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Abstract

Cancer immunotherapy represents a paradigm shift in oncology, offering a superior anti-tumor efficacy and the potential for durable
remission. The success of personalized vaccines and cell therapies hinges on the identification of immunogenic epitopes capable of
eliciting an effective immune response. Current limitations in the availability of immunogenic epitopes restrict the broader application
of such therapies. A critical criterion for serving as potential cancer antigens is their ability to stably bind to the major histocompatibility
complex (MHC) for presentation on the surface of tumor cells. To address this, we have developed a comprehensive database of MHC
epitopes, experimentally validated for their MHC binding and cell surface presentation. Our database catalogs 451 065 MHC peptide
epitopes, each with experimental evidence for MHC binding, along with detailed information on human leukocyte antigen allele
specificity, source peptides, and references to original studies. We also provide the grand average of hydropathy scores and predicted
immunogenicity for the epitopes. The database (MHCepitopes) has been made available on the web and can be accessed at https://
github.com/jcm1201/MHCepitopes.git. By consolidating empirical data from various sources coupled with calculated immunogenicity
and hydropathy values, our database offers a robust resource for selecting actionable tumor antigens and advancing the design of
antigen-specific cancer immunotherapies. It streamlines the process of identifying promising immunotherapeutic targets, potentially
expediting the development of effective antigen-based cancer immunotherapies.

Statement of Significance: Current peptide-based cancer immunotherapy is challenged with the limited availability of immunogenic
epitopes. To facilitate the discovery of immunogenic peptides, we developed a new, comprehensive database that contains both
experimental and theoretical data on experimentally-verified MHC-binding epitopes.
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Introduction
Over the last decade, there has been an increasing interest in
cancer immunotherapy as a strategy to treat cancer, which
remains one of the leading causes of death worldwide [1]. Cancer
immunotherapy works by reactivating the patient’s immune
system to trigger anticancer mechanisms targeting tumor cells [2,
3]. Cancer immunotherapy takes on various forms including but
not limited to antibody, small molecule, adoptive cell therapy,
oncolytic virus, and vaccine. While substantial progress has
been made in enhancing the potency of immunotherapy in
combating cancer, immunotherapeutic efficacy is still limited
due to the scarcity of highly immunogenic antigens and the
lack of complete understanding of various immune-resistant
mechanisms. Therefore, discovering new immunogenic antigens
and deciphering the immune mechanisms are of utmost
importance to advance the current cancer immunotherapy.

Typically, peptide-based cancer vaccines employ cancer
antigens, which can trigger B-cell and T-cell-mediated immune
responses against cancer [4–6]. Upon recognition of cancer
antigens, B cells can secrete antibodies that bind to cancer
antigens, whereas T cells, particularly CD8+ T cells and CD4+

T cells, engage Class I and Class II major histocompatibility
complex (MHC)-bound [i.e. human leukocyte antigen (HLA)-
bound for humans] epitopes, respectively, which are presented
on the cell surface. This can lead to either indirect or direct killing
of target cancer cells. Sources of cancer antigens include but are
not limited to mutated or overexpressed proteins, differentiation
antigens, altered glycolipids and glycoproteins, and oncogenic
viruses [7]. Also, cancer antigen can be broadly categorized into
tumor-associated antigen (TAA) and tumor-specific antigen (TSA)
with the latter being expressed only on cancer cells and not in
normal tissues [8]. With the recent scientific advances such as
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the discovery of new immune-checkpoint blockades to enhance
the efficacy of cancer vaccines [9], there has been rekindling
and increasing interest in developing peptide-based, therapeutic
immunotherapies [10].

