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Abstract

for sensitization of TRPV1 channels was explored.

The perception of painful thermal stimuli by sensory neurons is largely mediated by TRPV1. Upon tissue injury or
inflammation, S1P is secreted by thrombocytes as part of an inflammatory cocktail, which sensitizes nociceptive

neurons towards thermal stimuli. STP acts on G-protein coupled receptors that are expressed in sensory neurons
and sensitize TRPV1 channels towards thermal stimuli. In this study, the STP mediated signaling pathway required

The capsaicin induced peak inward current (Icaps) of sensory neurons was significantly increased after S1P
stimulation within minutes after application. The potentiation of I-aps resulted from activation of Gai through
G-protein coupled receptors for S1P. Consequently, Gai led to a signaling cascade, involving phosphoinositide-3-kinase
(PI3K) and protein kinase C, which augmented l-aps in Nociceptive neurons. The S1P; receptor agonist SEW2871 resulted
in activation of the same signaling pathway and potentiation of Icaps. Furthermore, the mitogen-activated protein
kinase p38 was phosphorylated after S1P stimulation and inhibition of p38 signaling by SB203580 prevented the
STP-induced Icaps potentiation. The current data suggest that STP sensitized Iaps through G-protein coupled S1P,
receptor activation of Gai-PlsK-PKC-p38 signaling pathway in sensory neurons.
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Background
The perception of pain is mediated by nociceptive primary
afferent neurons that are excited upon painful thermal,
mechanical or chemical stimuli [1]. These nociceptive neu-
rons demonstrate increased sensitivity towards painful
stimuli during inflammation or injury when challenged by
pro-inflammatory mediators (e.g. bradykinin, prostaglan-
din) [2,3]. The cellular and molecular mechanisms that are
involved in thermal pain perception and sensitization are
well studied and comprise many different signaling path-
ways and proteins [4,5].

The perception of heat involves members of the tran-
sient receptor potential (TRP) ion channels, more specif-
ically members of the vanilloid subfamily (TRPV). In
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particular activation of TRPV1 ion channels results in
the excitation of nociceptors and consequently the per-
ception of pain [6,7]. TRPV1 is a non-specific cation
channel that is not only activated by heat but also by
vanilloid agonists like capsaicin and resiniferatoxin, by
low pH (<5.5) and various lipids [8,9]. The activation of
TRPV1 ion channels results in opening of the channel
and subsequent membrane depolarization of nociceptive
neurons.

In the presence of inflammatory mediators, the thresh-
old temperature at which TRPV1 channels are activated
is decreased and nociceptive neurons respond to thermal
stimuli at lower temperatures and with an augmented
response. The regulation of TRPV1 by inflammatory me-
diators released by the immune system receives exten-
sive attention since it is clinically relevant for developing
pathological and chronic pain. Activation of G-protein
coupled or tyrosine kinase receptors modulate TRPV1
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ion channel activity via various intracellular signaling
pathways [10,11].

Tissue damage that usually coincides with damage to
the blood vessels results in tissue invasion of different
cells of the immune system together with thrombocytes.
At the injury site, thrombocytes are activated and secrete
a variety of immunomodulatory compounds including
the sphingolipid sphingosine 1-phosphate (S1P). S1P can
activate signaling pathways either through diffusion over
the plasmamembrane or through binding to S1P specific
receptors (S1P;_5) at the plasmamembrane.

After binding of S1P to its specific receptors, activa-
tion of the receptor subtype determines the heteromeric
G-protein signaling pathway. For example, the S1P; re-
ceptor solely signals through Gai-proteins whereas the
S1P; receptor can activate Gai, Gaq and/or Gal2/13
signaling pathways. Through this pleiotropic activation,
S1P can exert its effects on various signaling pathways
involving e.g. Rho, PLC, p38 and ERK (p42/44) signaling
[12]. Previously we have shown that nociceptors primar-
ily express S1P; and S1P3 receptors whereas the larger
NF200-positive cells express S1P, receptors. Recently it
has been found that SI1P enhances neuron excitability
[13,14] and sensitizes dorsal root ganglion (DRG) neu-
rons to heat [15].

