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The clinical characteristics and biological effects on the nervous system of infection
with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain poorly
understood. The aim of this study is to advance epidemiological and mechanistic
understanding of the neurological manifestations of coronavirus disease 2019 (COVID-
19) using stroke as a case study. In this study, we performed a meta-analysis of clinical
studies reporting stroke history, intensive inflammatory response, and procoagulant
state C-reactive protein (CRP), Procalcitonin (PCT), and coagulation indicator (D-dimer)
in patients with COVID-19. Via network-based analysis of SARS-CoV-2 host genes and
stroke-associated genes in the human protein-protein interactome, we inspected the
underlying inflammatory mechanisms between COVID-19 and stroke. Finally, we further
verified the network-based findings using three RNA-sequencing datasets generated
from SARS-CoV-2 infected populations. We found that the overall pooled prevalence
of stroke history was 2.98% (95% CI, 1.89–4.68; I2 = 69.2%) in the COVID-19
population. Notably, the severe group had a higher prevalence of stroke (6.06%; 95%
CI 3.80–9.52; I2 = 42.6%) compare to the non-severe group (1.1%, 95% CI 0.72–1.71;
I2 = 0.0%). There were increased levels of CRP, PCT, and D-dimer in severe illness,
and the pooled mean difference was 40.7 mg/L (95% CI, 24.3–57.1), 0.07 µg/L (95%
CI, 0.04–0.10) and 0.63 mg/L (95% CI, 0.28–0.97), respectively. Vascular cell adhesion
molecule 1 (VCAM-1), one of the leukocyte adhesion molecules, is suspected to play
a vital role of SARS-CoV-2 mediated inflammatory responses. RNA-sequencing data
analyses of the SARS-CoV-2 infected patients further revealed the relative importance
of inflammatory responses in COVID-19-associated neurological manifestations. In
summary, we identified an elevated vulnerability of those with a history of stroke to
severe COVID-19 underlying inflammatory responses (i.e., VCAM-1) and procoagulant
pathways, suggesting monotonic relationships, thus implicating causality.

Keywords: coronavirus disease 2019 (COVID-19), cerebrovascular disease, protein-protein interactome, network
medicine, SARS-CoV-2, stroke, vascular cell adhesion molecule 1 (VCAM-1)
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INTRODUCTION

The ongoing global Coronavirus Disease 2019 (COVID-19),
which is caused by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), has led to more than 20 million
confirmed cases and 700,000 deaths worldwide as of August
10, 2020 (Huang et al., 2020). The United States alone has 5
million confirmed cases with over 160,000 deaths, with dire,
unprecedented social and economic consequences (Wu et al.,
2020). Specifically, SARS-CoV-2 is known to cause substantial
pulmonary disease, including pneumonia and acute respiratory
distress syndrome (ARDS). The incidence of cerebrovascular
disease among patients with COVID-19 is estimated to be ∼2%
(Mao et al., 2020). Yet, the full spectrum of the neurological
manifestations related to COVID-19 remains very poorly
defined. For example, a recent study suggest that cerebrovascular
disease could even happen in younger COVID-19 patients
without traditional cardiovascular risk factors (Oxley et al.,
2020). Previous studies have also reported stroke history was
an independent risk factor associated with fatal outcome in
patients with COVID-19. While limited by the small sample size
and high heterogeneity among studies, the prevalence of stroke
history in severe patients seems to be higher than that in non-
severe patients (Chen et al., 2020). Several pathophysiological
pathways related to cytokine release and secondary endothelial
damage have been proposed to link SARS-CoV-2 infection with
a hypercoagulable state (Ciceri et al., 2020). And the wide
expression of angiotensin-converting enzyme 2 (ACE2), the
functional receptor that mediates entry of SARS-CoV-2 into
host cells with the help of co-expressed TMPRSS2, Furin and
Neuropilin-1 (Nrp1) on the cell surface (Cantuti-Castelvetri et al.,
2020; Hoffmann et al., 2020; Hou et al., 2020; Walls et al.,
2020), constitutes a potential target in the endothelium of brain
vessels (Varga et al., 2020). In addition, the depletion of ACE2
may have pro-inflammatory and vasoconstrictive effects (Hess
et al., 2020). Until now, however, the underlying mechanisms of
stroke in COVID-19 patients remain poorly understood, which
requires a new approach to explore the underlying inflammatory
endophenotypes between COVID-19 and stroke.

