversible death by

generating a novel BO-CNN trained to detect death in cells

expressing nuclear-targeted mApple fluorescence (mApple-NLS-

CNN). We found that after neuronal death, nuclear-localized

fluorescent protein showed unique features from non-targeted

mApple, and the mApple-NLS-CNN was better than humans at

detecting death and rivaled the performance of BO-CNNs

trained with non-targeted mApple (mApple-CNN). Nuclear-

localized mApple (mApple-NLS) escaped from the nuclear

envelope into the cytosol during death, filling out the

neuronal morphology and highlighting membrane distortions.

Relatedly, the mApple-NLS-CNN utilized a decision strategy to

detect death distinct from that of the mApple-CNN: it focused on

a previously unidentified, distinct, small punctate signal within

the nucleus, a phenomenon associated with death that had not

been previously described. These data suggest that nuclear

morphology is a highly informative signal for identifying

neuronal death and neurotoxicity.

Materials and methods

Primary neuron isolation and culture

Primary mouse neurons were prepared as previously

described (Skibinski et al., 2017; Linsley et al., 2021a; Linsley

et al., 2021b). In short, the cortex from prenatal mice at

embryonic days 18–20 was dissected and dissociated in

dissociation medium (DM) with kynurenic acid (1 mM final)

(DM/KY) and treated with papain (100 U, Worthington

Biochemical) and trypsin inhibitor solution (15 mg/ml trypsin

inhibitor; Sigma). The cells were then gently resuspended into

single neurons in Opti-MEM (Thermo Fisher Scientific) and

glucose medium (20 mM), and were plated at 125,000 cells per

well of a 96-well plate. Cells were maintained using a Neurobasal

growth medium with 100 × GlutaMAX, B27 supplement (all

from Gibco), and Pen/Strep. All animal experiments complied

with the regulations of, and the protocol was approved by, the

Institutional Animal Care Use Committee (IACUC) of the

University of California, San Francisco (UCSF).

Plasmid transfection and staining

Mouse primary cortical neurons were transfected with 0.1 ug

plasmids per well (96-well plate) and Lipofectamine 2000 on day
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4 of culture. The plasmids hSyn-GC150-p2a-mApple and hSyn-

GC150-3xNLS-p2a-mApple-3xNLS were previously described as

a genetically encoded death indicator (GEDI) (Linsley et al.,

2021a). Hoechst 33,342 Ready Flow™ Reagent (Thermo Fisher

Scientific) was added to label DNA in live cell imaging.

Automated time-lapse imaging, image
processing and quantification

Image processing and GEDI ratio quantification was

previously described (Kim et al., 2014; Linsley et al., 2021a).

To induce neuronal death, neurons were treated with 0.05 mM L-

Glutamic acid monosodium salt diluted in NB media. Cells were

imaged every 8 h after treatment using an automated time-lapse

imaging system. The captured images were processed using

custom-built scripts within a custom Galaxy bioinformatic

cluster (Linsley et al., 2019b). In summary, the Galaxy

bioinformatic cluster links image processing modules as a

workflow, and can process image datasets in a batch. Image

processing modules include background subtraction of the

median intensity of each image, aligning images across

longitudinal time points, segmenting individual neurons and

tracking, extracting cell data including fluorescence intensity

and cell size, and making crops for individual cells where the

centroid of the cell is positioned at the center. To calculate the

GEDI ratio, the mean intensity of the GEDI fluorescence signal

(GC150 or GC150-NLS) was normalized to the morphological

fluorescence signal (mApple or mApple-NLS). Live and dead

cells were labeled in longitudinal imaging sets using empirically

calculated GEDI thresholds. Crops for individual cells in the

morphology channel were used for neural network model

training. Precision-Recall curves were plotted using R. Group

comparisons (t-test and paired t-test, Wilcoxon signed-rank test

and ANOVA) were calculated in GraphPad Prism.