To facilitate the development of anti-cancer strategies target-
ing cancer antigens, there is a need for a comprehensive database
on cancer epitopes that are presented on cancer cell surfaces by
MHC Class I or Class II molecules. Currently, one of the largest
databases on cancer epitopes is the Cancer Epitope Database
and Analysis Resource (CEDAR), which was established in Jan-
uary 2023 [11]. It serves as a companion site to Immune Epitope
Database (IEDB), which has comprehensive epitope data for a
variety of diseases ranging from allergy and transplantation to
infectious disease, autoimmunity, and cancer [12]. Unlike IEDB,
CEDAR’s data include cancer-specific epitopes curated from the
literature. While CEDAR is likely one of the main cancer epitope
databases publicly accessible, there are other databases on cancer
epitopes that have been made available on the web, including
TANTIGEN 2.0 [13], SYFPEITHI [14], MHCBN 4.0 [15], and EPIMHC
[16]. Undoubtedly, all of these databases have contributed sub-
stantially to the current understanding of cancer peptides and
continue to serve as important sources of knowledge for cancer
peptide research. The construction of each database follows a
similar but different approach in which information is curated
from literature, existing databases, or combination of both with
different screening criteria. In addition to the curation method,
the time of publication varies substantially from 1999 for SYFPEI-
THI to the recent introduction of CEDAR in 2023. As a result, there
are likely both redundant and distinct sets of cancer peptides cat-
aloged in the databases. However, the benefit of combining these
databases to improve the comprehensiveness of cancer peptide
database remains elusive. Moreover, despite the aforementioned
available resources, prediction and selection of cancer-specific
epitopes remain a major challenge for the immunotherapy field
because the prediction accuracy is often low, exacerbated by the
often-differing data given by the disparate databases.

To facilitate epitope-dependent immunotherapy development,
we set out to amalgamate all of the aforementioned databases
and also manually curate from literature to create an up-to-
date, comprehensive and centralized MHC-binding cancer peptide
database, the first of this kind. We compiled MHC epitopes from
the data sources, supplemented with relevant recent literature
on cancer MHC epitopes, and firstly calculated immunogenic-
ity scores and hydropathy values for the cataloged epitopes to
augment their utility. In this work, we describe the data cura-
tion and processing processes for the newly developed database
and present a landscape of the curated cancer epitopes with
summary and descriptive statistics. The final curated database
with immunogenicity scores and hydropathy values is accessible
via MHCepitopes (https://github.com/jcm1201/MHCepitopes.git).
We anticipate that the database will serve as a knowledge base
and resources for computational applications and the research
communities to identify potential target candidates to develop
effective cancer immunotherapies.

Materials and methods
Data curation
We screened and extracted peptide data from studies related to
MHC peptides available on PubMed and Web of Science using the
following keywords: peptid∗, cancer/tumo∗r, human, HLA, which
related to the experiments validated MHC peptides. Addition-
ally, we obtained MHC-binding peptide data from multiple public
datasets, including two large repositories hosted by the National

Institutes of Health including IEDB and CEDAR using data up
to 20 November 2023. Peptide search on IEDB was performed
by applying the following search criteria: linear peptide, human
as the host, positive for MHC ligand assay, MHC Class I or II,
and cancer as the disease. A similar set of filters were applied
to search for relevant epitopes on CEDAR while including all
epitope sources and any cancer type. Additional data on MHC-
binding epitopes were curated from web-accessible databases
that have been developed by academic institutions: TANTIGEN
2.0 [13] (http://projects.met-hilab.org/tadb/index.php), SYFPEITHI
[14] (http://www.syfpeithi.de/), MHCBN 4.0 [15] (https://webs.iiitd.
edu.in/raghava/mhcbn/index.html), and EPIMHC [16] (http://bio.
med.ucm.es/epimhc/).

Data processing and database development
Extracted data were then processed further to eliminate any
missing or poor data entries for any of the following variables:
HLA class, epitope sequence, and data source. In cases where
there were overlapping results between different data sources,
the data source with the most complete information was selected
for the final database construction. Finally, a total of 451 065 T-
cell epitopes with multiple peptide features were registered in our
library, which has been made accessible at MHCepitopes (https://
github.com/jcm1201/MHCepitopes.git).

