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The COVID-19 pandemic with its new variants has severely affected the whole world so-
cially and economically. This study presents a novel data analysis approach to predict the
spread of COVID-19. SIR and logistic models are commonly used to determine the duration
at the end of the pandemic. Results show that these well-known models may provide
unrealistic predictions for countries that have pandemics spread with multiple peaks and
waves. A new prediction approach based on the sigmoidal transition (ST) model provided
better estimates than the traditional models. In this study, a multiple-term sigmoidal
transition (MTST) model was developed and validated for several countries with multiple
peaks and waves. This approach proved to fit the actual data better and allowed the spread
of the pandemic to be accurately tracked. The UK, Italy, Saudi Arabia, and Tunisia, which
experienced several peaks of COVID-19, were used as case studies. The MTST model was
validated for these countries for the data of more than 500 days. The results show that the
correlating model provided good fits with regression coefficients (R2) > 0.999. The esti-
mated model parameters were obtained with narrow 95% confidence interval bounds. It
has been found that the optimum number of terms to be used in the MTST model cor-
responds to the highest R2, the least RMSE, and the narrowest 95% confidence interval
having positive bounds.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The COVID-19 pandemic has devastated health care systems, forced the closure of educational institutions and daily life
activities, and plunged the world into crisis. Despite introducing the vaccine COVID-19, the situation remained challenging
due to the emergence of several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The emergence of
SARS-CoV-2 strains is a matter of concern. Several new outbreak strains could develop in the future, leading to a severe
epidemic resurgence similar to that seen in South Africa (Analytica, 2020; Volz et al., 2021, pp. 2012e2020). Thus, an end to
the pandemic would only be possible if successful vaccines against the circulating variants are made available in sufficient
quantities worldwide (Fontanet et al., 2021). However, to cope with pandemic situations, health authorities always need a
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List of symbols

Parameter Definition Value/Unit

SIR model Eqs. (1)e(4)
I Number of infected individuals count
N Overall number of individuals (S þ I þ R) count
R Number of recovered individuals count
S Number of susceptible individuals count
b Effective contact rate of the disease day�1

g Inverse mean infectious period day�1

Logistic model Eq. (5)
Y Cumulative number of reported cases (C) or deaths (D) count
Yo Initial value of reported cases (C) or deaths (D) count
Y∞ Final projected number of cases (C∞) or deaths (D∞) count
d Number of days
I Time constant day�1

Sigmoidal Transition model Eqs. (6)-(8)
Y , Yo, Y∞ Same as in Logistic model
d1=2 Half time period of a given peak days
m Hill slope exponent dimensionless
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statistical estimate of future cases to prepare at a strategic and logistical level, for example, by providing ventilators and
intensive care units.

The forecast models for the spread of COVID-19 could be helpful for local authorities to take the necessary measures on
time to contain the spread of the pandemic. Therefore, developing reliable and accurate forecasting models to deal with such
pandemics is essential. The number of verified COVID-19 infected peopleworldwide has risen to nearly 464million, with over
6 million deaths due to the disease, according to Worldometers (2022).

The increasing number of COVID-19 reported cases and the multiple wave reoccurrence worldwide due to the virus
variants prompted researchers to emphasize modernizing COVID-19 prediction research by incorporating the latest data
updates into more efficient and complicated COVID-19 models. Reliable prediction of COVID-19 disease transmission dy-
namics, like numerous other scientific concerns related to the disease, is an essential element of the research. The study of
epidemic dynamics is a widely used research topic in mathematical modeling and simulation. Since the pandemic began,
numerous studies have effectively predicted the final extent and duration of the global pandemic COVID-19 (Barrio, Kaski,
Haraldsson, Aspelund, & Govezensky, 2021; Qasim, Ahmad, Yoshida, Gould, & Yasir, 2020; X. Zhou et al., 2020). The in-
dicators are the cumulative daily number of infected persons, deaths, and recovered persons. These parameters can be ob-
tained systematically from official sources. Researchers and health officials use the daily confirmed data to forecast the final
numbers of infected populations. In addition, deaths are also recorded and closely monitored as this is the most critical
indicator of the pandemic impact parameter. Any country that fails to contain the spread of the pandemicmay infect themost
vulnerable population and increase the number of deaths. Therefore, the impact of the countermeasures taken by health and
government authorities can be indirectly assessed by the number of cases and deaths recorded each day. Thus, methods and
models for data analysis are essential to bring the final estimated figures as close as possible to the actual statistics and
evaluate the authorities’ performance.

