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The epidermal growth factor receptor (EGFR) signaling
pathway is one of the most important pathways that
regulate growth, survival, proliferation, and differentiation
in mammalian cells. Reflecting this importance, it is one of
the best-investigated signaling systems, both experimen-
tally and computationally, and several computational
models have been developed for dynamic analysis. A map
of molecular interactions of the EGFR signaling system is a
valuable resource for research in this area. In this paper, we
present a comprehensive pathway map of EGFR signaling
and other related pathways. The map reveals that the
overall architecture of the pathway is a bow-tie (or
hourglass) structure with several feedback loops. The
map is created using CellDesigner software that enables
us to graphically represent interactions using a well-
defined and consistent graphical notation, and to store it
in Systems Biology Markup Language (SBML).
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Introduction

The epidermal growth factor receptor (EGFR) signaling path-
way is one of the most important pathways that regulate
growth, survival, proliferation, and differentiation in mam-
malian cells. It has been investigated in quite some depth, both
experimentally and computationally (Wiley et al, 2003), and
several computational models have been created to analyze its
dynamics (Kholodenko et al, 1999; Schoeberl et al, 2002;
Shvartsman et al, 2002). Further research is now needed to
improve the model by incorporating various intracellular
dynamics and expanding the scope where only a limited part of

the signaling system has been modeled (Kholodenko, 2003).
Recently, a consortium has been formed to specifically focus
on the receptor tyrosine kinase signaling system, and the need
for a shared model has been discussed. Despite its static
nature, a comprehensive map of molecular interactions would
serve as a useful reference, and greatly help research on EGFR
signaling.

General characteristics of the EGFR
signaling map

We manually constructed a comprehensive pathway map for
EGFR-mediated signaling (Figure 1) based on published
scientific papers. The map includes EGFR endocytosis
followed by its degradation or recycling, small guanosine
triphosphatase (GTPase)-mediated signal transduction such as
mitogen-activated protein kinase (MAPK) cascade, phospha-
tidylinositol polyphosphate (PIP) signaling, cell cycle, and G
protein-coupled receptor (GPCR)-mediated EGFR transactiva-
tion via intracellular Ca2þ signaling. The map was created
using CellDesigner (http://celldesigner.org/), a software
package that enables users to describe molecular interactions
using a well-defined and consistent graphical notation
(Funahashi et al, 2003; Kitano, 2003). The data of molecular
interactions are stored in Systems Biology Markup Language
(SBML; http://sbml.org/) (Hucka et al, 2003). Since SBML
is a standard machine-readable model representation format,
all the information can be used for a range of computational
analysis, including computer simulation.

The map is based on the molecular interactions documented
in 242 papers accessible from PubMed (see the list of
references for EGFR Pathway Map). It comprises 211 reactions
and 322 species. A ‘species’ is a term defined by SBML as ‘an
entity that takes part in reactions’ and it is used to distinguish
the different states that are caused by enzymatic modification,
association, dissociation, and translocation.

The species shown on the EGFR map can be categorized as
follows: 202 proteins, three ions, 21 simple molecules, 73
oligomers, seven genes, and seven RNAs. In the number of
species, eight degraded products and one unknown molecule are
also included. Among 202 protein species, we identified 122
molecules, among which are 10 ligands, 10 receptors, 61 enzymes
(including 32 kinases), three ion channels, 10 transcription
factors, six G protein subunits, and 22 adaptor proteins.

The reactions can be categorized as follows: 131 state
transitions, 34 transportations, 32 associations, 11 dissocia-
tions, two truncations, and one unknown transition. Among
these reactions, there are 247 interactions; these represent 206
catalyses, nine unknown catalyses, 16 inhibitions, 12 tran-
scriptional activations, and four transcriptional inhibitions.
There are clusters of reactions that are involved in specific
functions, such as endocytosis, degradation, recycling of
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EGFR, small GTPase signaling, MAPK cascade, PIP signaling,
cell cycle, Ca2þ signaling, and GPCR-mediated EGFR trans-
activation. Reactions within each cluster are visually
collocated to improve readability of the map.