Prediction of immunogenicity scores
Theoretical immunogenicity scores for HLA Class I epitopes were
predicted using a previously described method [17]. Briefly, the
algorithm calculates immunogenicity scores based on the enrich-
ment of amino acids in immunogenic versus non-immunogenic
epitopes as determined by machine learning as well as the impor-
tance scores of different amino acid positions within the MHC
Class I sequence. Mathematically, the immunogenicity score (S)
of a peptide ligand (L) for that HLA molecule (H) is computed as
follows:

S (H, L) =
∑9

p=1
EA(L,p) × Ip × M

(
H, p

)

where p is a position in the ligand (L), E represents the log enrich-
ment score for the amino acid at that position A(L, p), Ip is the
importance of that position, and M(H, p) is the masking status of
anchor positions on that HLA (i.e. 0 if masked otherwise 1).

For HLA Class II peptide ligands, we employed a method
described by Dhanda et al. [18], in which immunogenicity
scores are calculated using an artificial neural network model
trained on HLA binding affinity data. For Class I, higher values
indicate greater immunogenicity whereas for Class II, lower
values mean more immunogenic. For stratification purposes, high
immunogenicity groups were defined as those higher than zero
for Class I and lower than 50 for Class II.

Grand average of hydropathicity index (Gravy
score) calculation
Gravy scores are calculated by taking the sum of the hydropathy
values (i.e. hydrophilicity and hydrophobicity) of all the amino
acids divided by the sequence length [19]. A positive value indi-
cates that the peptide is hydrophobic while a negative value
means that the peptide is hydrophilic.

Epitope sequence visualization via sequence
logos
Sequence logos display patterns in conserved residues in amino
acid sequences in case of protein molecules [20]. These highly
conserved elements often indicate structural or functional
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Figure 1. The data curation process for the construction of the MHC peptide library.

importance. The overall height (measured in bits) represents the
sequence conservation at that position while the height of each
symbol corresponds to the relative frequency of the amino acid at
that particular position. The symbols are color-coded to represent
the chemical properties of amino acids: polar (green), basic (blue),
acidic (red), and hydrophobic (black).

Statistical analysis
Python 3.9.7 and R version 4.2.2 (2022-10-31 ucrt) were used for all
data processing and statistical analysis. Mean and median values
of two groups were compared using independent-sample t-tests
and Wilcoxon tests, respectively. Pearson correlation analysis was
performed to assess correlation between two continuous vari-
ables with the correlation coefficient (R) and associated P-value.
The statistical tests used are specified in the associated text or
figure legends. Statistical significance was determined using a P-
value of <0.05 as a cut-off value.

Results
Construction of an MHC-peptide database
To develop a well-structured, comprehensive database of MHC-
binding epitopes, we curated data from multiple massive data
sources (Fig. 1). IEDB is a freely available resource that catalogs
experimental data on antibodies and T cell epitopes studied in
humans in the context of infectious disease, allergy, autoimmu-
nity, and transplantation. CEDAR is a companion site to IEDB, but
unlike IEDB, its focus centers around cancer, providing a com-
prehensive collection of cancer-specific epitopes curated from

literature. More data on MHC epitopes were also obtained from
other databases that have been curated by research groups at
academic institutions and made freely accessible on the web. In
addition to the aforementioned data sources, we performed a
systematic literature search using a set of search keywords on
PubMed and Web of Science to find relevant literature and manu-
ally parsed the text for MHC epitopes. Once compiled, the dataset
containing 525 694 records underwent a rigorous filtering process
using a set of exclusion criteria to exclude any missing values
or poor data entry and overlaps between different data sources.
As expected, we observed a significant number of overlapped
peptides between the databases, and in such cases, we kept the
data source with the most complete information. It is similarly
important to mention that there were those epitopes uniquely
found in each of the data sources, which verifies the importance
of compiling the data sources to build a comprehensive database.
The final dataset resulted in 465 145 epitopes with their key
information and characteristics including amino acid sequence,
HLA allele, HLA class, source molecule, data source, antigen type,
and epitope length (Fig. 1). Furthermore, we augmented the library
with immunogenicity and gravy scores. The final dataset has
been made accessible under MHCepitopes (https://github.com/
jcm1201/MHCepitopes.git), and also a prototype version of search
engine system for this database is available at https://c2acs761.
caspio.com/dp/3c01b00082e291b8cb0146e4b49a.

