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Abstract: In Gabon, terrestrial mammals of protected areas have been identified as a possible source
of antibiotic-resistant bacteria. Some studies on antibiotic resistance in bats have already been carried
out. The main goal of our study was to detect extended-spectrum beta-lactamases (ESBLs) that are
produced by enterobacteria from bats in the Makokou region in Gabon. Sixty-eight fecal samples
were obtained from 68 bats caught in the forests located 1 km from the little town of Makokou.
After culture and isolation, 66 Gram-negative bacterial colonies were obtained. The double-disk
diffusion test confirmed the presence of ESBLs in six (20.69%) Escherichia coli isolates, four (13.79%)
Klebsiella pneumoniae isolates, and one (3.45%) Enterobacter cloacae isolate. The analysis based on the
nucleotide sequences of the ESBL resistance genes showed that all cefotaximase-Munichs (CTX-Ms)
were CTX-M-15 and that all sulfhydryl variables (SHVs) were SHV-11: 41.67% CTX-M-15-producing
E. coli, 16.67% CTX-M-15+SHV-11-producing E. coli, 8.33% CTX-M-15-producing K. pneumoniae, 25%
CTX-M-15+SHV-11-producing K. pneumoniae, and 8.33% CTX-M-15-produced E. cloacae. This study
shows for the first time the presence of multiresistant ESBL-producing enterobacteria in fruit bats
in Makokou.
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1. Introduction

Bats are an important, widespread, and abundant taxon of mammals with over 1300 described
species [1]. These species are considered as the reservoir of many viruses that periodically spread in
human populations during disease outbreaks and whose dynamics need to be fully understood [2].
Bats have also been recognized as a potential reservoir of bacterial pathogens, although little is known
concerning bat microbiota [2–4]. Among bats, the Pteropodidae family (large oldworld and mostly
frugivorous bats) are suspected to play an important role in the dynamic of zoonosis. Many species are
colonials with individuals roosting in close physical proximity that favors multiple interactions and
opportunities for intraspecific pathogen transmission [4–7]. Most of the species have a wide-ranging
distribution, and many urban colonies of several thousands of individuals are established in African or
Asian countries, increasing the opportunities for bat–human pathogen transmission.

The existence of antibiotic multi-resistant (AMR) enterobacteria that have been recurrently
documented in wildlife in recent years provide important insights into the potential role of wildlife
as reservoirs of resistant bacteria. AMR enterobacteria are also pertinent markers to understand the
dynamics of zoonosis and the complex transmission routes among wildlife and humans [8]. Many ways
of wildlife AMR bacteria acquisition have been documented, such as contamination from human or
domestic animal effluent, wastewater, and even contaminated food remains [8]. However, the possible
existence of AMR enterobacteria has been poorly investigated in large fruit bats, although it could
provide key information on bat–human transmission.

In several studies, antibiotic-resistant bacteria have been described in bat isolates, suggesting the
possibility of these mammals being one of their environmental reservoirs [4,6,9–15]. In a survey of wild
and captive grey-headed flying foxes (Pteropus poliocephalus), McDougall et al. detected the presence of
resistance to several antibiotic families in 5.3% of wild flying foxes from different Australian colonies [6].
This study provided evidence of both transfer from humans to bats and from the environmental
resistome to bats. A wide-ranging study that investigated the presence of antimicrobial resistance
in wildlife and humans in the urban environment of Nairobi (Kenya) [16] found that fruit bats and
some bird species were more likely to carry AMR E. coli than other taxonomic wildlife groups. This
study has shown that urban environments play an important role in the dynamics of wildlife–human
interactions and increase the frequency of wildlife-to-human transmission. In contrast, in a recent
study, Brazilian fruit bats showed a low occurrence of resistance in their enterobacterial microbiota due
to the well-preserved environment where the animal was captured [1]. However, the role of fruit bats
in wildlife–human interactions is still poorly documented and needs to be more deeply investigated,
particularly in the context of anthropogenic environments.

Beta-lactamases are enzymes that provide resistance to the beta-lactam family of antibiotics in
Gram-negative bacteria (GNB) such as enterobacteria. These enzymes are classified into classes A–D [17].
Among these enzymes, those belonging to molecular class A extended-spectrum beta-lactamases
(ESBLs) are active against expanded-spectrum cephalosporins and monobactams (Aztreonam) [18].
The introduction of extended-spectrum cephalosporin in clinical practice has caused the emergence
and worldwide spreading of ESBLs in the Enterobacteriaceae such as Klebsiella pneumoniae and
Escherichia coli [18,19]. The worldwide presence of EBSLs is at the origin of therapeutic failure
when treating bacterial infections [19,20]. ESBL types temoneira (TEM), sulfhydryl variable (SHV),
and cefotaximase-Munich (CTX-M) are the most common ESBLs found in humans, livestock, and
wildlife [6]. The global spread of ESBL-producing Enterobacteriaceae, particularly CTX-M-15, creates
serious therapeutic challenges [10,21–32].