Recent network medicine studies suggested that
proteins/genes that associate with and functionally govern
a disease (i.e., COVID-19) phenotypes are localized in
the corresponding disease module or subnetwork within
the human protein-protein interaction (PPI) network as
demonstrated in recent studies (Cheng et al., 2018, 2019a; Zhou
et al., 2020b,c). Within the complex intracellular network, a
disease is more likely to be the comprehensive effect of the
interaction of multiple genes, rather than the consequence of
an abnormality in a single gene. A better understanding of
the implications of cellular interconnectedness (i.e., PPIs) on
disease pathobiology/physiology could lead to identification of
more accurate diagnosis and offer better targets for personalized
treatment (Cheng et al., 2018, 2019a; Zhou et al., 2020a,b).

In this study, we performed a meta-analysis of clinical studies
reporting stroke history, intensive inflammatory response and
procoagulant state in patients with COVID-19. With the state-of-
the-art network medicine-methodologies, we aim to inspect the

underlying inflammatory endophenotypes between stroke and
COVID-19 by incorporating disease-associated genes and SARS-
CoV-2 host factors under the human interactome network model.

MATERIALS AND METHODS

All data used in this study are available in Supplementary
Tables S1–S8 and all analytic codes are available from the
corresponding author upon reasonable request.

Search Strategy and Selection Criteria
As Supplementary Figure S1 shows, a search was conducted in
PubMed and Embase on April 25th, 2020, using the keywords
“COVID-19” or “SARS-CoV-2” and “clinical characteristics” or
“clinical outcome” or “stroke” or “cerebrovascular disorder”
or “cerebrovascular disease” or “C-reactive protein” or
“Procalcitonin” or “D-dimer.” We excluded the following
studies: reviews; case reports; letters; comments; editorials;
and studies pertaining specific populations, such as pregnancy
and children. Our team independently assessed eligibility of
the included records and the data were subsequently extracted
based on the following variables: author, study period, sample
size, disease severity, age, comorbidity of stroke, serum levels of
C-reactive protein (CRP), Procalcitonin (PCT), and D-dimer.
A clinically definition of disease severity (i.e., patients requiring
mechanical ventilation, vital life support, intensive care unit
admission, death) was defined according to the American
Thoracic Society guidelines for community-acquired pneumonia
(Metlay et al., 2019).

Data Extraction and Statistical Analysis
Two authors independently assessed for eligibility of the included
records and the data were subsequently extracted by the same
authors. Any disagreement was resolved by consensus and
discussion. A meta-analysis was performed to estimate the
pooled prevalence of stroke history in three COVID-19 patient
groups (overall, severe, and non-severe), respectively. Random
intercept logistic regression model was used to estimate pooled
prevalence, with the Maximum-Likelihood Estimator to qualify
the heterogeneity of studies. The continuous outcome data
including CRP, PCT, and D-dimer, were transformed to mean
and standard deviations from a previous approach (Wan et al.,
2014) based on sample size, median and interquartile range.
Next, we used inverse variance method to estimate the pooled
mean difference (MD), with the DerSimonian-Laird method
to estimate the variance among studies. The tau2 and I2

statistic were calculated to quantify the heterogeneity among
studies in our meta-analysis. We considered I2

≤ 50% as low
heterogeneity among studies, 50% < I2 ≤ 75% as moderate
heterogeneity and I2 > 75% as high heterogeneity. All meta-
analyses were conducted by meta and dmetar packages in R 3.6.3
platform1.

1www.r-project.org
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Collection of Disease-Associated Genes
for Stroke and COVID-19
Thirty-seven stroke-associated genes were extracted from the
Human Gene Mutation Database (HGMD) (Stenson et al., 2017).
A text search was performed using “stroke” as the keyword.
Resulting disease terms from HGMD were verified for their
relevance with stroke. For COVID-19, we used a combination
of two gene sets: (i) a pan-coronavirus-host interactome from
our recent study (Zhou et al., 2020a) containing the key human
proteins involved in the infection of several coronaviruses based
on literature evidence; and (ii) a SARS-CoV-2 viral protein-
human protein interactome (Gordon et al., 2020) identified by
affinity purification-mass spectrometry. The final COVID-19
target gene list contains 460 human genes.