Researchers have used several mathematical models to predict the number of infected cases and the duration of epidemic
disease (Allen, Brauer, den Driessche, & Wu, 2008; Brauer, Castillo-Chavez, & Feng, 2019; Ndii & Supriatna, 2017; Neves &
Guerrero, 2020; Odagaki, 2021; Ramos, Ferr�andez, Vela-P�erez, Kubik, & Ivorra, 2021; Roberts & Heesterbeek, 2003). For
example, susceptible-infected-susceptible (SIS) models were used to formulate nonlinear occurrence rates in paired epidemic
assumptions (Kabir, Kuga, & Tanimoto, 2019; Meng, Zhao, Feng, & Zhang, 2016), susceptible-infected-recovered (SIR) models
employ epidemic recovery rates (Alshammari & Khan, 2021), susceptible-exposed-infected-recovered (SEIR) type models
predict epidemic proliferation to constitute the exposed class (Aba Oud et al., 2021; Li, Meng, & Wang, 2018; Tian & Yuan,
2017). However, the SIR model is the most widely used mathematical model among epidemiologists, ecologists, and soci-
ologists to study the potential for disease pandemics (Arazi & Feigel, 2021; Cooper, Mondal, & Antonopoulos, 2020; Getz,
Salter, Muellerklein, Yoon, & Tallam, 2018; Rodrigues, 2016).

Roda et al. showed that the SIR model performs better than the susceptible-exposed-infected-resistant model in repre-
senting the information contained in the confirmed-case data (Roda, Varughese, Han, & Li, 2020). This indicates that the
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prediction of more complex models can be unreliable compared to a simpler model. (Fanelli & Piazza, 2020) employed the
susceptible-infected-recovered-deathsmodel (SIRD) to predict the peak of COVID-19 in Italy, whichwas placed aroundMarch
21st, 2020. The authors obtained a peak number of infected people of about 26,000 (excluding recovered and dead) and
deaths number of about 18,000 at the end of the epidemics. The authors used data corresponding to the period between
January 22nd, 2020, and March 15th, 2020 (Fanelli & Piazza, 2020). However, by July 26, 2020, the number of deaths in Italy
was 35,112 (Tang et al., 2014). Thus, the SIRD model failed to predict the pandemic output when used at the early stage.

In the past, epidemiology models (e.g., SIR or logistic type models) were often used to forecast the final size and period of
the epidemic by fitting model parameters to actual recorded data (Malavika et al., 2021; Malhotra & Kashyap, 2020;
Martcheva, 2015). In many cases, the forecasting is inaccurate in size and period (Batista, 2020). The correlating models may
provide a good fit indicated by an R2 > 0.99. However, the various model coefficients are estimated with large bounded
confidence intervals. Small changes in one of the model parameters can lead to a significant deviation in other parameters.
After more than two years, it has become apparent that the global spread of the COVID-19 pandemic is not like any other
pandemic. Irregularities and multiple spikes make it difficult to accurately predict the final numbers based on standard
epidemiological models.

The available data provide an opportunity to assess the reliability of the predictive models before applying them to data
from countries where the epidemic is still in the middle of its course. After such evaluation, one can confidently use such
models to predict progression. In addition to the SIR and logistic models, the sigmoid Transition (ST) type model will be
explored. The sigmoidal transition (ST) model (also called a Hill equation) has beenwidely used in biology, pharmacology, and
physiology to model dose-response curves (Cairns, Robinson, & Loiselle, 2008; Di Veroli et al., 2015; Gadagkar & Call, 2015;
Gesztelyi et al., 2012; Meddings, Scott, & Fick, 1989; Pessoa et al., 2014). In particular, Di Veroli et al. have used the Hill model
to propose a modified multi-phasic model to better fit irregularly evolving data in a very similar manner to the present work.
Their approach provided a sound approach to fitting dose-response curves with various levels of complexity.

This study proposes a novel approach to accurately predict the spread of the COVID-19 pandemic with multiple peaks and
waves. At first, the SIR, logistic, and sigmoidal transition (ST) models will be evaluated for the pandemic data of Italy. A
multiple-term sigmoidal transition (MTST) model will be presented and used to predict the final size and period of COVID-19
spread for a selected number of countries that experienced multiple peaks and waves.

2. Methodology

The world reported COVID-19 data revealed multiple peaks, or multiple waves spread worldwide. The irregularities in
these various spreads (exhibiting multiple peaks) make any standard epidemiological model unreliable in predicting the final
sizes or mortality numbers. This is especially true during ongoing pandemic spreads for authorities to precisely predict the
evolution of the pandemic. Modeling the current pandemic requires new insights into how to treat and analyze daily data.

The following subsections describe standard models used to study pandemic spread, e.g., the SIR and the logistic. In
addition, the sigmoidal transition type model is introduced and used to forecast COVID-19 cases adequately.