Converging evidence from pharmacological and gen-
etic models suggests that the S1P; receptor is a main
contributor to S1P-induced hyperexcitability and heat
sensitization in mouse nociceptors [14-16]. Although
S1P; receptor signaling is restricted to Gai-mediated sig-
nal transduction, the molecular players of TRPV1 medi-
ated sensitization by S1P remain unclear. Here we
explore the SI1P-PI;K-p38 signaling pathway in sensory
neurons for the potentiation of capsaicin-induced, exci-
tatory inward currents.

Results

S1P-induced potentiation of capsaicin-activated excitatory
inward currents

In humans and mice, the bio-active lipid S1P evokes spon-
taneous pain behavior [17]. Besides, intradermal injection
of S1P in the hindpaw of mice induces heat-hypersensitivity
as indicated by reduction of reflex paw withdrawal latencies
in response to radiant heat stimulation [15]. Responses of
nociceptive neurons to heat are mainly mediated by the
transient receptor potential vanilloid receptor TRPV1 that
is essential for the development of thermal hypersensitivity
[6,18,19]. To assess TRPV1 function we performed whole-
cell recordings of capsaicin-evoked excitatory inward cur-
rents (Icaps, 0.3 M capsaicin) from neurons isolated from
mouse dorsal root ganglia (DRG). Application of S1P
(1.0 uM, 60s) caused a significant increase of Icaps peak
amplitudes (fold increase: 3.22+0.81, n=18, p<0.001,
Figure 1A,B). The potentiation of Icaps was transient and
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fully recovered within 6 minutes, suggesting a modifica-
tion of ion channel function as underlying mechanism.
Repetitive application of capsaicin did not result in po-
tentiation of the inward current in DRG neurons for the
first five to six applications (Figure 1C) and obviously was
prone to desensitization at later time points.

To explore whether S1P potentiated capsaicin induced
currents through G-protein coupled receptors (GPCR) ac-
tivation or rather by direct activation of the channel. In
the presence of extracellular suramin (100 pM), which is
generally accepted to uncouple heteromeric G-proteins
from their ligand-binding receptor subunit, S1P failed to
evoke an increase in Ic5ps (see Additional file 1). To more
specifically prevent G-protein mediated signaling, GDPBS
(3.0 mM) was included in the intracellular solution. In
nociceptive neurons treated with GDPBS, S1P no longer
induced an increase in Icaps (Figure 2A). Therefore it is
concluded that S1P acted on a G-protein coupled receptor
(GPCR) to regulate TRPV1-induced currents.

S1P potentiates Icaps Via Gai-PIsK-PKC signaling cascade
Whereas S1P, and S1P; receptors couple to all three
G-protein types [20,21], S1P; exclusively couples to Gai/o
and no activation of other heteromeric G-proteins has been
reported to date [22,23]. We therefore pretreated sensory
neurons for 20 hours with the Gai/o-selective inhibitor per-
tussis toxin (PTX; 100 ng/ml). The potentiation of Icaps
after conditioning stimulation with S1P was reduced by
pretreatment with PTX in the patch-clamp recordings, sug-
gesting the involvement of Gai/o heteromeric G-proteins
in the signaling process (Figure 2B). It is generally accepted
that activation of Gai/o a-subunit inhibits the adenylyl cy-
clase/protein kinase A (PKA) pathway. Since TRPV1 activ-
ity is upregulated via PKA mediated phosphorylation, a
S1P-dependent reduction of PKA activity should attenuate
heat responses in sensory neurons [24-28]. However, as
shown above, S1P; augmented nociceptor activity in three
independent models. This apparent controversy could be
explained if SIP activated a sensitizing pathway via B/y
G-protein subunits rather than activation via the a-subunit.
Phosphatidyl-inositol-triphosphate kinase (PI3K) isoen-
zymes have been identified as targets of S1P; and S1P3
signaling in some studies [29-31]. After inhibition of the
phosphoinositide kinases PIP,K and PI;K by Wortmannin
(1.0 uM, data not shown), S1P did not facilitate Icaps to
the same extent as in control ECS. Selective inhibition
of PI3K by AS605240 (100nM), also attenutated S1P po-
tentiation of Icapsand the inhibition of S1P-induced
potentiation of Icaps by Wortmannin and AS605240 was
comparable to the decrease in S1P-mediated TRPV1 po-
tentiation after PTX incubation (Figure 2E).