Profiling of the MHC-binding epitopes
Next, we characterized the epitopes included in our MHC-peptide
database (Fig. 2). Of the 465 145 epitopes, 337 334 were HLA Class
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Figure 2. The landscape of the MHC epitope database. (A) Proportional distribution of HLA class, antigen type, and immunogenicity. (B) 20 most
common HLA alleles for Classes I and II. The dual y-axes represent the count and percentage (%). (C) Line plot showing the distribution of sequence
lengths for each HLA class. (D) Violin plot overlaid with a boxplot showing the distribution of Gravy scores.

I and 127 811 were Class II. The epitopes were also classified into
either TAA (n = 3762) or TSA (n = 183), while the information was
not available in most of the cases (n = 461 200). Immunogenicity
scores of the epitopes were calculated separately for HLA Classes I
and II and used to categorize them into high vs. low immunogenic-
ity group using the appropriate threshold values (see the Materials

and Methods section). The immunogenicity scores for HLA Class
I had a normal distribution in contrast to those for HLA Class II
where the distribution appeared skewed toward the upper limit of
100 (Supplementary Fig. S1A). The difference in the distribution
of immunogenicity scores between the two HLA classes could be
attributed to the two different methods used for immunogenicity

https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbae011#supplementary-data
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Figure 3. Immunogenicity and hydropathy of MHC epitopes. (A) Difference in the Gravy scores between TAA and TSA. (B) Differences in
immunogenicity between TAA and TSA for HLA Classes I and II. (C) Correlation between the Gravy and immunogenicity scores for overall MHC
epitopes. Gravy scores were weakly correlated with the immunogenicity of MHC epitopes. Two-group comparisons of their mean or median values
were done via the independent-sample t-test or Wilcoxon test. Pearson correlation analysis was performed to test for correlation between the two
variables R and p, indicating the correlation coefficient and P-value, respectively. P-values < 0.05 were considered statistically significant.

prediction (see Materials and Methods for detail). Moreover, MHC
Class I and Class II molecules are structurally different and play
distinct roles in eliciting immune response while being involved
in different T cell activation pathways (i.e. Class I for CD8+ T
cells and Class II for CD4+ T cells). 255 431 epitopes belonged
to the low immunogenicity group, while 172 703 were considered
highly immunogenic. 37 011 had unknown immunogenicity due
to a limitation of the method for calculating immunogenicity
scores for HLA Class II epitopes with 15 amino acids or less. We
identified 20 most common HLA Class I and II alleles for the
epitopes (Fig. 2B). The three most common HLA alleles included
A∗02:01 (n = 45 831; 14.59%), B∗40:01 (n = 17 566; 5.59%), and
B∗51:01 (n = 13 453; 4.28%), for Class I and DPA1∗01:03 (n = 10 599;

9.97%), DPA1∗02:01 (n = 8529; 8.02%), and DRB1∗04:01 (n = 6534;
6.14%) for Class II. HLA Class I and Class II epitopes are known
to have different sequence length distributions, and this was also
the case for our library (Fig. 2C). The most frequently observed
peptide lengths were 9 for Class I (n = 172 612; 51.20%) and 15
for Class II (n = 20 543; 16.10%). Gravy scores are often used to
assess hydropathy of epitopes as they are essential for studying
the chemical, physical, and structural properties of epitopes to
understand associated biological processes. We evaluated the
hydropathy values for the MHC epitopes (Fig. 2D). The Gravy
scores were roughly evenly distributed along the zero axis with a
mean value of −0.340 and a standard deviation of 0.799. Looking
at the source molecules of the epitopes, the most common protein
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Figure 4. Top 10 HLA alleles and MHC epitopes with the highest immunogenicity scores. (A) Top 10 HLA Class I epitopes. (B) Top 10 HLA Class II
epitopes. (C) Top 10 HLA Class I alleles. (D) Top 10 HLA Class II alleles.

was found to be Transferrin receptor protein 1 (n = 1759; 0.38%)
followed by Apolipoprotein B-100 (n = 1172; 0.25%). The 10 most
common source molecules are listed in Supplementary Fig. S1B.