We considered three forecasting models for the analysis and forecasting purposes: SIR, logistic, and ST. The model
equations are given in terms of the number of cases (C), or in terms of the number of deaths (D). The model equations are
described in the following subsections.

2.1. SIR model

As described by (Batista, 2020), this model can be represented by the following system of differential equations:

dS
dt

¼ � b

N
SI; (1)

dI
dt

¼ b

N
SI � gI; (2)

dR
dt

¼ gI; (3)

where SðtÞ is the number of susceptible individuals but not infected with the disease at time t, IðtÞ is the number of infected
individuals at time t, RðtÞ is the number of recovered individuals at time t, b is the effective contact rate of the disease, 1= g is
the mean infectious period.

The parameters and the initial values must be estimated from the actual available data. The overall number of individuals
ðNÞ is calculated from S; I and R:

N¼ Sþ I þ R (4)

where S ð0Þ ¼ S0 , Ið0Þ ¼ I0, and Rð0Þ ¼ R0
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A collection of codes based on the SIR model, using MATLAB, is available for researchers and local authorities to forecast
the number of cases and the duration of the epidemic in different countries (H. Zhou & Lee, 2011).

2.2. Logistic model

The logistic type model can be written as follows (Garnier & Quetelet, 1838):

YðdÞ¼ Y∞

1þ
�
Y∞
Y0

� 1
�
e�r:d

(5)

where Y is the cumulative number of reported cases (C) or deaths (D), d is the number of days, while Y∞, Y0; and r are fitting
parameters corresponding to the final projected number of cases or deaths after the end of the epidemic, the initial value, and
the time constant, respectively.

2.3. Sigmoidal transition model

The transition sigmoid type model (also known as Hill equation) is written as follows (Yo ¼ 0) (Gesztelyi et al., 2012):

YðdÞ¼ Y∞

1þ
�

d
d1=2

��m (6)

where, Y is the cumulative number of reported cases (C) or deaths (D), d is the number of days, while Y∞ , d1=2, m are all
positive fitting parameters corresponding to the final projected number of cases or deaths after the end of the epidemic, the
half time period, and the hill slope exponent, respectively.

3. Results and analysis

The statistical data of the first six months of the pandemic for Italy (as a case study) has been used and analyzed based on
the three models. A detailed analysis of the data for Italy during the pandemic progression is given in the following
subsections.

The multiplicity of waves and peaks is linked to the appearance of virus variants throughout the pandemic spread, so the
specific corresponding dates serve to explain the rise of the recorded data. According to the World Health Organization
(WHO), several virus variants have been identified worldwide. These variants are summarized in Table 1. The UK variant
(Alpha, B.1.1.7) is thought to have first appeared in autumn 2020.

3.1. SIR model analysis

The first six months of the COVID-19 pandemic data within Italy were obtained and analyzed using the SIR model fitting.
The obtained results are depicted in Fig. 1 (a, b), which compares the actual cases, and SIR predicted evolution (plot output of
the MATLAB codes developed by (Batista, 2020)).

It could be observed from Fig. 1 that the deviation of the predicted curve from the actual 1st six months’ data (one single
peak) illustrates the limitations of such a model. This deviation would be even more drastic when using the comprehensive
data (more than one year and a half of the pandemic). This shows that the SIR model provides unrealistic estimates, even for
one wave period.

Fig. 1 shows plots obtained from a MATLAB program that was developed by (Batista, 2020). The program uses a specific
color scheme to describe the different parameters of the SIR fit results such as the model curve (blue line), the upper and
lower estimate bounds (red color dashed lines), the final number of cases (Cend represented by green dashed line), the peak
date (vertical red line), and the periods of ascending, descending, and final period of the wave (indicated by red, yellow and
green bands, respectively). The parameters (Rn) and (Ro) displayed on top of Fig. 1 are model parameters defined by Batista in
his Matlab program. Based on epidemiological terminology (Dharmaratne et al., 2020), Ro refers to the number of cases
Table 1
Dominant mutants worldwide.