Training GEDI-CNNs

BO-CNNs were trained using PyTorch (https://github.com/

drewlinsley/robo_ms_ai). Deep residual convolutional neural

networks (ResNets), specifically the 18-layer ResNet, were

used as the basic architecture in our experiments (He et al.,

2015), which are the standard deep learning model for computer

vision tasks like classification. Models were initialized with

weights pre-trained on ImageNet and downloaded from the

TorchVision library in Pytorch. Models were trained using

batches of 32 images, a 1e-3 learning rate and the Adam

optimizer for 200,000 steps of training (Kingma and Ba,

2014). In total, 6,778 images of either mApple or mApple-

NLS transfected cells were used to train, validate, and test our

models. In both cases, images were randomly allocated into non-

overlapping sets for training (5,422 cells per group), validation

(678 cells per group), and testing (678 cells per group). The best-

performing weights were selected according to the loss score

measured on the validation set. All results reported in the

manuscript reflect CNN performance on the testing set.

GEDI-CNN GradCAM

Guided GradCAM, which produces an interpretable map of

the importance of visual features for a given image, was used in

order to identify morphological features driving our models’

decisions and was implemented through the Captum library

(https://captum.ai) in PyTorch (Selvaraju et al., 2016). For the

ResNet18, the denoising-gradient mask was computed at “layer

two” of the model.

Curation tools

Curation was performed using a custom Fiji script that runs a

graphical interface with a curator, displaying a blinded batch of

cropped mApple or mApple-NLS morphology images one at a

time while prompting the curator to indicate whether the

displayed neuron is live or dead with a keystroke

(ImageCurator.ijm).

Results

Nuclear-localized fluorescent protein
shows distinct features after death

In prior work, we used a genetically encoded death indicator

(GEDI) as a supervision signal for a BO-CNN, training it to

classify cell death from images of GFP-labeled cells. We named

this instance of a BO-CNN the GEDI-CNN (Kim et al., 2014).

The GEDI-CNN holds several advantages over the conventional

GEDI biosensor, including that it only requires an EGFP

morphology signal for use. Multiple GEDI biosensors have

now been developed with different physiological properties

and subcellular localizations. Here, we asked whether we

could improve GEDI-CNN performance by using alternative

GEDI biosensors, such as those with mApple rather than GFP as

the fluorescent morphology indicator, with GC150 rather than

RGEDI, which has a slightly higher Ca2+ binding affinity, as the

death indicator, and with biosensors that were nuclear-targeted

(Figures 1A–C).

To train GEDI-CNNmodels with different GEDI biosensors,

primary rodent neurons were transfected with the non-targeted

GC150-P2a-mApple or the nuclear-targeted GC150-NLS-P2a-

mApple-NLS, exposed to 0.05 mM glutamate to trigger cell

death, and longitudinally imaged over 24 h. Glutamate is the

most common neurotransmitter in the brain, but excess
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FIGURE 1
mApple andmApple-NLS showdistinctmorphological features that define death. (A) hSyn1-GC150-P2A-mApple (top) and hSyn1-GC150-NLS-
P2A-mApple-NLS (bottom) GEDI biosensor expression plasmids contain a green fluorescent GC150 protein, a P2a “cleavable peptide,” and an
mApple protein that either freely diffuses throughout the intracellular space of the neuron or is targeted to the nucleus via a nuclear localization
signal motif (NLS). Normalizing the GC150 signal to the mApple signal (GEDI ratio) at a single-cell level provides a ratiometric measure of a
“death” signal that is largely independent of cell-to-cell variation in transfection efficiency and plasmid expression (Linsley et al., 2021a). (B)
Schematic of the typical GC150 and mApple overlay signal of a live, dead, and 24 h dead neuron expressing GC150 GEDI (top) and the morphology
signal alone (bottom). As the green GC150 signal increases, neurites fragment and contract and the cell body rounds up. (C) Schematic of the typical
GC150-NLS and mApple-NLS overlay signal of a live, dead, and 24 h dead neuron expressing GC150-NLS GEDI (top) and the morphology signal
alone (bottom). As the green GC150-NLS signal increases, nuclear mApple signal leaks out of the nucleus and into the fragmenting neurites until a
rounded cell remains. (D) Representative timelapse imaging of a neuron expressing GC150 GEDI before and after death due to 0.05 mM Glutamate
exposure. High contrast images of mApple morphology show retraction of neurites (white arrowheads), and a gradual rounding of cellular
morphology. (E) Representative timelapse imaging of a neuron expressing GC150-NLS GEDI before and after death due to 0.05 mM glutamate
exposure. High contrast images of mApple morphology show escape of nuclear-localized mApple signal into neurites (white arrowheads). Low
contrast images ofmApplemorphology show small puncta formwithin themorphology of the cell (green arrowhead). Scale bar = 10 μm. (F) Average
area of fluorescence of neurons expressing mApple before and after treatment with NaAz to induce death. ANOVA with Dunnett’s multiple
comparison test to pretreatment ****p < 0.0001. (G) Average area of fluorescence of neurons expressing mApple-NLS before and after treatment
with NaAz to induce death. ANOVA with Dunnett’s multiple comparison test to pretreatment ****p < 0.0001. (H) Mean zero-shot testing of GEDI-
CNN trained against RGEDI-P2a-EGFP (Kim et al., 2014) on batches of 50 images of cells expressing mApple and mApple-NLS. One sample t- and
Wilcoxon test from theoretical mean of 50% ****p < 0.0001, n.s. not significant.
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glutamate is toxic to neurons and the hypersensitivity of