The architecture of ErbB and GPCR
signaling networks

Bow-tie structure

While the EGFR map cannot yet be the basis for a dynamical
simulation until a series of kinetic parameters have been
identified, it can help us understand the architectural feature
of the signaling network. Looking at the map displayed in
Figure 1, a notable feature becomes apparent; a variety of
ligands bind to corresponding subtypes of erythroblastic
leukemia viral (v-erb-b) oncogene homolog (ErbB) receptors
that activate molecules in an extensive network of receptor
complexes, and then converge into a handful of molecules,
such as nonreceptor tyrosine kinase (non-RTK), small GTPase,
and PIPs, which activate a variety of cascades leading to
diverse responses including transcriptional regulation. This
architecture, also called a bow-tie (or hourglass) structure,
is a characteristic feature for robust evolvable systems
(Kitano, 2004). Typically, it has diverse molecules for input
and output that are connected to the conserved core with
highly redundant and extensively crosstalking pathways and
feedback control loops in various places in the pathway.

Figure 2 illustrates the overall bow-tie structure of molecular
interactions included in the EGFR map ver. 2.0. The arrow in
this figure represents the flow of a signal transduction. The
ErbB receptor-mediated signaling network resembles a bow-
tie structure with feedback control loops and inhibitory feed-
forward paths. Positive and negative feedback controls are
represented by red filled arrows and blue bar-headed lines,
respectively. Inhibitory feed-forward paths are shown by
purple bar-headed lines.

As input signals, 15 members of the endogenous EGF ligand
family have been identified, that is, amphiregulin, beta-
cellulin, biregulin, EGF, epiregulin, HB-EGF, heregulin a/b,
neuregulin (NRG) 1a/1b/2a/2b/3/4, and transforming growth
factor alpha (TGFa) (Jones et al, 1999; Olayioye et al, 2000;
Yarden and Sliwkowski, 2001). While the ligands overlap with
respect to binding to ErbB receptors, they have their own
specificities and affinities for the respective receptors. The
redundant and overlapping nature of ligand receptor binding
enhances robustness in sensing the molecules in the environ-
ment, as dysfunction in one of the receptors may be
compensated for by other receptors that have an affinity for
the overlapping ligand molecule.

The binding of ligands induces homo- and heterodimeriza-
tion of four ErbB family receptors: EGFR (ErbB1), ErbB2,
ErbB3, and ErbB4 (Yarden and Schlessinger, 1987; Yarden and
Sliwkowski, 2001). Although 10 combinations of ErbB receptor
dimers are mathematically possible, only a subset of these is
biologically meaningful. Specifically, ErbB2 has no high-
affinity ligand and is only activated by heterodimerization
with another ErbB receptor (Holbro et al, 2003), and the ErbB3
homodimer is inactive (Chen et al, 1996; Olayioye et al, 2000;
Yarden and Sliwkowski, 2001). ErbB heterodimers form a
highly redundant group of receptor complexes and thereby add
to the complexity of EGFR signaling. Dimerization stimulates
ErbB cytoplasmic kinase activity leading to auto- and trans-
phosphorylation on tyrosine residues (Qian et al, 1994; Heldin,
1995), which serve as docking sites for five adaptor proteins
and five enzymes, as shown in Figure 2. Signals from ErbBs
converge to molecules forming a bow-tie core and are
supposed to represent a versatile and conserved group of mole-
cules and interactions. Molecules such as non-RTK (proline-
rich tyrosine kinase (Pyk) 2, v-src sarcoma viral oncogene
homolog (c-Src)), small GTPase (rat sarcoma viral oncogene
homolog (Ras), Rac/cell division cycle 42 (Cdc42)), and PIPs
(phosphatidylinositol-4-phosphate (PI4-P), phosphatidylino-
sitol-4,5-bisphosphate (PI4,5-P2), phosphatidylinositol-3,4,