Building the Human Protein-Protein
Interactome
The human protein-protein interactome containing 351,444
unique protein-protein interactions (PPIs, edges) connecting
17,706 proteins (nodes) used as the basis for the network
analysis was based on our previous study (Cheng et al., 2018,
2019b). Briefly, a total of 18 bioinformatics and systems biology
databases with five types of experimental evidences were used
to build the comprehensive human interactome: (i) Binary PPIs
tested by high-throughput yeast-two-hybrid (Y2H) systems;
(ii) Binary, physical PPIs from protein three-dimensional
(3D) structures; (iii) Signaling network by literature-derived
low-throughput experiments; (iv) Kinase-substrate interactions
by literature-derived low-throughput or high-throughput
experiments;, and (v) Literature-curated PPIs identified by
affinity purification followed by mass spectrometry (AP-MS),
Y2H, or by literature-derived low-throughput experiments.
All inferred data, including evolutionary analysis, gene
expression data, and metabolic associations, were excluded.
The genes were mapped to their Entrez ID based on the NCBI
database (Sayers et al., 2019). Gene symbols were based on
GeneCards2. Detailed descriptions for building the human
protein-protein interactome are provided in our previous studies
(Cheng et al., 2018, 2019b).

Network Proximity Measure
We quantified the network proximity of stroke and COVID-19 in
the human interactome using the “closest” measure (Cheng et al.,
2019a) for stroke genes S and COVID-19 genes C:

〈dSC〉 =
1

‖S ‖+ ‖C ‖

(∑
s∈S

minc∈Cd (s, c)+
∑
c∈C

mins∈Sd (s, c)

)

where d (s, c) is the shortest distance of a stroke gene s and a
COVID-19 gene c in the human protein-protein interactome.
A permutation test of 1,000 repeats was performed to estimate
the average proximities of two random gene lists with similar
degree distributions to those of S and C. The Z score was then

2https://www.genecards.org/

calculated as:

ZdSC =
dSC − dr

σr

where dr and σr were the mean and standard deviation of
the permutation test. P-value was calculated based on the
permutation test. P< 0.05 was considered statistically significant.
Network visualization and subnetwork (modularity) analyses
were performed using Cytoscape (v.3.8.2)3.

Functional Enrichment Analysis
Functional enrichment analyses for the network genes were
performed using Enrichr (Kuleshov et al., 2016).

Gene Expression Analysis Using
SARS-CoV-2-Infected Populations
In this study, we used three RNA-sequencing datasets of COVID-
19 patients vs. controls. All RNA-sequencing datasets were
retrieved from the National Center of Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) database4. (1) Nasal
samples (GEO ID: GSE152075) (Lieberman et al., 2020) were
collected from 430 individuals with SARS-CoV-2 and 54 controls;
(2) Peripheral blood mononuclear cell (PBMC) samples (GEO
ID: GSE157103) (Overmyer et al., 2020) collected from 99
COVID-19 positive patients and 26 controls; and (3) induced
pluripotent stem cells (iPSC)–cardiomyocytes (GSE150392)
(Sharma et al., 2020) from 3 SARS-CoV-2 infected iPSC-
cardiomyocytes vs. mock control. The analyses of differential
expression genes were performed by edgeR 3.12 (McCarthy et al.,
2012) in the R 4.0.3 platform. To eliminate the influence from
covariates, gene differential expression analyses were adjusted for
age and sex. Adjusted p-value (q) were computed by Benjamini-
Hochberg method (Benjamini and Hochberg, 1995). We defined
significantly differentially expressed genes using | log2-fold
change| > 0.5 and adjusted p-value [q] < 0.05.

RESULTS

Meta-Analysis for COVID-19 Patients
With a History of Stroke
In this study, a total of 1,054 unique publications of COVID-
19 were identified after being deduplicated, of which 115 studies
were assessed via title and abstract. 12 studies (n= 2,509 patients)
reporting stroke in a COVID-19 positive-tested population were
eligible for meta-analysis. Among them, 9 studies divided the
included patients (n= 2,371) into severe and non-severe groups.
The flow chart of study selection and essential characteristics of
studies is shown in Supplementary Figure S1.