WHO Label Pango Lineage Earliest documented Samples Transmissibility Immune Evasiveness Vaccine Effectiveness

Alpha B.1.1.7 United Kingdom (Fall 2020) þ þ þ d d ✓

Beta B.1.351 South Africa þ þ þ þ þ ✓

Gamma P.1 Brazil þ þ þ þ ✓

Delta B.1.617.2 India (April 2021) þ þ þ þ þ þ ✓

Lambda C.37 Peru þ þ þ þ þ þ ✓
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Fig. 1. SIR model fitting results for Italy's data until the July 31, 2020. (a) Cumulative infection data, and (b) daily data.
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directly caused by an infected individual during his infectious period. Ro is thus a measure of the ability of a disease to spread
amongst a given population. The reproduction number (Rn) represents the transmissibility of a disease.
3.2. Sigmoidal and logistic analysis

The first six months’ predictions data obtained from sigmoidal transition (ST) and logistic models for Italy are summarized
in Table 2 and Table 3, respectively. These estimates were obtained using theMATLAB curve fitting tool. By comparing Tables 2
and 3, it could be observed that the ST model outperforms the logistic model starting from 80 days of the pandemic. The
predicted final cases error percentage fell under 2% for the sigmoidal model, while the logistic model varied from about 14%
down to 5%.

The fitted data after 162 days are shown in Fig. 2 (a, b). Clearly, the sigmoidal transitionmodel (Fig. 2(b)) shows a very close
correspondence compared to the logistic model (Fig. 2(b)). The prediction bounds are very narrow for the sigmoidal fit model
compared to that of the logistic fit.
Table 2
Final cases prediction by the sigmoidal transition model during the pandemic progression of Italy.

Days C∞ N d1/2 R2 Error (%)

30 12432455 3.52 143.1 0.9995 5066.5
40 194606 4.18 38.08 0.9995 �22.54
50 192479 4.17 37.97 0.9998 �23.39
60 220131 3.78 40.89 0.9995 �12.38
80 245887 3.44 43.9 0.9994 �2.13
100 246905 3.42 44.03 0.9996 �1.72
120 246078 3.44 43.92 0.9997 �2.05
140 246179 3.44 43.93 0.9997 �2.01
160 247117 3.4 44.07 0.9997 �1.64
162 247269 3.4 44.09 0.9997 �1.58
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Table 3
Final cases prediction by the logistic model during the pandemic progression of Italy.

Days Co C∞ R R2 Error (%)

30 279 116782 0.195 0.9991 �53.52
40 351 130510 0.184 0.9997 �48.05
50 650 155190 0.158 0.9988 �38.23
60 1305 182353 0.131 0.9967 �27.42
80 2809 214825 0.104 0.9950 �14.49
100 3755 226269 0.095 0.9950 �9.94
120 4363 231543 0.090 0.9949 �7.84
140 4837 234950 0.087 0.9947 �6.4823
160 5271 237722 0.084 0.9941 �5.38
162 5317 237997 0.084 0.9940 �5.27

Fig. 2. Comparison between (a) logistic and (b) sigmoidal regression fits for Italy's data (1st six months).

Table 4
MATLAB curve fitting results (Italy's first six months).

Sigmoidal transition C ¼ C∞/(1þ(d/d1/2)�m) Logistic C ¼ C∞/(1þ(C∞/Co �1)*e(�r*d))

Parameter Value (95% conf. interval) Parameter Value (95% conf. interval)

C∞ 2.473eþ05 (2.467eþ05, 2.478eþ05) C∞ 2.38eþ05 (2.364eþ05, 2.396eþ05)
M 3.399 (3.365, 3.434) R 0.08411 (0.08082, 0.08741)
d1/2 44.09 (43.95, 44.23) Co 5317 (4541, 6092)
R2 RMSE R2 RMSE
0.9997 1583.9 0.9940 6841.1
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The curve fitting results for Italy's first six months are given in Table 4. The goodness of fit parameters for the sigmoidal
model are better than that of the logistic model: (R2 ¼ 0.9997, RMSE ¼ 1583.9) compared to (R2 ¼ 0.9940, RMSE ¼ 6841.1),
respectively. Where R2 is the regression coefficient and the RMSE is the root mean square difference estimate.
4. Multiple-terms sigmoidal transition model

The irregularity of the recorded COVID-19 pandemic data leads to unrealistic predictions using the usual models. Based on
the complete data sets (more than 1½ years), the three previous models failed to predict the correct patterns due to the
392
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numerous spikes and waves associated with the pandemic. The sigmoidal model was found to have better agreement
compared to the other two models. Since the sigmoidal model (Eq. (6)) works well for a single data distribution with one
peak, it can be extended for a data distribution with multiple peaks (k-peaks). As a first approach, the number of terms is
equivalent to the number of peaks. Nonetheless, the optimum number of terms to be used for a given set of data should be
systematically obtained based on the statistical parameters R2, RMSE, and 95% confidence interval. A developed generalized
form of the sigmoidal transition model for multiple peaks is thus given in Eq. (7):

YðdÞ ¼ Y∞;1

1þ
�

d
d1=2;1

��m1
þ Y∞;2

1þ
�

d
d1=2;2

��m2
þ…þ Y∞;k

1þ
�

d
d1=2;k

��m ¼
Xk
i¼1

Y∞;i

1þ
�

d
d1=2;i

��mi
(7)

� ��mi
The forecasted final number of cases (or mortality) is obtained from Eq. (8) at an infinite time (when d
dd1=2;i

/0), by
summing all the Y∞;i :

Y∞ ¼
Xk
i¼1

Y∞;i (8)
The parameters of Eq. (7) and Eq. (8) are defined in section 2.3.
This novel modeling scheme will be applied to official data of several countries (UK, Italy, Saudi Arabia, and Tunisia) to

validate its accuracy for 500 days. The countries have been selected as case studies for illustration purposes.