specific subsets of neurons to glutamate toxicity is

associated with neurodegenerative disease (Zhou and

Danbolt, 2014; Lewerenz and Maher, 2015). In both sets of

transfected neurons, GC150 signal rapidly increased after

glutamate exposure (Figures 1D,E). Morphological signals

of neuronal degeneration have been well characterized

(Cooper et al., 2017; Sherman and Bang, 2018; Linsley

et al., 2019a). In GC150-P2a-mApple transfected neurons,

the cytoplasmic mApple morphology signal recapitulated

classical signs of degeneration after glutamate exposure,

such as retraction of neurites and subsequent balling up of

the soma (Figure 1D).

The changes in nuclear-localized fluorescence indicative of

neurodegeneration have not been previously defined.

Unexpectedly, we observed abrupt appearance of fragmented

neurites in cells expressing mApple-NLS following glutamate

treatment (Figure 1E; Supplementary Figure S1). Moreover, in

contrast to the area of the non-targeted mApple signal, which

gradually shrunk in size after cell death, the nuclear-localized

mApple signal showed a significant enlargement of area after

death (Figures 1D–G). Taken together, this suggests that upon

cell death the mApple-NLS leaks out of the nuclear envelope and

into the soma and neurites. Additionally, in many cases a small

dense accumulation of mApple-NLS appeared after death

(Figure 1E; Supplementary Movie S1) that was visible only

FIGURE 2
mApple-NLS-CNN models are accurate in classifying live or dead neurons based on nuclear morphology. (A) Illustration of GEDI ratio of each
live and dead cell expressing GC150 GEDI. Neurons were either untreated (control) or treated with 0.05 mM glutamate. Cells clustered under a GEDI
ratio of 0.1 were labeled “Live,”while above 0.25 were labeled “Dead” in the training dataset. The intermediate cells were discarded from the training
to minimize ambiguity. (B) Illustration of GEDI ratio of each live and dead cell expressing GC150-NLS GEDI. Neurons were either untreated
(control) or treated with 0.05 mM glutamate. Cells clustered under a GEDI ratio of 0.03 were labeled “Live,”while above 0.055 were labeled “Dead” in
the training dataset. The intermediate cells were discarded from the training to minimize ambiguity. (C,D) Schematic of mApple-CNNmodel (C) and
mApple-NLS-CNN (D)models. Live and dead neurons were labeled based on the irreversible increase of GC150 death indicator GEDI signal in a high
throughput manner. The CNN training dataset were generated using the neuronal morphologies (mApple-CNN) or the nuclear morphology
(mApple-NLS-CNN) of each labeled cell. A subset of testing datasets was used to test the model accuracy in distinguishing live and dead cells. (E)
Confusion matrices of mApple-CNN models. (F) Confusion matrices of mApple-NLS-CNN models. (G) Mean accuracy of mApple-CNN and
mApple-NLS-CNN across seven randomly sampled batches of 50 images, and the accuracy for each batch was compared between CNN and NLS-
CNN models (mean ± SD. Unpaired t-test n.s. not significant. One sample t- and Wilcoxon test from theoretical mean of 50% ****p < 0.0001).
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when the contrast of the image was set low, a phenomenon not

previously reported.