Since PI3K can activate PKCs [32], pretreatment with
the non-selective PKC inhibitor bisindolylmaleimide-1
(BIM-1, 1.0 uM) was used to investigate whether this
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Figure 1 S1P potentiates capsaicin-induced currents in cultured DRG sensory neurons. A, a typical voltage-clamp recording from a DRG
neuron that is repetitively stimulated with capsaicin (0.3 pM white and grey triangles). Between the 3" and 4™ capsaicin application DRG neurons
were stimulated with 1.0 uM S1P (green bar) that resulted in augmentation of Icaps (grey triangles). The dashed line represents 0 nA. B, Quantification
of S1P induced potentiation of Icaps, which were normalized to amplitude of the 3™ |caps, showed that STP potently increased leaps Up to 4 minutes
after S1P application. **p < 0.001, *p < 0.05, MWU-test. C, Repetitive application of capsaicin did not result in potentiation of lcaps. Numbers within the
bars represent the number of individual recorded.
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downstream signaling pathway was involved in SI1P in-  S1P although the degree of sensitization was significantly
duced modification of Icaps. After inhibition of PKC, reduced. In comparison to the S1P-mediated potenti-
Icaps was still potentiated after conditioning exposure to  ation, BIM-1 potently attenuated the potentiation of
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Figure 2 Inhibition of downstream signaling mediated by S1P largely prevents potentiation of Icaps in sensory neurons. A, inhibition of
heteromeric G-proteins by inclusion of 3.0 mM GDP(S in the patch pipette fully prevented the potentiation of I-aps mediated by 1.0 uM S1P.
Furthermore, inhibition of Gai by pertussis toxin (100 ng/ml PTX, B), PIsKy (100nM AS605240, C) and PKC (1.0 uM BIM-1, D) decreased the
amplitude of STP mediated Icaps potentiation in sensory nociceptors significantly compared to the enhanced Icaps after STP stimulation

(E). ***p < 0.001, **p < 0.01, *p < 0.05, MWU-test, numbers within the bars represent the number of individual cells recorded.

Icaps induced by S1P in patch-clamp recordings of DRG ~ SEW2871 induced S1P; receptor activation sensitizes Icaps
neurons (Figure 2D,E). The inhibition of S1P-mediated Stimulation of DRG neurons with S1P could activate both
Icaps potentiation was to the same extent as observed  S1P; and S1Ps-receptors on the same neuron. The S1P;-
after inhibition of the Gai and PI;K pathway (Figure 2E).  receptor expressed on nociceptive neurons has been shown
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to be the major signaling pathway contributing to heat
sensitization and presumably affected nociceptive neurons
directly [15]. Previously we have shown that SEW2871, a
specific and selective agonist for the S1P; receptor, also
facilitates capsaicin-induced currents [15]. Since S1P; re-
ceptor only signals via Gai, we used SEW2871 to assess the
involvement of the Gai-signaling pathway in S1P mediated
TRPV1 potentiation (Figure 3A). The sensitization of Icaps
by SEW2871 (1.0 uM) was completely inhibited by 20 h
pre-incubation with PTX and thus completely relied on
the activation of Gai (Figure 3A,B). In line with earlier find-
ings in this study, inhibition of phophoinositide kinases by
Wortmannin or PKCs by BIM-1 fully prevented potenti-
ation of capsaicin-induced inward currents by SEW2871.
Accordingly, these data suggested that Gai-PI;K-PKC sig-
naling was activated through the S1P; pathway solely,
whereas additional S1P receptors might play a minor role
in S1P-mediated I apg sensitization.