In Gabon, CTX-M-15 has only been identified in ESBL-producing Enterobacteriaceae isolates
from patients in the Albert Schweitzer Hospital in Lambaréné [31] and in poultry [32], but not in
wildlife. Although previous studies on antibiotic resistance in Gabon have already described some
phenotypes and resistance genes in wild terrestrial mammals [21,29,30], nothing is known about their
dissemination in the environment. We hypothesized that bats could participate in the dissemination of
antibiotic resistance in wildlife [14].
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This study aimed to provide additional knowledge about the spread of ESBL-producing
Enterobacteriaceae isolates from bats of the Pteropodidae family in Makokou (central Gabon).

2. Materials and Methods

2.1. Research License

The research licence for this study was obtained from the Scientific Commission on Research
Authorisations of the National Centre of Scientific and Technological Research (CENAREST) (permit
no. AR0033/17/MESRSFC/CENAREST/CG/CST/CSAR, dated 4 July 2017).

2.2. Study Area

The collection of bat fecal samples was carried out in an unprotected forest area of Makokou in
Ogooué Ivindo province (located in the northeast region of Gabon) over two periods. The first capture
was made at the entrance of the caves on the outskirts of the city over 10 days in May 2017. The second
capture occurred near the fruit trees behind the town houses over 6 days in October 2017.

2.3. Collection of Fecal Samples

To capture the bats, a mist net (3000 × 2000 mm, ECOTONE®, France) was installed in the
early evening in the narrow forests behind the human dwellings between 18:00 and 06:00. The nets
were continuously monitored, and bats were immediately removed and placed in cloth bags. In the
laboratory, fecal samples were collected from 68 bats. A cotton swab was rotated inside the bat
rectum and was immediately discharged into 5 mL of sterile water. One millilitre of liquid sample
was inoculated into BacT/Alert blood culture media (bioMérieux, Auvergne-Rhône-Alpes, France)
according to a previously established protocol [30]. After incubation, enterobacteria present in the
medium produced CO2 during their growth phase. CO2 product induces a decrease in pH of the
culture medium. This change in pH caused the bottom of the bottle to change from blue to yellow
(positive samples). The bottles containing positive samples, the bottoms of which were yellow, were
kept at 4 ◦C pending further analysis.

2.4. Culture, Isolation and Identification of Colonies

In the bacteriology laboratory of the International Centre for Medical Research of Franceville
(CIRMF), 50 µL of bacterial solution of each Bact/Alert vial was streaked on MacConkey agar (MCA)
(bioMérieux, France) supplemented with 4 µg/mL cefotaxime and incubated at 37 ◦C for 24 h. After
incubation, each colony, differentiated by structure and color, was picked and transferred by the same
means and incubated in the same conditions. The purified colonies were subjected to biochemical
identification by the VITEK® 2 Compact 15 (bioMérieux, Marcy l’étoile, France).

2.5. Antibiotic Susceptibility Testing

ESBL production was phenotypically confirmed on Mueller–Hinton (MH) agar when the difference
in the inhibition diameter zone from one of the cephalosporins (cefotaxime or ceftazidime) was alone
and in combination with a disk containing clavulanic acid of ≥ 5 mm. ESBL production was
confirmed by the double-disk synergy test. Antibiotic resistance was assessed by the disk-diffusion
test method [33] on MH agar (BioMérieux) and the clinical breakpoints recommended by the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines (Version 7.1)
(http://www.eucast.org/clinical_breakpoints/) using amoxicillin (25 µg), amoxicillin/clavulanic acid
(20/10 µg), aztreonam (30 µg), cefepime (30 µg), cefotaxime (30 µg), cefoxitin (30 µg), ceftazidime
(30 µg), cephalexin (30 µg), chloramphenicol (30 µg), colistin (50 µg), ertapenem (10 µg), fosfomycin
(200 µg), gentamicin (10 µg), imipenem (10 µg), levofloxacin (5 µg), nalidixic acid (30 UI), netilmicin
(10 µg), ofloxacin (5 µg), piperacillin/tazobactam (30/6 µg), piperacillin (30 µg), temocillin (30 µg),

http://www.eucast.org/clinical_breakpoints/
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tetracycline (30 µg), ticarcillin/clavulanic acid (75/10 µg), ticarcillin (75 µg), tobramycin (10 µg), and
trimethoprim/sulfonamide (1.25/23.75 µg).