To underscore the difference in features associated with

death between mApple and mApple-NLS, we tested the

GEDI-CNN model trained on EGFP neuronal morphology

(Kim et al., 2014) on mApple and mApple-NLS images. The

model translated well to images of non-targeted mApple, but

scored no better than chance on images of nuclear-localized

mApple (Figure 1H). These data suggest that mApple and

nuclear-localized mApple each display distinct morphological

features associated with neurodegeneration, and a CNN model

trained with nuclear-localized mApple may be required to detect

neuronal death using the nuclear-localized mApple signal.

BO-CNNs can be trained from GC150-
P2a-mApple and GC150-NLS-P2a-
mApple-NLS

As the morphological features associated with nuclear

mApple are substantially different than those of cytoplasmic

mApple, we next wondered how BO-CNNs trained on GC150-

P2a-mApple and GC150-NLS-P2a-mApple-NLS datasets would

compare. Large datasets were collected from GC150-P2a-

mApple and GC150-NLS-P2a-mApple-NLS transfected

neurons, and the GEDI ratios were plotted to classify live and

dead neurons by their GEDI biosensor signal (Figures 2A,B). In

total, 6,778 cropped mApple images and 6,778 cropped mApple-

NLS images of neurons were sorted into live and dead categories

with clear GEDI ratio cut-off, and intermediate signal buckets

were not included in training the CNNmodel to avoid ambiguity,

as described previously (Kim et al., 2014). Next, neural network

models for mApple and mApple-NLS were trained with a ResNet

architecture, and were evaluated for accuracy (Figures 2C–G).

Both mApple-CNN and mApple-NLS showed significant

accuracy on a balanced dataset with similar degrees of overall

accuracy (Figure 2G). These data demonstrate that BO-CNN

live/dead classifier models can be effectively trained on mApple

and nuclear-mApple signals.

Live-dead BO-CNN developed with
nuclear fluorescent protein shows
superhuman accuracy

To test how well each model performs overall, we next

compared their live/dead classification accuracy against that of

human curators. Previously, we showed that GEDI-CNNmodels

trained against EGFP morphology signal output live/dead

classification with superhuman accuracy and speed (Kim

et al., 2014). Similarly, the mApple-CNN achieved

significantly higher accuracy than trained human curators,

even with a much smaller training data set of mApple GEDI

images (152,242 for GEDI-CNN vs. 8,132 for mApple-CNN)

(Figures 3A,B). The mApple-NLS-CNN also performed with

significantly better accuracy than human curators with the

same smaller sized training set (Figures 3C,D). These data

suggest BO-CNNs can be used to capture the unique

morphological features marked by the nuclear-localized

mApple signal.

mApple-NLS-CNN GradCAM highlights
key features for classification of death in
nuclear-mApple morphology

To explore which features of nuclear-localizedmApple are most

associated with neuronal death and with mApple-NLS-CNN

classification accuracy, we used guided gradient-weighted class

activation mapping (GradCAM), which we used previously to

probe the decisions of the GEDI-CNN (Kim et al., 2014).

GradCAM produces an interpretable map of the importance of

visual features for a given image by deriving a gradient of the CNN’s

evidence for a selected class (i.e., dead) (Kim et al., 2014; Selvaraju

et al., 2016). We generated GradCAM feature importance maps for

both live and dead decisions for mApple-NLS-CNN, and compared

them to the original mApple-NLS morphology images to map their

localization. In examples of images correctly classified as live, the

GradCAM signal typically lined the nuclear membrane (Figures

4A,C). In contrast, in examples correctly classified as dead, the

GradCAMsignal typically localized to either the dense accumulation

of mApple signal visible when the image contrast was low or to

fragmented neurites visible when the image contrast was set to high

(Figures 4B,C). To identify the source and localization of the

accumulated mApple signal, we performed a time-lapse

experiment with GC150-NLS-P2a-mApple-NLS transfected

neurons live stained with Hoechst 33,342 dye, a membrane

permeable dye that binds DNA. Patterns of Hoechst 33,342 dye

also change when cells die reflecting nuclear condensation, and have

also been used to analyze cell death (Supplementary Figure S2)

(Crowley et al., 2016). DensemApple accumulations co-stained with

Hoechst 33,342, indicating themApple accumulations coincide with

DNA condensation that occurs during apoptotic cell death (Toné

et al., 2007) (Figure 4D). These data suggest that mApple-NLS-CNN

recognizes unique features of nuclear-localized mApple to generate

live/dead classifications.