Figure 1 EGFR Pathway Map. This map was created using CellDesigner ver. 2.0 (http://www.systems-biology.org/002/). A total of 219 reactions and 322 species were
included. The map can be best viewed in the PDF format. Abi, abl-interactor; ADAM, a disintegrin and metalloproteinase; ADPR, ADP-ribose; Akt, v-akt murine
thymoma viral oncogene homolog; AP-1, activator protein-1; Bad, BCL2-antagonist of cell death; cADPR, cyclic ADP-ribose; CAK, cyclin-dependent kinase-activating
kinase; CaM, calmodulin; CaMK, calcium/calmodulin-dependent protein kinase; c-Cbl, Casitas B-lineage lymphoma proto-oncogene; CD, cluster of differentiation; Cdc,
cell division cycle; Cdk, cyclin-dependent kinase; c-Fos, v-fos FBJ murine osteosarcoma viral oncogene; Chk, c-src tyrosine kinase (Csk) homologous kinase; c-Jun,
v-jun sarcoma virus 17 oncogene homolog; c-Myc, v-myc myelocytomatosis viral oncogene homolog; CREB, cAMP response element-binding protein; c-Src, v-src
sarcoma viral oncogene homolog; cyt., cytosol; DAG, diacylglycerol; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; Elk, Ets-like protein; end.,
endosome; EP, prostaglandin E receptor; Eps, EGF receptor pathway substrate; ER, endoplasmic reticulum; ErbB, erythroblastic leukemia viral (v-erb-b) oncogene
homolog; ERK, extracellular signal-regulated kinase; Gab, GRB2-associated binding protein; GPCR, G protein-coupled receptor; Grb, growth factor receptor-bound
protein; HB-EGF, heparin-binding EGF-like growth factor; IP3R, inositol 1,4,5-triphosphate receptor; IP3, inositol 1,4,5-triphosphate; JNK, c-Jun N-terminal kinase; KDI,
kinase domain I; LARG, leukemia-associated rho guanine nucleotide exchange factor; LIMK, LIM (Lin-11 Isl-1 Mec-3) kinase; LPA, lysophosphatidic acid; LPA1/2,
lysophosphatidic acid G protein-coupled receptor 1/2; lyso., lysosome; m., messenger; MAPK, mitogen-activated protein kinase; MEKK, MAPK/ERK kinase kinase;
MKK, MAP kinase kinase; MKP, MAP kinase phosphatase; MLK, mixed lineage kinase; NAD, nicotinamide adenine dinucleotide; nuc., nucleus; PAK1, p21/Cdc42/Rac1-
activated kinase; PDK, 3-phosphoinositide-dependent protein kinase; PGE2, prostaglandin E2; Pi, phosphoric ion; PI3,4,5-P3, phosphatidylinositol-3,4,5-triphosphate;
PI3,4-P2, phosphatidylinositol-3,4-bisphosphate; PI3K, phosphatidylinositol-3-kinase; PI4,5-P2, phosphatidylinositol-4,5-bisphosphate; PI4-P, phosphatidylinositol-4-
phosphate; PI5K, phosphatidylinositol-5-kinase; PIP, phosphatidylinositol polyphosphate; PKB, protein kinase B; PKC, protein kinase C; pl.m., plasma membrane; PLC,
phospholipase C; PLD, phospholipase D; PP, protein phosphatase; PTB, phosphotyrosine-binding domain; PTEN, phosphatase and tensin homolog; Pyk, proline-rich
tyrosine kinase; Rab5a, RAS-associated protein RAB5a; Raf, v-raf-1 murine leukemia viral oncogene homolog; Ras, rat sarcoma viral oncogene homolog; RasGAP, Ras
GTPase-activating protein; Rb, retinoblastoma; RGS, regulator of G-protein signaling; Rin, Ras interaction; RN-tre, related to the N-terminus of tre; RSK, ribosomal
protein S6 kinase; RYR, ryanodine receptor; S, serine; S1P, sphingosine-1-phosphate; S1P1/2/3, sphingolipid G protein-coupled receptor 1/2/3; SERCA, sarcoplasmic/
endoplasmic reticulum calcium ATPase; Shc, Src homology 2 domain containing transforming protein; SHP, Shp-2 tyrosine phosphatase; SOS, son of sevenless
homolog; SPRY, Sprouty; STAT, signal transducer and activator of transcription; T, threonine; TGFa, transforming growth factor alpha; Ubc, ubiquitin-conjugating
enzyme; Y, tyrosine. This image is also available as high resolution PDF (see Supplementary PDF 1) or Scalable Vector Graphic (SVG) or SBML (see Supplementary
SBML 1).
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5-triphosphate (PI3,4,5-P3)) are candidate of components that
constitute the conserved core. Each molecule in the bow-tie
core plays a central role in downstream signaling cascades to
produce various physiological events such as cell cycle
progression and migration via actin reorganization.

Furthermore, there is crosstalk between the ErbB and G
protein coupled-receptor (GPCR) signaling cascade. Phospho-
lipase C (PLC) g stimulated by ErbB dimer produces inositol
1,4,5-triphosphate (IP3) from PI4,5-P2, which binds to IP3
receptor and causes Ca2þ efflux, while GPCR signaling
regulates cytosol Ca2þ concentration via two enzymes, PLCb
and adenylyl cyclase. Release of Ca2þ affects Pyk2 activity that
is placed in the possible bow-tie core segment.