4.1. United Kingdom (UK) case study

The first reported case in the United Kingdomwas on January 31, 2020, and 158,488 cases had been reported in England as
of May 21, 2020 (Qasim et al., 2020). From the beginning of the pandemic, it was clear that the epidemic would have a severe
impact on certain socioeconomic groups, usually those already most affected by health inequalities.

Fig. 3 lays out the overall fatality data for the UK (more than 1½ year data); clearly, just as all other countries, the UK has
endured multiple peaks (waves) pandemic spread. Predicting the ultimate data using standard models (SIR) would be un-
realistic. The transitional type evolution of the pandemic would be best described using the multiple terms sigmoidal
transition (MTST) model (using as many terms as the peaks) as given by Eqs. (7) and (8). As shown in Fig. 3, the UK has
recorded roughly 4 or 5 peaks, requiring five terms sigmoidal fit (R2 ¼ 1.00; RMSE ¼ 262.95).

As can be read from Table 5, the fit parameters are obtainedwith relatively narrow confidence intervals; as can be deduced
from these data, the ultimate mortality toll (D∞) is the sum of the D∞;i (calculated using Eq. (8)).

Fig. 3 shows that the UK variant coincides with the period between 200 and 300 days after the first death caused by this
variant. As shown in Fig. 3, a peak was recorded during this period, followed by an evenmore pronounced peak, reflecting the
population impact of such a variant both locally and internationally.

The UK health authorities then launched a widespread vaccination campaign, which proved successful, as shown in Fig. 3
(data after 400 days). Indeed, despite the appearance of the Indian variant (Delta, B.1.617.2), the mortality numbers stayed
very low.
Fig. 3. Mortality data for the UK: (a) cumulative data, (b) daily data.

393



Table 5
MATLAB curve fitting results (sensitivity analysis for Saudi Arabian data).

Data size No. terms Ultimate cumulative value Peak R2 RMSE

(days) D∞ Upper bound (day) (count)

512 4 terms 9513 11,128 450 16 0.9999 21.265
5 terms 9165 10,023 450 16 1.0000 11.278

400 5 terms 9567 16,270 460 18 1.0000 10.808
350 5 terms 9164 21525 420 28 1.0000 11.438
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4.2. Italy case study

Like the UK, the Italian pandemic data showmultiple peaks and waves, reflecting the mutation of the virus and its impact
(Fig. 4). Again, Italy experienced the second peak (at about 300 days) after the first 250 days, which coincided with the spread
of the UK variant. The fourth peak (at about 400 days) appears to coincide with the emergence of the Indian variant. However,
thanks to the successful vaccination campaign, mortality figures in Italy have fallen dramatically and have not changed after
that.
4.3. Saudi Arabia case study

The pandemic data from Saudi Arabia show several peaks; nevertheless, the sanitary measures taken by Saudi health
authorities seemed to prevent the wide spread of the various COVID19 virus variants. Fig. 5 shows that mortality rates
declined between 200 and 300 days (UK variant). Due to the vaccination campaign, KSA managed to prevent the impact of
both the British and Indian variants (i.e., a verymoderate increase in mortality rates in the period between 400 and 500 days).

From Fig. 5(b), Saudi Arabian data seemingly reflect 2 or 3 waves, but looking closely at the data, multiple changes (de-
creases and increases) have been recorded during the first wave (a 300 day long) and for various durations. In fact, prevention
policies and protocols, human behavior, etc., during a given wave may lead to an occasional increase (or a decrease during
better management of the pandemic) in the recorded data leading to the appearance of a “sub-peak” causing divergence of
the fitting scheme. Clearly, a first surge has been recorded after about 50 days of the start of the pandemic. After a peak at 100
days, the decreasing trend has been halted at around 140 days to exhibit a slight increase before decreasing again. So for Saudi
Arabia and following a sensitivity analysis (x4.3.1b), 5 terms are optimal for fitting the recorded data.