Discussion

Accurate detection of neuronal death is important for

assessing neurotoxicity. Using GEDI biosensors, we trained

two novel CNNs, mApple-CNN and mApple-NLS-CNN, that

detect cell death with superhuman accuracy by identifying

morphological features related to cell death, despite receiving

no explicit supervision to focus on those features. Using the
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interpretative artificial intelligence technique GradCAM on

mApple-NLS-CNN, we identified an accumulation of nuclear

mApple signal associated with death that has not previously

described. Our results demonstrate that nuclear-localized

fluorescent protein signal can be used as a readout for

neuronal death, enabling highly sensitive single-cell analyses

of nuclear signals at large scales.

The use of a nuclear-localized signal holds several advantages

over cell morphology for live imaging. First, in dense tissue,

segmentation of individual nuclei can be easier than that of

individual cells, because the cytoplasm of each cell spatially

separates one nucleus from another. Second, most cell

tracking algorithms operate on temporal-spatial separation

between cells, and the extra spatial separation helps maintain

separation of cell tracks (Ulman et al., 2017). Third, in contrast to

neurons, which are irregularly and variably shaped and show

incredible diversity in the number and size of neurite projections,

nuclei all have an oval shape and are consistent in size, making

them more amenable to automated segmentation. Fourth,

nuclear-localized signals are more flexible than cytoplasmic

markers for multiplexing with other biosensors to probe for

phenotypes of interest. However, nuclear-localized fluorescent

protein has not previously been used as an indicator of cell death

and toxicity. Indeed, we find that when neurons degenerate,

changes in their overall morphology, such as neurite retraction

and fragmentation and rounding of the soma, are easy to spot,

whereas changes in nuclear-localized fluorescent protein are

arguably more subtle (Figures 1D,E). Nevertheless, our data

FIGURE 3
mApple-NLS-CNN models are more accurate than human curation. (A) Mean accuracy of mApple-CNN and five human curators across
7 randomly sampled curation batches of 50 images. Paired t-test p < 0.05. (B) Precision-Recall curves formApple-CNN, five curators, and the curator
consensus. (C)Mean accuracy of mApple-NLS-CNN, and three human curators across 7 randomly sampled curation batches of 50 images each. (D)
Precision-Recall curves for mApple-NLS-CNN, three curators, and the curator consensus.
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indicate that key features—including an increase in area, the

leaking of nuclear fluorescence into neurites, and the appearance

of small dense accumulations—are equally strong indicators of

death compared to neuronal morphology. Furthermore, with the

availability of neural networks such as mApple-NLS-CNN to

boost the scale and speed of image analysis, the use of nuclear

morphology for detection of toxicity could be easily incorporated

into experimental design.

Membrane permeant dyes that bind DNA like Hoechst

33,342 are often used as nuclear morphology markers for live

cell imaging and have also been used as an indication of apoptotic

cell death (Crowley et al., 2016). However, there are several

practical advantages to the use of GC150-P2a-mApple-NLS or

mApple-NLS-CNN over Hoechst 33,342 for tracking live cells in

culture. First, Hoechst 33,342 stains all cell nuclei in cultures,

while GC150-P2a-mApple-NLS or mApple-NLS alone can be

specifically targeted to express in cell types of interest such as

with a neuron-specific promoter (hSyn1) used in this

manuscript, facilitating a readout of cell death from specific

cell types within a mixed culture. Second, Hoechst

33,342 only qualitatively distinguishes apoptotic cells from live

cells due to the altered appearance of condensed DNA in

apoptotic cells (Supplementary Figure S2) (Crowley et al.,

2016). In contrast, the ratio-metric readout from GC150-P2a-

mApple-NLS or the binary classification provided by the

mApple-NLS-CNN model output provide quantitative

readouts of death for each cell. Finally, some healthy cells

undergoing mitosis may also have condensed DNA (Errami

et al., 2013) and some cells can die by apoptosis in the

absence of nuclear fragmentation (Zhang et al., 2001), making

the Hoechst 33,342 signal difficult to use as an indicator of death

in some instances. Thus, GC150-P2a-mApple-NLS and mApple-

NLS-CNN have distinct advantages over the use of Hoechst

33,342 stain for reporting cell death in live cell imaging.