Activation of MAP-kinase p38 by S1P increases lcaps

S1P receptor signaling pathways activates p38 or p42/44
MAP kinases through phosphorylation [33,34]. Therefore,
the levels of phosphorylated p42/44 and p38 were assessed
by Western blot with phosphorylation-specific antibodies
and subsequent quantification of the blots. We did not de-
tect significant activation of the MEK/ERK pathway by
S1P as the relative amount of p-p42/p44 phosphorylation
was not changed (data not shown). Interestingly however,
p-p38 levels increased significantly (1.57 £ 0.09, n = 5) fol-
lowing S1P stimulation of neurons cultures, which sug-
gested a major contribution of p38 in the SIP signaling
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pathway (Figure 4C). The phosphorylation of p38 induced
by S1P was completely inhibited by SB203580 (0.97 + 0.12,
n=4), a specific inhibitor of the p38 signaling pathway
(Figure 4C). In line with this finding, the potentiation of
Icaps evoked by SI1P was largely inhibited after pre-
incubation with SB203580 (Figure 4A). The Icaps re-
corded immediately after S1P stimulation was significantly
reduced compared to control conditions (Figure 4B, Ctrl;
3.22+0.81 vs. SB203850; 1.59 +0.30, p<0.01, MWU).
Opverall, the SB203580-mediated inhibition of the Icapg
potentiation was similar to the application of by PTX,
AS605240 and BIM-1.

Discussion

Our study revealed a prominent role for the S1P;-Gai-sig-
naling pathway to enhance capsaicin-induced inward cur-
rents. This signaling pathway contributed to the SIP
induced increase in nociceptors responsiveness to capsaicin
and presumably also to thermal stimuli. We characterized
the S1P-induced signaling pathway that contributed to en-
hanced TRPV1 activity and involved a heteromeric Gai-
protein, PI3K, activation of PKC and MAPK p38.

To date, five members of the metabotropic Edg G-protein
coupled receptor (GPCR) family are known to specifically
bind S1P and to regulate inflammatory and regenerative
processes in various systems [35,36]. Crosstalk of cyto-
kines, growth factors and S1P in inflamed tissue occurs
and several reports have addressed the expression of S1P;
and S1P; receptors in primary afferent nociceptors that
sense inflammatory mediators and respond more vigor-
ously to natural stimuli upon inflammation [13,15-17,37].
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Figure 3 Icaps sensitization by depends on S1P, receptor signaling. A, The enhancement of I-aps by the S1P; specific receptor agonist
SEW2871 (1.0 uM) was completely inhibited by pertussis toxin (PTX, 100 ng/ml). The dashed line signifies the zero current. B, Moreover, inhibition
of the PI3K by Wortmannin (WM, 1.0 pM) and PKC (BIM-1, 1.0 uM) fully prevented the potentiation of Icaps that was induced by S1P; receptor
activation by SEW2781 (SEW). *p < 0.05, MWU-test, numbers within the bars represent the number of individual cells recorded.
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Figure 4 Activation of p38 is critical in the S1P induced Icpps potentiation in sensory neurons. A, In a typical current recording of a nociceptor,
the Icaps increase caused by 1.0 uM STP stimulation is greatly diminished by inhibition of p38 activation by SB203850 (1.0 uM). Zero current is
drawn as dashed line. B, Pretreatment of sensory DRG neurons with SB203850 (1.0 uM) significantly reduced the S1P mediated potentiation of
leaps. ¥**p < 0.001, **p < 0.01, MWU-test. C, Western blot analysis of p38 activation (p-p38) showed that S1P significantly increased the p-p38
levels in sensory neurons, whereas SB23850 (SB) reversed the p-p38 levels to control, unstimulated levels. ***p < 0.001, **p < 0.01, ANOVA on
Ranks followed by Tukey post-hoc test, numbers within the bars represent the number of individual cells recorded.