Hydrophobicity and immunogenicity of TSA
versus TAA
Next, we investigated how the hydropathy values and immuno-
genicity of the epitopes differ between TSA and TAA (Fig. 3).
Comparisons of the Gravy scores demonstrated that TAAs were
significantly more hydrophobic than TSA with a P < 0.001 (Fig. 3A).
Similarly, when the immunogenicity scores were significantly
higher for TAA compared with TSA for HLA Class I epitopes
(P < 0.001), while no statistical significance was observed for
Class II epitopes (P = 0.23). We further performed correlation
analysis between the Gravy and immunogenicity scores for each

HLA class (Fig. 3C). As expected, while the correlation was not
strong for both, it was more statistically significant for Class I
(Pearson’s correlation coefficient, R = 0.25, P < 0.001) compared
to Class II (Pearson’s correlation coefficient, R = 0.024, P = 0.43). It
is important to mention that the relative position and hydropho-
bicity of individual amino acid residues reportedly play a crucial
role in determining immunogenicity [21], while the Gravy scores
represent the hydrophobicity of the overall peptide sequences.
Therefore, while our finding here sheds light into potential
correlation between hydrophobicity and immunogenicity of
MHC-binding peptides, it will require future validation studies
to investigate the influence of arrangements and distribution
of charges across the amino acid sequences of peptides while
accounting for various factors such as HLA class and allele
specificity.

https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbae011#supplementary-data
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Figure 5. Chemical profiles of amino acid sequences of MHC epitopes. Sequence logos depicting the motifs of MHC epitopes with five most common
protein sequence lengths for (A) Class I and (B) Class II. The x-axis displays the amino acid positions for multiple sequence alignment. The y-axis
represents the bit scores.

Immunogenic epitopes and HLA alleles
Based on the predicted immunogenicity scores, we ranked
each epitope and found those that are potentially highly
immunogenic (Fig. 4A and B). The top three epitopes included
EEEGEGEGEEGEWEGEEEEGEGEGE (score = 1.66), NPARSFG-
PAVIMGNWENHWIYWVGPIIGAVLAGGL (score = 1.51), and ELDAR-
IFLNEIPLFVEDGEPWFIIN (score = 1.44) for Class I and NSIVKIFKN-
FKEKKS (score = 13.5), TPIGMLKFLKKVKACNPQ (score = 14.3),
and VDEALRLVQAFQYTDE (score = 15.4) for Class II. Likewise,
we identified highly immunogenic HLA alleles based on their
peptide ligands (Fig. 4C and D). In cases where there were multiple
epitopes found for the same allele, the mean immunogenicity
score was calculated and used to define the allele’s immuno-
genic status. The five most immunogenic alleles for Class I
were Cw∗16:01 (score = 0.220), B∗52 (score = 0.220), C∗12:04
(score = 0.207), B∗39:05 (score = 0.206), and C∗02 (score = 0.205),
whereas for Class II, they were DQ∗06:02 (score = 63.7), DQ∗06:03
(score = 63.7), DP∗9 (score = 83.7), DRB1∗11:03 (score = 83.9), and
DQA1∗03:02 (score = 84.0).

Profiles of amino acid sequences of MHC
epitopes.
We then evaluated whether there are any patterns in the MHC-
binding epitopes for Classes I and II by creating sequence logos
of the amino acid sequences within a multiple sequence align-
ment to reveal sequence similarity and significant features using
WebLogo (Fig. 5). We selected the five most frequently observed
sequence lengths (Fig. 2C) for each class and plotted their amino
acid sequences in a multiple sequence alignment fashion. For
both Classes I and II, the amino acid residues appeared to be
highly conserved across all peptide lengths. Specifically for Class
I, the dominant presences of glutamic acid (E) and leucine (L)
at position 2 and leucine (L), tyrosine (Y), valine (V), and Pheny-
lalanine (F) at the last position of each peptide length can be
appreciated. As expected, when comparing the two classes, they
had very distinct sequence patterns. We then further stratified the