FIGURE 4
GradCAM highlights key features used for live-dead classification of mApple-NLS. (A) Representative images of three live neurons with nuclear
localized-mApple correctly classified by the mApple-NLS-CNN along with the corresponding positive GradCAM output for each image. Green
arrowheads denote nuclear envelope. (B) Representative images of three dead neurons with nuclear localized-mApple correctly classified by the
mApple-NLS-CNN along with the corresponding positive GradCAM output for each image. Red arrowheads denote small dense accumulation
of mApple. Yellow arrows denote fragmented neurites. (C) Illustration of important cell morphology pixels from GradCAM. Scale bar = 10 μm. (D)
Representative image of a single correctly classified dead neuron at low contrast mApple-NLS (top-left) co-stained with Hoechst 33,342 (top-
middle), and overlaid (top-right) with GradCAM (bottom-left) and GC150 (bottom-middle). An overlay of the high contrast mApple-NLS image with
Hoechst 33,342, the GradCAM signal, and GC150 is also included (bottom-right). Scale bar = 10 μm.
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One surprising finding in this study was the appearance of

small dense accumulation of mApple that appears after neuronal

death (Figures 1E, 4B–D–4D; Supplementary Figure S1). Because

this accumulation occurs within a backdrop of diffuse nuclear

mApple-NLS fluorescence, it is difficult to see by eye without

changing the contrast on the image. As this accumulation

appears to co-localize with condensation of DNA that occurs

during apoptosis (Toné et al., 2007), it is likely that this finding

reflects a shrinking of the nuclear envelope around the condensed

DNA, which concentrates mApple protein that cannot escape the

nuclear envelope during death. In previous work, we found that

the GEDI-CNN identified a signal within the nuclear region of

the morphology signal that contributed to its superhuman

accuracy at live/dead classification (Kim et al., 2014), and we

speculate that the dense accumulation of mApple-NLS observed

in this study and GEDI-CNN’s recognition of patterns of free

EGFP within the nucleus in our prior study represent the same

phenomenon. However, the GEDI-CNN failed to translate to the

mApple-NLS signal (Figure 1H), indicating that the nuclear

signals detected in EGFP- and mApple-NLS transfected cells

may be distinct. On the other hand, the size of nuclear-localized

mApple signal has a different scale than non-targeted mApple or

EGFP morphology signal (Figures 1F,G), and neural networks

are scale-invariant, so the size difference alone may limit the

ability to translate the GEDI-CNN from EGFP morphology

signal to mApple-NLS signal (Han et al., 2020). Either way,

this phenomenon within nuclear-localized fluorescence

represents a new and robust feature of death and toxicity in

neuronal cultures, and in combination with mApple-NLS-CNN

it may enable new discoveries and therapeutic approaches to

combat neurodegenerative disease.
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SUPPLEMENTARY FIGURE S1
Representative examples of death in cells expressing mApple-NLS. High and low
contrast imagesofsixdeadneuronsdemonstrating thesmalldenseaccumulation
of mApple (red arrows) and the presence of neurites (green asterisks).

SUPPLEMENTARY FIGURE S2
Representative examples of live and dead cells stained with Hoechst
33342. (A) Live cell expressing hSyn1-GC150-NLS-P2A-mApple-
NLS stained with Hoechst 33342. White arrow indicates Hoechst
33342 staining pattern. (B) Dead cell expressing hSyn1-GC150-
NLS-P2A-mApple-NLS stained with Hoechst 33342. White arrow

indicates Hoechst 33342 staining pattern. Yellow arrow indicates
dense accumulation of mApple. Scale bar = 10 μm.

SUPPLEMENTARY MOVIE S1
Timelapse movie of morphological and GC150 changes associated with
neuronal death. Timelapse movie of overlaid GC150-NLS and mApple-
NLS channels (top), low contrast mApple-NLS channel alone (middle),
and high contrast mApple-NLS channel (bottom) showing the onset of
GC150-NLS signal and corresponding dense accumulation of mApple
and appearance of neurites. Images were taken every 8 h. Scale bar =
10 μm.
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