Therefore, a major component of nociceptor sensitization
that is associated with inflammation could be mediated by
S1P acting via S1P; and/or S1P; mediated signaling path-
ways. The widespread expression of S1P; receptors in all
classes of sensory neurons suggests the S1P; receptor as a
candidate to regulate the sensitivity of multiple sensory
modalities. Indeed activation of S1P3 receptors in nocicep-
tors induces a pain-like behavior in human and mice. This
pain-like behavior is evoked by a membrane depolarization
involving S1P3 receptors [17].

A smaller portion of sensory peptidergic and non-
peptidergic neurons express S1P; receptors [15]. S1P in-
duces thermal hypersensitivity in mice and enhances the
excitability of sensory neurons [13,15]. In a transgenic
mouse where S1P; receptors are conditionally ablated in
Nav1.8 expressing neurons, the S1P induced heat hyper-
sensitivity is attenuated [15]. In line with these reports,

the enhancement of TRPV1 activity following S1P con-
ditioning was mimicked by the S1P; agonist SEW2871.
The augmentation of Icaps by S1P and SEW2871 was
inhibited in the presence of PTX that selectively inter-
feres with the inhibitory G-protein Gai. This suggests
that S1P; utilizes Gai for signal transduction in nocicep-
tors, just like in other tissues.

Although the contribution of Gai to S1P; receptor sig-
naling is well accepted it is largely unknown which
downstream intracellular signaling pathways are acti-
vated in nociceptive neurons. In general, the S1P; recep-
tor has been associated with three different signaling
pathways downstream of Gai-proteins. The classical Gai
signaling involves inhibition of adenylate cyclase and re-
duction of cyclic AMP levels or inhibition of ERK signal-
ing within the cell [38,39]. Since cAMP/PKA signaling
increases the open probability of TRPV1 ion channels, it
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can be anticipated that decreased cAMP levels rather
leave TRPV1 in a less sensitive state and reduces Icaps
amplitudes which would oppose our findings.

The signaling cascade for S1P induced facilitation of
capsaicin-induced currents also differs from the Gai-
mediated activation of ERK1/2 through which S1P;
receptors regulate embryonic self-renewal [40]. TrkA
receptor-mediated ERK1/2 acyivation (p42/44) by nerve
growth factor induces heat hypersensitivity and potenti-
ates nociceptor responses to capsaicin [41-43]. However,
ERK1/2 activation was not induced in nociceptive neu-
rons upon S1P stimulation. Therefore the observed en-
hancement of Icaps is unlikely to be explained by these
two classical Gai signaling pathways.

An alternative S1P; signaling pathway involves Gai-
mediated activation of PI3K that has been reported to
mediate chemotaxis of natural killer cells [44]. Further-
more PI;K signaling pathways have been associated with
the regulation of TRPV1 [45] and increasing evidence
suggests that particular isoforms of PI3;K signal down-
stream of GPCRs [46]. In our hands, the potentiation of
Icaps through S1P; largely depended on PIzK. Thus our
results link PI3;K as novel component of GPCR signaling
for the regulation of nociceptor heat hypersensitivity.
Downstream of PI3K several kinases of the mitogen acti-
vated protein kinase (MAPK) family can be activated. In
particular activation of MAP kinase p38 is strongly asso-
ciated with Gai/PI;K signaling through S1P receptors
[34,47]. The MAPK p38 functions as a mediator of cellu-
lar stresses such as inflammation and apoptosis [48,49].
Besides, recent findings showed that activation of p38
contributes to the development and maintenance of
both neuropathic and inflammatory pain: For example,
in mouse models of neuropathic pain, activation of p38
is observed in microglial cells in the spinal cord and in
DRG neurons [50-52]. Activation of p38 can have pleio-
tropic effects within cells, and in sensory neurons it can
lead to increased current density of Nav1.8 channels by
phosphorylation on short-term [53] and upregulation of
Nav1.3 channels on the long-term [54]. The multimodal
transducer ion channel TRPV1 is activated by noxious
heat and capsaicin the pungent ingredient of hot chili
peppers, and it plays a major role in the generation of
heat hypersensitivity as occurs as a consequence of tis-
sue inflammation [6,18,19,55]. The sensitivity of TRPV1
to heat and capsaicin depends on the phosphorylation
status of the channel at intracellular serine/threonine or
tyrosine sites [24,26,56]. The degree of serine or threo-
nine phosphorylation at specific consensus sites, e.g.
for PKC, regulates the TRPV1 channel activity. Serine
phosphorylation determines the open probability of the
individual TRPV1 channel complex [8,10]. Besides,
modification at tyrosine residues regulates insertion of
preformed TRPV1 complexes into the cellular membrane
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[43]. Numerous inflammatory mediators including S1P,
which target to metabotropic receptors in the nocicep-
tor membrane, are able to facilitate Icaps either by acti-
vating tyrosine kinases or protein kinases A or C. The
fast changes in capsaicin sensitivity of the sensory neurons
that occurred within 1 minute of S1P stimulation are likely
attributable to phosphorylation of the already existing
TRPV1 channels in the cell membrane. Some of the phos-
phorylation sites at intracellular domains of the TRPV1
channel protein do not show preference for PKC, PKA ,or
CaMKII (calcium/calmodulin dependent protein kinase II)
and could be possible targets for p38 MAP kinase phos-
phorylation [57]. Although the present experiments and a
recent report which links PI3K/p38 and TRPV1 [45] do
not unequivocally demonstrate the mutual interdepend-
ence of these kinase systems, p38 activation downstream
of PI3K is likely and in line with ample evidence from
other systems [33,34,45,47].