Network control

Several system controls define the overall behavior of the
signaling network. There are two positive feedback loops in
the ErbB bow-tie structure. Firstly, Pyk2/c-Src activates
ADAMs, which shed pro-HB-EGF (Dikic et al, 1996; Li et al,
1996; Poghosyan et al, 2002), so that the amount of HB-EGF
will be increased and enhance the signaling. This Pyk2/c-Src-
mediated feedback loop is further enhanced by the Ca2þ -
mediated crosstalk from the GPCR signaling cascade (shown
by a green line in Figure 2) (Prenzel et al, 1999; Carpenter,
2000; Shi et al, 2000; Schafer et al, 2004). Secondly, active
PLCb/g produces diacylglycerol (DAG) from PI4,5-P2, which
results in the cascading activation of protein kinase C (PKC)
(Mellor and Parker, 1998), phospholipase D (PLD) (Exton,
2002), and phosphatidylinositol-5-kinase (PI5K) (Moritz et al,
1992). PI5K phosphorylates PI4-P resulting in an increase of
PI4,5-P2.

There are six negative feedback loops. In two of these,
protein tyrosine phosphatases (SHP-1 and SHP-2) inhibit
EGFR at the input wing of the bow tie. In three others, a son of
sevenless (SOS) homolog (Rozakis-Adcock et al, 1995;
Douville and Downward, 1997) is inhibited (by extracellular
signal-regulated kinase (ERK) 1, ERK2, or ribosomal protein
S6 kinase (RSK 2)), starting from the output wing to SOS,
which localizes near the core of the bow tie. In the sixth, ErbB
is degraded (via the activity of Casitas B-lineage lymphoma
proto-oncogene (c-Cbl), which is recruited by growth factor
receptor-bound protein (Grb) 2) (Levkowitz et al, 1999;
Yokouchi et al, 1999; Ravid et al, 2004); here, feedback starts
from the very end of the output wing, moving toward the initial
input wing of the bow tie. In addition, a number of local
inhibitory control exist that use phosphatases to control kinase
activities.

There are cases where both activation and inhibition are
directed to the same protein. For example, EGFR provides both
positive signaling to Ras activation, and negative regulation
through recruitment of Ras GTPase-activating protein (Ras-
GAP) (Agazie and Hayman, 2003). RAS-associated protein
RAB5a (Rab5a) is influenced by both activation and inhibition
signals from Ras interaction 1 (Rin1) (Tall et al, 2001) and
related to the N-terminus of tre (RN-tre) (Lanzetti et al, 2000),
respectively. EGFR essentially regulates both paths as it binds
EGF receptor pathway substrate (Eps) 8 that activates RN-tre,
and binds Grb2, which in turn stimulates Ras via SOS leading
to Rin1 activation (Han et al, 1997). It is interesting to note that

in both cases, the length of the path for inhibition is shorter
than that of activation. It will be important to understand how
such positive and negative controls are regulated.

In total, there are two positive feedback loops, six negative
feedback controls, and inhibitory feed-forward paths in the
ErbB bow-tie structure. In addition, there are a few positive
and negative feedback loops in the GPCR cascade that affect
ErbB pathway dynamics. As a whole, the ErbB signaling
network forms an overall bow-tie structure with highly
redundant and overlapping input pathways and feedback
controls. We consider that such a bow-tie structure with
feedback control is a typical architecture for signal transduc-
tion pathways that can be observed even in TLR and GPCR
pathways. Understanding the dynamics of such an architec-
ture is critically important for an in-depth knowledge of
signaling systems in general. This includes understanding how
such pathways have evolved, and how diverse input stimuli
are encoded, converge, and differentially activate various
reactions, including the transcription of downstream genes.