epitopes into high vs. low immunogenicity groups to investigate
whether there are any unique features related to immunogenicity
(Fig. 6). The sequence patterns did not change substantially after
the stratification for Class I (Fig. 6A and C). In contrast, the high
immunogenicity group for MHC Class II showed distinctive amino
acid sequence patterns (Fig. 6B), whereas the low immunogenicity
group for MHC Class II (Fig. 6D) had only modest differences from
all (Fig. 5B). The differences observed for Class II high immuno-
genicity group could be attributed to the unique motifs associated
with the highly immunogenic epitopes; however, further valida-
tion is needed as the skewed distribution of highly immunogenic
HLA Class II epitopes resulted in a small number of epitopes per
class (n < 100). Additionally, we analyzed sequence patterns for
epitopes with their immunogenicity verified and documented in
clinical trial reports (Supplementary Fig. S2). Amino acid residues,
particularly for those with a relatively larger sample size (L = 9
and 10) displayed similar characteristics when compared with
all HLA Class I epitopes (Fig. 5A). There was a very minimal
similarity between the rest of the HLA Class I epitopes as well
as HLA Class II epitopes when compared with all HLA epitopes
(Fig. 5B).

Discussion
Immunotherapy has gained substantial interest over the years
as an effective treatment against cancer. However, its wide
application and efficacy have been hindered by the lack of
immunogenic antigens/peptides that sufficiently elicit the body’s
immune response specifically against cancer cells. To this end, our
efforts have been made to construct databases such as CEDAR,
cataloging cancer peptides/epitopes that may potentially serve
as targets for cancer immunotherapy. However, currently these
existing databases are disparate in nature, posing a significant
challenge for the research communities to make the best use
of all the data available. To address this problem, we curated
epitope data on MHC-binding peptides from these disparate data

https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbae011#supplementary-data
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Figure 6. Amino acid sequences for MHC epitopes between high and low immunogenicity. Sequence logos depicting the motifs of MHC epitopes
stratified by high vs. low immunogenicity. The x-axis displays the amino acid positions for multiple sequence alignment. The y-axis represents the bit
scores. (A) HLA Class I epitopes with high immunogenicity. (B) HLA Class II epitopes with high immunogenicity. (C) HLA Class I MHC epitopes with low
immunogenicity. (D) HLA Class II MHC epitopes with low immunogenicity.

sources and compiled them into one central database, where
all the epitopes have been experimentally verified to bind MHC
molecules. In addition to the basic epitope information and
experimental results, immunogenicity scores and hydropathy
values of the epitopes were added to further enhance the practical
utility of the database.

While the developed database presents a highly compre-
hensive repertoire of MHC peptide ligands, there are a few
limitations worth mentioning. One is that the immunogenicity
scores of these MHC epitopes were predicted using the prediction
algorithms available from IEDB Analysis Resource [17, 18], which
may need to be further experimentally validated by T-cell assays.

In fact, the current version of the database includes epitopes
that may or may not trigger T-cell response as there is limited
availability of pertinent results from T-cell assay data. It is also
worth mentioning that there have been recent developments in
the immunogenicity prediction methods for both Class I [22, 23]
and Class II [24, 25]. However, currently there is no consensus
as to what the best method is as their comparative performance
remains elusive. Secondly, there was limited information available
on the antigen type—whether it is TSA or TAA. Therefore, in
the future, the database will likely undergo multiple updates
as (i) a benchmarking study comparing the performance of
existing immunogenicity prediction systems, (ii) more data on
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T-cell activation results, and (iii) more information on antigen
type classification become available. The addition of enhanced
functionalities to the web application in order to improve user
experience such as T-cell epitope information and epitope BLAST
function is also forthcoming.

In summary, we developed a new, comprehensive database
that contains both experimental and theoretical data on
experimentally verified MHC-binding epitopes. We expect that as
our database evolves, it will potentially facilitate the development
of peptide-based cancer immunotherapies by allowing the
researchers to (i) readily take on data-intensive applications such
as building machine learning models and (ii) more efficiently
identify and select therapeutic candidates.
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