In the overall COVID-19 population, the pooled prevalence of
stroke history was 2.98% (95% CI, 1.89–4.68%) with moderate
heterogeneity (I2

= 69.2%). While the prevalence of stroke
history in patients with severe COVID-19 illness was significantly
higher (6.06%; 95% CI, 3.8–9.52) than that in the non-severe

3https://cytoscape.org
4https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Meta-analysis revealing association of stroke with disease severity of COVID-19. Random intercept logistic regression model was used to estimate
pooled prevalence and I2 was used to show heterogeneity among studies. The red bar denotes the pooled prevalence using random effect model.

group (1.11%; 95% CI, 0.72–1.71%) (Figure 1). The heterogeneity
among the studies in severe and non-severe group were low, with
I2 statistics of 0.0 and 42.6%, respectively.

In terms of the results of laboratory examinations, two
inflammatory factors, CRP and PCT, were significantly higher
in the severe group compared to the non-severe group.
The mean difference changes of CRP and PCT were 40.7
mg/L (95% CI, 24.3–57.1; I2

= 79.7%) and 0.07 µg/L (95%
CI, 0.04–0.10; I2

= 91.1%), respectively. The procoagulant
indicator, D-dimer, was higher in the severe group, compared

to the non-severe group (MD = 0.63 mg/L; 95%CI, 0.28–0.97;
I2
= 45.5%) (Figure 2).

Discovery of Inflammatory
Endophenotypes by Network Analysis
Recent studies have suggested that different diseases often
have common underlying mechanisms and shared intermediate
pathophenotypes, or endo(pheno)types (Ghiassian et al., 2016).
For example, inflammatory endophenotypes has been identified
in a variety of human diseases, including cardiovascular disease
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FIGURE 2 | The elevated inflammatory factors and coagulation indicator are associated with disease severity of COVID-19. The meta-analysis (inverse variance
method) was performed to estimate the MD in three groups. I2 was used to show heterogeneity among studies. The red bar denoted the pooled MD using random
effect model; MD, mean difference.

(Ghiassian et al., 2016) and COVID-19 (Zhou et al., 2020b).
We next turned to inspect the inflammatory endophenotypes
between stroke and COVID-19 by incorporating SARS-CoV-2

host genes and the stroke-associated genes using network-
based analysis. Using network proximity analysis from the
human PPIs (Cheng et al., 2018; Zhou et al., 2020b), we found

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 606926

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-606926 February 18, 2021 Time: 19:7 # 6

Shen et al. Neurological Manifestations of COVID-19

that there were multiple key PPIs (blue arrows) between the
SARS-CoV-2 host genes (blue nodes) and stroke-associated
genes (green nodes) (Z = −1.9, P = 0.019 [permutation
test]) (Figure 3). Three genes (orange), golgin subfamily B
member 1 (GOLGB1), α-galactosidase A (GLA), and heme
oxygenase-1 (HMOX1), are both SARS-CoV-2 host genes as well
as stroke-associated genes. The inflammatory endophenotype
network between stroke and COVID-19 is composed of three
subnetworks (Supplementary Figure S3), in which the largest
one is centered around the hub gene VCAM-1. We further
performed functional enrichment to identify possible pathways
between SARS-CoV-2 infection and stroke. As shown in
Supplementary Figures S4–S7, we found that several enriched
pathways and gene ontology terms, such as endocytosis, NF-
kappa B signaling pathway, viral life cycle, and cytokine-mediated
signaling pathway (Supplementary Figure S4), offered possible
mechanisms of comorbidities/complications of SARS-CoV-2
infection and stroke. The largest subnetwork (Supplementary
Figure S3A) showed more significantly enriched pathways and
gene ontology terms related to the viral life cycle or immune
system responses (Supplementary Figure S5).