Graphical notations of the EGFR Pathway
Map

Process diagram

The main symbols used to represent molecules and interac-
tions in this map are displayed in Figure 3. Kitano proposed a
graphical notation system for biological networks designed to
express sufficient information in a clearly visible and
unambiguous way (Kitano, 2003). Several graphical notations
for molecular interactions have been proposed previously
(Kohn, 1999; Pirson et al, 2000; Cook et al, 2001; Kohn, 2001;
Maimon and Browning, 2001), although none has been widely
used. The Kohn Map is perhaps the most widely known of
these. However, lack of software to support the notation has
hampered its use. We have developed CellDesigner, a freely
downloadable software tool. It has already been adopted by
various research groups and databases such as the PANTHER
pathway database (Mi et al, 2005). The current EGFR map is
essentially a state transition diagram, in which one state of the
system is represented in one node, and an arc from one node to
another node represents a transition of the state of the system.
This class of diagrams is often used in engineering and
software development, and the schema avoids using symbols
that directly point to molecules to indicate activation or
inhibition. The arrow of state transition (a straight line with a
filled arrowhead) represents the state changes that occur as
a result of molecular interactions, instead of ‘activation’ in a
traditional notation familiar to molecular biologists. The
diagram directly indicates a transition from an inactive to an
active state for activation, and a transition from an active state
to an inactive state for inhibition. When these transitions are
promoted or inhibited by other mediating molecules, such as
active kinases, these reactions are represented by a catalysis
arrow (circle-headed line) and inhibition arrow (bar-headed
line), respectively. It is essential that such syntax and
semantics are made clear and defined consistently, particularly
for a large-scale map, so that the information presented is
conveyed unambiguously.
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Notation on modification and localization
of protein

Figure 4 illustrates how the modification status of a protein is
presented. Essentially, each state of a protein (i.e. phosphor-
ylation, acetylation, etc.) can be represented such that it
reflects its modification and oligomerization.

In this map, we employed a naming convention in which the
localization of protein is indicated by a prefix to the protein
name, such as ‘cyt.XX’ and ‘pl.m.XX’ for protein XX in the cytosol
and protein XX at the plasma membrane, respectively. In
addition, in order to provide a better overview and to understand
pathways at a glance, we assigned unique names with an
‘address’ to a protein to express differences of combination states
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of protein species. For instance, Figure 5 provides the reader with
a small part of the pathways illustrated in the map, namely
interactions between EGFR and the three adaptor proteins, Src
homology 2 domain containing transforming protein (Shc),
Grb2, and GRB2-associated binding protein 1 (Gab1). Figure 5A

shows the detailed scheme of combination states between EGFR
and adaptors, while Figure 5B expresses combination states by
assigning an ‘address’ to the name of a protein. The method of
referring to proteins with an ‘address’ becomes clear using Grb2
as an example. Grb2 is recruited to the activated EGFR via the

      

      

A

B

Figure 5 Ellipsis in drawing association states of proteins using an ‘address’. (A) Precise association states between EGFR and adaptors. Three adaptor proteins,
Shc, Grb2, and Gab1, bind to the activated EGFR via its autophosphorylated tyrosine residues. Shc binds to activated EGFR and is phosphorylated on its tyrosine 317.
Grb2 binds to activated EGFR either directly or via Shc bound to activated EGFR. Gab1 also binds to activated EGFR either directly or via Grb2 bound to activated
EGFR, and is phosphorylated on its tyrosine 446, 472, and 589. (B) The same signaling pathway as in panel A using an ‘address’ such as ‘Grb2@EGFR.Y1068/1086P’,
thereby achieving a presentation of the pathway details. EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; Gab, GRB2-associated binding protein;
Grb, growth factor receptor-bound protein; Shc, Src homology 2 domain containing transforming protein.
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phosphotyrosine residues Tyr1068 or Tyr1086, and this event is
denoted as ‘Grb2@EGFR.Y1068/1086P’. The reaction of associa-
tion between active EGFR and Grb2 is represented using an open-
headed ‘transport’ arrow and a circle-headed ‘catalysis’ arrow as
a local rule adopted in this map ver. 2.0. This convention allows
for a more efficient presentation of signaling events and requires
much less space, as illustrated in Figure 5B. It should be stressed
that this convention is in accordance with the information
provided by a full representation.

Omissions in notation

For ease of readability and in order to save space, we adopted
to omit notation from this version of the EGFR Pathway Map
(ver. 2.0). While simulation studies require precise representa-
tion of pathways, such representation has to deal with the
complicated issue of multiple states of complexes. Figure 6
shows a simple example. The 85 kDa regulatory subunit
of phosphatidylinositol 3-kinase (PI3K (p85)) binds to
active ErbB3 receptor via its phosphorylated tyrosine residues:
Tyr1035, Tyr1178, Tyr1203/05, Tyr1241, Tyr1257, and Tyr1270
(Olayioye et al, 2000). To distinguish the complexes according

to differences of phosphotyrosine residues, Figure 6A should
be redrawn as Figure 6B.