Therefore we suggest that S1P; receptor activation and
downstream Guai to PI;K to p38 signaling as important
components for the S1P induced nociceptive hypersensi-
tivity towards thermal stimuli. S1P; to p38 mediated
sensitization of TRPV1 may play a role in the early initi-
ation phase of heat hypersensitivity in mice.

Materials and methods

Ethic statement

All animal breeding and experiments have been per-
formed with permission of the Austrian BMWF ministry
(BMWEF-66.011/0113-11/3b/2010; BMWEF-66.011/0051-
11/10b2008; GZ 66.011/85-C/GT/2007) and according to
ethical guidelines of the IASP (International Association
for the Study of Pain).

Primary sensory neuron culture

Lumbar DRG containing the cell bodies of primary af-
ferents that project into the hindpaw were harvested
from adult male mice (age 8—16 weeks) as previously
published [58,59]. After removal of the connective tis-
sue, ganglia were incubated in Liberase Blendzyme 1
(9 mg/100 ml DMEM, Roche) for 2 times 30 min. After
washing with PBS (PAA), 1x Trypsin-EDTA (Invitrogen)
was added for 15 min. and DRG were washed with TNB™
medium (Biochrom) supplemented with L-glutamin
(Invitrogen), penicillin G sodium, streptomycin sulfate
(Invitrogen), and Protein-Lipid-Komplex™ (Biochrom).
The DRG were dissociated with a fire-polished Pasteur
pipette and centrifuged through a 3.5% BSA gradient
(Sigma) to eliminate non-neuronal cells. The sensory
neurons were resuspended, plated on coverslips coated
with poly-L-Lysine/laminin-1 (Sigma), and cultivated in
supplemented TNB™ containing mNGF 2.5S (Alomone
Labs, 10 pg/100 ml TNB-medium) at 37 °C in 5% CO2
for 24-36 h.
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Patch-clamp recordings