4.3.1. Sensitivity analysis of the MTST model for Saudi Arabian data
(a) Effects of Data Size: The sensitivity of the MTST model to the data size has been further explored for Saudi Arabian

pandemic mortality data. The fitting results have been obtained for 350, 400, and more than 512 days of data.
Fig. 4. Mortality data for Italy: (a) cumulative data, (b) daily data.
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Fig. 5. Mortality data for Saudi Arabia: (a) cumulative, (b) daily data. (5-terms MTST model).
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Firstly, the complete data set (512 days) was fitted using 4 and 5 terms of theMTSTmodel and revealed that the 5-terms fit
results had R2¼ 1 and a significantly lower RMSE than that of the 4-terms (R2 ¼ 1& RMSE¼ 10.28 compared to R2¼ 0.9999&
RMSE¼ 21.26). This indicates that an optimization of the number of terms is required to obtain the most appropriate number
of terms to use in the MTST model.

To study the sensitivity to the data size during an ongoing wave, the MTSTmodel has also been used to fit partial data (350
and 400 days). The forecasted curves based on partial data (350 and 400 days) are given in Fig. 6. Both partial data have been
fitted with a 5-term MTST model. Based on 350 days only, the final peak occurs earlier with a higher peak value compared to
the results based on 400 days which had a peak occurring slightly later with a relatively lower peak level.

The sensitivity analysis for the Saudi Arabian data is summarized in Table 5. From this sensitivity analysis, it appears that
using data size just before and just after the actual final peak does not have a significant impact on the ultimate forecasted
value nor the regression quality (equivalent R2 and RMSE). On the other hand, partial data size has a significant impact on the
upper estimation bound of the ultimate value and a slight impact on the day where the peak occurs when using 350 days
Fig. 6. Mortality data for Saudi Arabia (350 & 400 days data): (a) cumulative, (b) daily data.
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Fig. 7. MTST model sensitivity analysis for Saudi Arabia: (a) daily data model fits for nterms ¼ 1 to 7 (nterms ¼ 5 as optimum scenario), (b) evolutions of RMSE
and R2 vs. nterms.
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instead of the complete set of data. Obviously, the more datawe use, the more accurate andmore reliable the fit estimates are
(i.e. narrower estimate confidence bounds).

(b) Effects Of The Number Of Terms: The impact of the number of terms and their significance has also been explored for
Saudi Arabian pandemic mortality data as a case study. Fitting of the complete data set (of 512 days) has been per-
formed using up to 7 terms in an attempt to systematically choose the optimum number of terms.

Fig. 7(a) summarizes the different model curves corresponding to the various numbers of terms used. Fig. 7(b) shows that
using more terms leads to an increase in R2 and a decrease in the RMSE; thus, a better fit is obtained for nterms� 4. It should
be noted, however, that the optimum number of terms to choose is the one corresponding to narrow 95% confidence intervals
having positive lower and upper limits of the model parameters estimates (D∞, d1=2, and m). Table 6a shows fit results for
nterms¼ 5, 6, and 7 scenarios, clearly indicating that R2 and RMSE alone are not sufficient to decidewhether or not a fit result
Table 6a
Sensitivity analysis of the MTST model fit parameters to the number of terms for KSA.

D∞;i value (95% conf. interval) ni value (95% conf. interval) d1=2;i value (95% conf. interval)

(a) 5-terms MTST fit parameters (R2 ¼ 1.0000; RMSE ¼ 11.28)
D∞;1 452.9 (293, 612.8) m1 2.063 (1.731, 2.396) d1=2;1 49.97 (34.14, 65.81)
D∞;2 2359 (2133, 2584) m2 6.64 (6.311, 6.97) d1=2;2 97.95 (96.96, 98.95)
D∞;3 3160 (2882, 3438) m3 6.148 (5.668, 6.627) d1=2;3 174.6 (173.3, 175.9)
D∞;4 462 (335, 589.1) m4 15.79 (13.38, 18.19) d1=2;4 252.1 (250.5, 253.6)
D∞;5 2731 (2663, 2799) m5 10.18 (9.943, 10.42) d1=2;5 461.7 (460.4, 463)

D∞ ¼ 9165 (max. 10023) acceptable overall fit parameters and intervals bounds
(b) 6-terms MTST fit parameters (R2 ¼ 1.0000; RMSE ¼ 9.94)
D∞;1 501.4 (294.9, 707.8) m1 1.986 (1.665, 2.306) d1=2;1 54.64 (34.4, 74.89)
D∞;2 2277 (2022, 2531) m2 6.751 (6.379, 7.123) d1=2;2 97.63 (96.57, 98.69)
D∞;3 3217 (2909, 3525) m3 6.021 (5.502, 6.539) d1=2;3 174.1 (172.7, 175.6)
D∞;4 471.7 (312.5, 631) m4 14.87 (12.14, 17.59) d1=2;4 253 (250.8, 255.1)
D∞;5 1521 (�6415, 9457) m5 11.79 (1.966, 21.61) d1=2;5 437.8 (357.8, 517.9)
D∞;6 1534 (�8082, 1.115eþ04)* m6 10.18 (�19.9, 40.25)* d1=2;5 521.8 (285.4, 758.2)