Another type of omission concerns the case in which many
pathways are represented by fewer pathways. For example, it
has been reported that Grb2 and Shc bind to activated EGFRvia
their phosphotyrosine residues and function as adaptors of
downstream signaling. They are recruited to endosomes
during stimulation by EGF where they form complexes with
endocytosed EGFR and activate Ras signaling (see the list
of references for EGFR Pathway Map). Although some
other proteins such as PI3K (p85/p110) are reported to be
translocated to endosomes with growth factor receptors
(Christoforidis et al, 1999), it is not clear whether all other
EGF-induced interactions occur similarly in endosomes as well
as at the cell surface. To conserve space in the current version
of the EGFR Pathway Map, we made Grb2 represent interac-
tions with endosomal EGFR.

In addition to sphingosine-1-phosphate (S1P), lysophos-
phatidic acid (LPA), and prostaglandin E2 (PGE2), other
ligands such as endothelin-1 (Vacca et al, 2000) and
angiotensin II (Hama et al, 2004) have been reported to be
involved in GPCR-mediated EGFR signal transactivation.

A

B

Figure 6 Combinations of multiple states of complexes. (A) Omitted notation in the EGFR Pathway Map. The 85 kDa regulatory subunit of phosphatidylinositol
3-kinase (PI3K (p85)) binds to active ErbB3 receptor via its phosphorylated tyrosine residues: Tyr1035, Tyr1178, Tyr1203/05, Tyr1241, Tyr1257, and Tyr1270.
(B) Detailed portrayal of panel A for distinguishing the complexes according to differences of phosphotyrosine residues. ErbB3, erythroblastic leukemia viral
(v-erb-b) oncogene homolog 3; PI3K (p85), 85 kDa regulatory subunit of phosphatidylinositol 3-kinase.
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Ambiguity

A number of ambiguous cases of protein–protein interactions
came up during the construction of the map. For example, EGF
simulation induces activation of protein kinase B (PKB/Akt)
via PIPs, which have multiple functions including antiapopto-
tic properties. However, the mechanistic details as to its
activation are controversial. It has been reported that PKB/Akt
is phosphorylated at two sites for its full activation: Thr308 in
the activation T-loop of kinase domain and Ser473 in the C-
terminal hydrophobic motif. While phosphoinositide-depen-
dent kinase 1 (PDK1) has been unambiguously identified as
Thr308 kinase, Ser473 kinase named PDK2 remains elusive.
Although it has recently been reported that the conventional
isoforms of PKC could phosphorylate at Ser473 by distinct
stimulation (Kawakami et al, 2004), PKC inhibitors including
PKCbeta inhibitor LY 379196 caused PKB/Akt phosphorylation
at Ser473 (Wen et al, 2003). Moreover, Toker and Newton
(2000) reported that the PDK2 site, namely Ser473, was
regulated by autophosphorylation. Because it is not clear
whether Ser473 undergoes autophosphorylation, phosphor-
ylation by PDK2, or both, the pathway is represented by
unknown catalysis arrows (circle-headed dashed line).

CellDesigner

The EGFR Pathway Map was created using CellDesigner ver.
2.1.1. Compliance of CellDesigner with SBML enables
researchers to store models and to use them for analyses by
other SBML-compliant applications.

CellDesigner is also a Systems Biology Workbench (SBW)-
enabled application. With SBW installed, CellDesigner can
integrate with all SBW-enabled modules, including simulation
and other analysis packages.

The most recent version of CellDesigner (ver. 2.2) enables
users to store data of each molecule and reaction in the species
and reaction onotes4, respectively, to link directly to the
database such as PubMed simply by clicking. CellDesigner can
thus be a portal software platform as well as information
organizer for systems biology research.

Updating of the EGFR Pathway Map

This version of the map (ver. 2.0) is intended to be
comprehensive but is not necessarily exhaustive. We will
periodically update and expand the map on our website using
experimental data derived from further studies and through
interactions with researchers specialized in certain modules of
the EGFR signaling network. To facilitate such interaction and
updating of the map, we are currently designing community-
support web-based tools that will allow a community-based
collaborative development process. Addition and correction of
the original map can be made through comments and feedback
from experts in specific molecules and interactions, while
kinetic constants and other experimentally obtained data can
be incorporated into the map.

In systems biology research, both molecular details and a
system-wide network structure must be taken into account.
Thus, data resources and tools that enable flexible and
updated access to various levels of information are essential.

The EGFR signaling map presented in this article is one
attempt to seed such effort.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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