Using the whole-cell voltage-clamp configuration of the
patch-clamp technique, ionic currents were recorded
from isolated neurons at -80 mV holding potential after
18-32 hours as previously published [15,58]. The exter-
nal solution (ECS) contained (in mM): 145 NaCl, 5 KCI,
2 CaCl,, 1 MgCl, (all Sigma), 10 glucose and 10 HEPES
(Merck, Darmstadt, Germany), at pH 7.3 adjusted with
NaOH (Merck). Borosilicate glass micropipettes (Science
Products, Hotheim, Germany) pulled with a horizontal
puller (Sutter Instruments Company, Novato, CA, USA)
were filled with internal solution (ICS, in mM): 148 KCl,
2 MgCl,, 2 Na-ATP, 0.2 Na-GTP, 0.1 CaCl,, 1 EGTA (all
Sigma) and 10 HEPES (Merck), at pH 7.3 adjusted with
KOH (Merck). After filling, electrode resistance was 4—6
MAQ. Currents were filtered at 2.9 kHz, sampled at 3 kHz
and recorded using an EPC-9 (HEKA, Germany) and the
Pulse v8.74 software (HEKA) without Rs compensation.
Experiments were performed at room temperature and
only one neuron was tested per Petri dish. An automated
seven-barrel system with common outlet positioned at
100 pm distance from the recorded cell was used for fast
drug administration [15]. SIP (1.0 uM) was used as inter-
mittent conditioning stimuli (60s). S1P, capsaicin, PTX
and GDPpS were purchased from Sigma Aldrich. All other
chemicals were purchased from Merck-Calbiochem.

Western blot

Sensory neurons were plated on poly-L-lysine/laminin-
coated dishes, kept in culture for 24 h and stimulated
with 1.0 pM S1P for 5 minutes in ECS or 30 minute
pre-treated with 1.0 uM p38 inhibitor SB203580 before
S1P stimulation. Cells were harvested in freshly pre-
pared, ice-cold lysis RIPA-buffer (50 mM Tris—HCI,
150 mM NaCl, 50 mM NaF, 5 mM EDTA, 0.5% Deoxy-
cholic Acid, 0.1% SDS, 1% Nonidet P-40, all Sigma).
The phosphatase inhibitors sodium-orthovanadate (200
uM) and B-glycerophosphate (40 mM, both Sigma) were
added to the RIPA buffer to prevent protein dephosphory-
lation. A protease-inhibitor cocktail (1:10, Sigma) was used
to protect proteins from proteolysis. SDS-PAGE was per-
formed under standard denaturing conditions using hand
casted 10% polyacrylamide gels (Mini-PROTEAN, Bio-
Rad Laboratories). Equal amounts of protein were loaded
to each lane of the gels. Spectra Multicolor Broad Range
Protein Ladder (Fermentas) was used as a molecular
weight standard. Gels were blotted immediately after
electrophoresis onto polyvinylidene fluoride membrane
(Hybond-P, GE Healthcare). For immunodetection, mem-
branes were blocked for 1 h with 5% (w/v) BSA and 0.1%
(v/v) Tween-20 in Tris-buffered saline, pH 7.6, at room
temperature. Antibodies were used according to the man-
ufacturer’s instructions. The following antibodies were
used: anti-phospho-p38 and anti-p38 (all Cell Signaling

Page 8 of 10

Technology) and peroxidase-conjugated a-rabbit IgG
(1:5000; Pierce) as secondary antibody. Visualization of
blots was performed with enhanced chemiluminescence
by using the SuperSignal West Pico Chemiluminescent
Substrate (Thermo Scientific). Membranes were scanned
with LAS4000 luminescent imager (GE Healthcare).
Quantification was performed using Image] software and
relative values for phosphorylated proteins are represented
as units after normalization to the non-phosphorylated
form.

Statistical analysis

Data are presented as mean + SEM. For detailed statistical
analysis the Sigmastat 3.0 (Aspire Software International)
software package was used and Mann Whitney-U test
(MWU) or ANOVA on Ranks followed by Tukey post-hoc
test were calculated. Differences were considered statis-
tically significant at p < 0.05.

Additional file

N
Additional file 1: Suramin prevents S1P-induced Icaps sensitization.
A, The augmentation of lcaps by STP (1.0 uM) was completely inhibited

by extracellular suramin (100 uM) pretreatment. The dashed line signifies
the zero current. B, The uncoupling of heteromeric G-proteins from

the G-protein coupled receptors significantly inhibited S1P-induced

lcaps potentiation in sensory neurons. ***p < 0.001, **p < 0.01, MWU,
numbers within the bars represent the number of individual cells
recorded.
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