Among the network genes, we selected eight of them (VACM-
1, SAMHD-1, DDAH-1, HMOX1, LTC4S, ACTB, KPNA2, and
JUN) for further analysis based on a combination of factors: (i)
strength of the network-predicted associations (Supplementary
Table S5); (ii) each gene’s | log-fold change| > 0.5 and q < 0.05
(Supplementary Figures S6–S8); (iii) genes interact with at least
two stroke-associated genes or SARS-CoV-2 target host genes;,
and (iv) literature-reported evidence associated with stroke.

As shown in Figure 3, VCAM-1 have the highest degree
(number of PPIs) according to the PPI network analysis.
Multiple host genes mediate the association of vascular
cell adhesion molecule (VCAM)-1 with SARS-CoV-2,
such as peptidyl-prolyl isomerase H (PPIH), charged
multivesicular body protein 2B (CHMP2B), and nucleolin
(NCL). A metabolomic data analysis had also confirmed
the up-regulation of VCAM-1 in patient with COVID-19
(Shen et al., 2020). As shown in Figure 4, as a potential
mechanism of downregulation of ACE2 related to SARS-CoV-
2 cell entry process (Verdecchia et al., 2020; Zhang et al.,
2020), the dysregulation of the renin-angiotensin-aldosterone
system (RAAS) leads decreased cleavage of angiotensin
II, which further stimulates the transcription of VCAM-1,
one of important leukocyte adhesion molecules, through
extracellular signal-regulated kinase (ERK) 1/2 signaling
pathway (Montezano et al., 2010). The up-regulated VCAM-1
facilitates the accumulation and extravasation of neutrophil
and inflammatory cells, and subsequently increases levels of
interleukin (IL)-6, IL-1β, IFN-γ, monocyte chemoattractant
protein-1 (MCP-1), macrophage inflammatory protein (MIP)
and IP10 (CXCL10) (Huang et al., 2020). These activated
leukocytes and proinflammatory cytokines may enhance
vasculitis and disrupt endothelial function and integrity, leading
to the further release of VCAM-1. More importantly, the
disruption of vascular integrity also leads to the exposure
of the thrombogenic basement membrane which facilitates
the accumulation of platelets and D-dimer, and activation of

the clotting cascade and eventually results in the thrombosis
(Teuwen et al., 2020).

Meanwhile, other stroke-associated genes, such as SAM
and HD domain containing deoxynucleoside triphosphate
triphosphohydrolase-1 (SAMHD-1), dimethylarginine
dimethylaminohydrolase-1 (DDAH-1), heme oxygenase 1
(HMOX1), leukotriene C4 synthase (LTC4S), actin beta (ACTB),
and karyopherin subunit alpha 2 (KPNA2) and Jun proto-
oncogene (JUN), which are potentially or directly targeted by
SARS-CoV-2 may also play roles in inflammatory response
and coagulopathy. For example, based on the fact that innate
and adaptive immune processes are involved in medium- and
large-vessel vasculitis (Weyand and Goronzy, 2003), SAMHD1,
which is known to act as an immunomodulator in different
viral infections and proinflammatory responses (Rice et al.,
2009), is thought to be associated with cerebral vasculopathy
and early onset stroke (Xin et al., 2011). DDAH-1, one of the
main components involving in the pathway for asymmetric
dimethylarginine (ADMA) clearance, has been realized to
be the key regulator associated with thrombosis stroke or
other vascular disease (Yoo and Lee, 2001; Leiper et al., 2007).
Numerous studies have reported the effectiveness of HMOX1,
a stress-responsive protein induced by various oxidative agents,
in cardiology by aspects such as inflammation, antioxidant
function, apoptosis, hypoxia, and ischemia/reperfusion injury
(Wan et al., 2020). The upregulation of HMOX1 during
cerebral ischemia revealed a protective effect on neuronal
cell against oxidative stress (Nitti et al., 2018; Cui et al.,
2020). A previous study also showed that the dysfunction
or downregulation of LTC4S, one of the key enzymes of the
5-lipoxygenase pathway, was associated with increased risk
of venous thromboembolism and ischemic stroke (Freiberg
et al., 2010). Meanwhile, SARS-CoV-2 host genes, such as
ACTB, KPNA2, and JUN, interact with SAMHD1, VCAM1, and
HMOX1, in the PPI network, indicating possible mechanisms of
COVID-19 associated stroke.