D∞ 9522 (max. 28002) *relatively high upper bound and some negative lower intervals bounds
(c) 7-terms MTST fit parameters (R2 ¼ 1.0000; RMSE ¼ 9.96)
D∞;1 521.5 (295.4, 747.7) m1 1.962 (1.644, 2.28) d1=2;1 56.54 (34.47, 78.61)
D∞;2 2236 (1977, 2495) m2 6.803 (6.419, 7.187) d1=2;2 97.46 (96.4, 98.52)
D∞;3 3273 (2965, 3580) m3 5.926 (5.416, 6.435) d1=2;3 174.3 (172.8, 175.7)
D∞;4 443.6 (267.9, 619.3) m4 15.35 (12.11, 18.59) d1=2;4 253.2 (250.8, 255.5)
D∞;5 1769 (�1.66, 1.69) eþ05 m5 11.57 (�65.35, 88.49) d1=2;5 441.1 (�735.7, 1618)
D∞;6 942.8 (�2.27, 2.27) eþ06* m6 11.13 (�2319, 2341) d1=2;6 520 (�4.24, 4.34) eþ04
D∞;7 615.6 (�7.02, 7.02) eþ06* m7 14.01 (�7.46, 7.46) eþ04* d1=2;7 593 (�3.624, 3.64) eþ05

D∞ ¼ 9802 (max. 9466842) *unrealistic upper bounds and numerous negative lower intervals bounds
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Table 6b
Summary of the selection criteria of the number of terms to be used in the MTST model for KSA.

n R2 RMSE Reject/Accept

1 0.6493 1565.3 Reject for inaccurate D∞ ; low R2; high RMSE
2 0.9902 261.75 Reject for negative lower bound of D0 ; low R2; high RMSE
3 0.9942 200.36 Reject for negative lower bounds; low R2; high RMSE
4 0.9999 23.46 Reject for negative lower bound of D1; and d1=2;2
5 1.0000 11.28 Accept for optimum fit criterion
6 1.0000 9.94 Reject for negative lower bounds and relatively high upper bound of D∞ (Table 6a)
7 1.0000 9.96 Reject for negative lower bounds and unrealistic high upper bound of D∞ (Table 6a)
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is acceptable. In fact, both (6) and (7) terms fit models give exceptional R2 and RMSE performances but both significantly fail
to provide realistic fit parameters values and reasonable 95% confidence intervals (having negative lower intervals bounds).

Table 6b summarizes fit results for nterms varying from 1 to 7 while given the rejection criteria for the various n-terms
scenarios. The most critical rejection criterion is in fact too wide 95% confidence interval with a negative lower bound.
Because the fit parameters are basically positive parameters (see x2.3), no negative bound is accepted.

4.4. Tunisia case study

Fig. 8 shows that Tunisia managed to control the spread of the pandemic in the initial phase (up to 200 days). However,
following the emergence of the different variants and the lack of an effective vaccination campaign, combined with the
inability of the authorities to enforce hygiene regulations and laws, Tunisia has experienced several consecutive peaks of
pandemic spread. This continuous trend of repetitive peaks reflects the failure to maintain a minimum level of control over
the spread of the pandemic. The 4th peak appears to coincide with the emergence of the Indian variant. Despite a marked
increase in deaths, Tunisia is well on its way to controlling the spread.

4.5. MTST model fitting summary for the studied countries

Table 7 summarizes the projected ultimate number of fatalities for the four studied countries. Only the upper bound is
indicated along with the average estimated D∞. It is well established from Figures (3-6) that the multiple terms sigmoidal
transition model (MTST) fits well the mortality data curves for all countries included in this study. The fitting model
Fig. 8. Mortality data for Tunisia: (a) cumulative data, (b) daily data.
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Table 7
Multi-Terms Sigmoidal Transition model fit parameters for UK, Italy, KSA, and Tunisia.