In order to further understand the underlying mechanisms of
PPI network-based findings, we investigated the expression levels
of the 8 selected stroke-associated genes (VACM-1, SAMHD-
1, DDAH-1, HMOX1, LTC4S, ACTB, KPNA2, and JUN) and
4 SARS-CoV-2 host factors/genes (ACE2, TMPRSS2, Furin,
and NRP1) between COVID-19 positive patients and negative
individuals, respectively (Figure 5). Interestingly, except for
FURIN, the expression level of ACE2, TMPRSS2, and NRP1
were significantly dysregulated in nasal tissues from COVID-19
positive patients. Moreover, the expression level of several stroke-
associated inflammatory genes, such as VCAM-1, SMAHD-
1, and DDAH1, were significantly upregulated in COVID-19
positive patients, indicating that the inflammatory response may
play potential roles in mediating COVID-19-associated stroke.
As mentioned above, the expression levels of HMOX1, LTC4S,
and ACTB seem to have negative correlation relationships
with the risk of cerebral ischemia (Freiberg et al., 2010; Nitti
et al., 2018; Cui et al., 2020; Yang et al., 2020), the significant
downregulation of HMOX1, LTC4S, and ACTB in PBMC
samples from COVID-19 positive patients may indicate possible
molecular mechanisms between COVID-19 and stroke. However,
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FIGURE 3 | Network-inferred inflammatory endophenotypes shared by stroke and COVID-19. Virus target genes are shown in Blue. The stroke-associated genes
were shown in Green. Stroke-associated genes which were also the direct targets of the virus, shown in Orange. The links between genes/proteins denote the
physical protein-protein interactions (including SARS-CoV-2 viral protein and human protein interactions, and human protein-protein interactions).

further clinical and functional studies using COVID-19 patient
samples or animal models are highly needed to investigate direct
viral infection effects and indirect inflammatory effects on human
brains by SARS-CoV-2.

DISCUSSION

There is growing evidence of neurological manifestations of
COVID-19 (Zubair et al., 2020). Acute stroke of varying
arterial and venous mechanisms (in up to 6% of those with
severe illness; Yaghi et al., 2020) is one of the more-severe
presentations of COVID-19, associated with worsen prognosis.
And the pooled prevalence of the history of stroke in patients
with severe COVID-19 was estimated to be 2.98% in our

study, consistent with previous studies (Chen et al., 2020). We
adopted the network medicine-based approaches to investigate
the stroke-associated genes, especially VCAM-1, involved in the
comorbidities between stroke and COVID-19 and preliminarily
inspect the underlying inflammatory endophenotypes between
COVID-19 and stroke.

According to the latest results of epidemiological
investigation, the approximate prevalence of stroke was
1.1% in China, bearing the biggest stroke burden in the world
(Wang et al., 2017). Over the course of the COVID-19 pandemic,
people with stroke history were reported to have worse outcomes
in COVID-19 positive population (Qin et al., 2020). Even though
the overall prevalence of stroke was threefold higher than that in
general population (2.98%) (Wang et al., 2017), it was interesting
to note the stroke prevalence (1.11%, Figure 1) in the non-severe
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FIGURE 4 | The role of VCAM1 in SARS-CoV-2 induced vasculitis and clotting cascade. VCAM1, vascular cell adhesion molecule 1; ACE2, angiotensin-converting
enzyme 2; Ang II, angiotensin II; Ang (1–7), angiotensin (1–7); ERK1/2, extracellular signal-regulated kinase 1/2; IL-6, interleukin-6; IL-1β, interleukin-1β; IFN-γ,
interferon-γ; MCP-1, monocyte chemoattractant protein-1; MIP, macrophage inflammatory protein.

group was similar with that of general population, and lower
than that in severe group (6.06%, Figure 1). Recent studies also
reported patients with COVID-19 initially presented with stroke
and the incidence of stroke was reported to be 5.7% in patients
with severe illness, compared with 0.8% in those with non-severe
illness (Mao et al., 2020). An autopsy series of 27 patients with
COVID-19 detected SARS-CoV-2 in multiple extra pulmonary
organs, and the organotropism of SARS-CoV-2 may influence
the course of COVID-19 and possibly aggravate preexisting
conditions (Puelles et al., 2020). Meanwhile, the intensive
inflammatory response and procoagulant status in COVID-19
patients may contribute to the incidence of stroke (Sellner et al.,
2020). Consistent with previous studies, the levels of CRP, PCT,
and D-dimer in our study were higher in severe group compared
to those in non-severe group (Figure 2). However, the underlying
pathobiology of COVID-19-related stroke remains unknown.

Direct viral toxicity, endothelial cell damage, and
thromboinflammation, dysregulation of the immune response

and dysregulation of the RAAS are now suspected to be
the key mechanisms mediating multiorgan dysfunction
in COVID-19 patients (Gupta et al., 2020). Even though
some studies have reported SARS-CoV-2 can be detected in
cerebrospinal fluid and brain (2020; Puelles et al., 2020), other
neurological manifestations of COVID-19 perhaps reflecting
the proinflammatory and prothrombotic cascade in the wake of
cytokine storm as it affects brain vasculature and the blood-brain
barrier (Rice et al., 2009; Teuwen et al., 2020). Here we used PPI
network analysis to screen some stroke-associated genes which
interact with SARS-CoV-2 host genes. As presented in Figure 4,
one stroke-associated gene, VCAM-1, connects the viral entry
process, dysregulation of the RAAS and immune response,
vessel endothelial cell damage, and clotting cascade together,
indicating that we should recognize SARS-CoV-2 infection from
a holistic perspective, rather than independent mechanism.
Furthermore, the roles of other stroke-associated genes, such
as SAMHD-1, DDAH-1, HMOX1, LTC4S, ACTB, KPNA2, and
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FIGURE 5 | Selected genes involved in COVID-19-associated stroke were differentially expressed between SARS-CoV-2 positive patients and controls. (A) Four
SARS-CoV-2 entry host factors were significantly differentially expressed in nasal tissues from COVID-19 positive patients compared to controls. (B) Stroke-related
genes were differentially expressed in peripheral blood mononuclear cell (PBMC) samples from COVID-19 positive patients and controls. The data are represented as
a boxplot where the middle line is the median, the lower and upper edges of the box are the first and third quartiles, the whiskers represent the interquartile range
(IQR) × 1.5. (C) The bar plot shows the stroke-related genes were upregulated in iPSC–cardiomyocytes after SARS-CoV-2 infection. Adjusted p-value (q) were
computed by Benjamini-Hochberg method. The cutoff of differentially expressed genes were | log2-fold change| > 0.5 and adjusted p-value (q) < 0.05
(Supplementary Tables S5–S8).

JUN, in mediating stroke secondary to SARS-CoV-2 infection are
required to be further explored experimental using COVID-19
patient samples or SARS-CoV-2 animal models.

We acknowledge several limitations in our study. First, as
most of the included studies are from China, the existence
of susceptibility difference among different races may further
contribute to the heterogeneity. There was also significant
heterogeneity in estimating the levels of inflammatory factors due

to the incomplete record of medication history and treatment
approaches in the original publications. Moreover, the network
proximity analysis without considering direction of PPIs can
only show the potential associations and our knowledge of the
human protein-protein interactome is not complete. Previous
studies showed that PPI network analysis without directions
had a good performance in identifying network-based disease-
disease relationships (Menche et al., 2015), including COVID-19
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(Zhou et al., 2020c). Integrative network analysis with
directed networks, including transcriptional regulatory networks
(protein-DNA interactions), are highly needed in the future.
In addition, integration of more comprehensive SARS-CoV-2
interactome, such as SARS-CoV-2 virus-host PPIs and genetic
interactions identified by CRISPR-Cas9 screenings (Daniloski
et al., 2020), may improve performance of network proximity
analysis further.

CONCLUSION

In conclusion, our pooled analysis of existing data suggests
potential dose-response relationships and support COVID-19-
stroke causality and the human interactome analyses characterize
candidate underlying inflammatory response and procoagulant
pathways implicated in stroke and COVID-19. Findings translate
into clinical relevance in terms of need for heightened clinical
suspicion for stroke particularly in those with severe COVID-19.
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