D∞;i value (95% conf. interval) mi value (95% conf. interval) d1=2;i value (95% conf. interval)

(d) UK: 5-terms MTST fit parameters (R2 ¼ 1.0000; RMSE ¼ 262.95)
D∞;1 41690 (41500, 41870) m1 3.81 (3.76, 3.85) d1=2;1 48.31 (48.13, 48.49)
D∞;2 24390 (23330, 25440) m2 18.44 (17.68, 19.19) d1=2;2 260.9 (260.1, 261.7)
D∞;3 59060 (57720, 60400) m3 25.85 (25.35, 26.36) d1=2;3 323.7 (323.5, 324)
D∞;4 5045 (1363, 8727) m4 3.87 (0.67, 7.07) d1=2;4 413.8 (127, 700.6)
D∞;5 4479 (1467, 8812) m5 43.41 (16.22, 70.6) d1=2;5 524.7 (505.6, 543.8)

D∞ 134650 (max. 150401)
(e) Italy: 4-terms MTST fit parameters (R2 ¼ 1.0000; RMSE ¼ 180.83)
D∞;1 35680 (35640, 35720) m1 3.66 (3.63, 3.68) d1=2;1 48.62 (48.52, 48.72)
D∞;2 36170 (35120, 37220) m2 22.61 (22.2, 23.01) d1=2;2 281.9 (281.3, 282.5)
D∞;3 23050 (21510, 24600) m3 23.52 (22.06, 24.98) d1=2;3 333.6 (332.7, 334.4)
D∞;4 33330 (32670, 34000) m4 20.86 (20.51, 21.2) d1=2;4 409.6 (408.9, 410.3)

D∞ 128240 (max. 131540)
(f) KSA: 5-terms MTST fit parameters (R2 ¼ 1.0000; RMSE ¼ 10.278)
D∞;1 452.9 (293, 612.8) m1 2.063 (1.731, 2.396) d1=2;1 49.97 (34.14, 65.81)
D∞;2 2359 (2133, 2584) m2 6.64 (6.311, 6.97) d1=2;2 97.95 (96.96, 98.95)
D∞;3 3160 (2882, 3438) m3 6.148 (5.668, 6.627) d1=2;3 174.6 (173.3, 175.9)
D∞;4 462 (335, 589.1) m4 15.79 (13.38, 18.19) d1=2;4 252.1 (250.5, 253.6)
D∞;5 2731 (2663, 2799) m5 10.18 (9.943, 10.42) d1=2;5 461.7 (460.4, 463)

D∞ 9165 (max. 10023)
(g) Tunisia: 4-terms MTST fit parameters (R2 ¼ 0.9999; RMSE ¼ 48.88)
D∞;1 4466 (4356, 4577) m1 14.69 (14.29, 15.08) d1=2;1 241.1 (240.1, 242)
D∞;2 3865 (3713, 4018) m2 22.79 (21.66, 23.92) d1=2;2 313.1 (312.5, 313.8)
D∞;3 4491 (4305, 4678) m3 26.83 (25.55, 28.12) d1=2;3 407.1 (406.3, 408)
D∞;4 12040 (11620, 12460) m4 27.65 (26.59, 28.7) d1=2;4 495 (494.2, 495.7)
D∞ 24865 (max. 25733)
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regression coefficient R2 is unity, and RMSE is very low for all countries, indicating that MTST is more effective for analyzing
and predicting multi-waves pandemics.
5. Conclusions

The nature and spread of the COVID-19 pandemic make the predictions of current models unrealistic. The multi-peaks
outbreaks of COVID-19 and its variants require a more elaborated modeling approach. The multiple terms sigmoidal tran-
sition (MTST) model fits well the mortality curve compared to the logistic model. Moreover, the MTST model reproduces the
different outbreaks well and is very close to the actual outbreak data. A sensitivity analysis of the MTST model using different
data sizes (for Saudi Arabia) revealed that using data size just before and just after the actual final peak does not have a
significant impact on the ultimate forecasted value nor the regression quality (equivalent R2 and RMSE). Divergence of the
fitting scheme mainly occurs due to (i) inadequate initial estimate bounds for the different model parameters and (ii) un-
realistic number of terms. Furthermore, the sensitivity of theMTSTmodel to the number of terms showed that it is possible to
find the optimum number of terms to be used corresponding to high R2, low RMSE, and narrow 95% confidence intervals of
the different fit parameters. While for a given choice of the number of terms, any unrealistically wide 95% confidence interval
with a negative lower bound leads to rejection of the scenario. Therefore, it can be concluded that the MTST model is more
effective compared to the logistic model for pandemics with multiple outbreaks. The MTST model will be beneficial for the
relevant authorities to predict the consequences of the pandemic at an earlier stage and take countermeasures to minimize
the impact. This approach allows to reasonably narrow down the estimate bounds when the SIR or logistic models produce
unreliable high confidence intervals in the estimate of fitting parameters such as the final cases size or the ultimate number of
deaths.
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