The ESBL genes were identified by PCR using primers, the sequences of which are listed in
Table 1 [34–36]. For molecular identification of ESBL genes, DNA was extracted by the boiling method,
which was employed on a single colony of each isolate in a final volume of 100 µL of distilled water by
incubation at 95 ◦C for 10 min followed by a centrifugation step [37]. The thermal cycling program
consisted of initialising denaturation at 95 ◦C for 2 min, followed by 30 cycles of denaturation at 95 ◦C
for 45 s. Hybridisation was carried out for 30 s (temperature was dependent on the primer (SHV: 59 ◦C,
TEM: 63 ◦C, CTX-M: 57 ◦C)) along with extension at 72 ◦C for 30 s, with a final elongation step at 72 ◦C for
5 min. DNA from reference blaCTX-M-, blaTEM- and blaSHV-like-positive isolates was used as a positive
control. PCR products were visualized after electrophoresis on 1.5% agarose gels containing ethidium
bromide run at 100 V for 80 min. A 100 bp DNA ladder (Promega, USA) was used as a size marker. PCR
products were purified using the ExoSAP-IT purification kit (GE Healthcare, Piscataway, NJ, USA) and
sequenced by Sanger sequencing (first-generation sequencing) at Microsynth Seqlab AG (Göttingen
Hannah-Vogt-Str.1, DE-37085 Göttingen). Nucleotide sequence alignment was done using the Mega 7
software at Microsynth Seqlab AG (Göttingen Hannah-Vogt-Str.1, DE-37085 Göttingen). Analysis and
identification of these sequences were performed online using the BLAST programme available at the
National Center for Biotechnology Information web page (http://www.ncbi.nlm.nih.gov).

Table 1. The different primers used for polymerase chain reaction (PCR) and bacterial identification.

Primers Sequences Basic Pair Length Hybridization Temperature References

SHV-F 5′-GATGAACGCTTTCCCATGATG-3′ 214 bp 59 ◦C [36]
SHV-R 5′-CGCTGTTATCGCTCATGGTAA-3′

TEM-F 5′-AGTGCTGCCATAACCATGAGTG-3′ 550 bp 63 ◦C [36]
TEM-R 5′-CTGACTCCCCGTCGTGTAGATG-3′

CTX UNIV-F 5′-TCTTCCAGAATAAGGAATCCC-3′ 909 bp 57 ◦C [36]
CTX UNIV-R 5′-CCGTTTCCGCTATTACAAAC-3′

2.6. Phylogenetic Analyses

Based on the examination of the relationship between the blaCTX-M-15 and blaSHV-11 sequences
obtained by known sequences, phylogenetic trees were constructed using a set of reference sequences
from GenBank. Phylogenetic analyses using ClustalW (v. 1.8.1 in BioEdit v. 7.0.9.0 software, Ibis
Therapeutics, Carlsbad, CA, USA), were performed with a multiple alignment matrix of obtained
partial blaCTX-M-15 and blaSHV-11 sequences and the GenBank reference sequences. For three
constructions, we used the maximum likelihood (ML) method. The best-fitting ML model based on
the Akaike information criterion was general time reversible (GTR) + Gamma + I (invariant sites).
To finalize the construction, the tree was obtained by using PhyML [38,39] with nearest-neighbour
interchange (NNI) + subtree pruning regrafting (SPR) branch swapping and 1000 bootstrap replicates.

2.7. Statistical Analyses

Data on identified bacterial species and antibiotic susceptibility testing were collected, cleaned,
and entered into Statistical Package for Social Sciences (SPSS) 20.0 (SPSS Inc., Chicago, IL, USA). These
data were analyzed using descriptive statistics, frequencies and bivariate analyzes (cross tables).

2.8. Accession Numbers

The genomes of all genes were deposited in NCBI/GenBank under the institutional numbers CH8
(2) CTX-M-15 [MK559056], CH17 (2) CTX-M-15 [MK559065], CH18 (3) CTX-M-15 [MK559057], CH38
(2) CTX-M-15 [MK559063], CH41 (1) CTX-M-15 [MK559058], CH41 (2) CTX-M-15 [MK559064], CH42
(1) CTX-M-15 [MK559059], CH42 (2) CTX-M-15 [MK559060], CH43 (1) CTX-M-15 [MK559066], CH71

http://www.ncbi.nlm.nih.gov
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(1) CTX-M-15 [MK559061], CH82 (1) CTX-M-15 [MK559062], CH38 (2) SHV-11 [MK590053], CH42 (2)
SHV-11 [MK590054] and CH43 (1) SHV-11 [MK590055].

3. Results

3.1. Enterobacteria Found in Bat Faecal Samples

Over the two capture sessions, 46 Epomops franqueti and 22 Megaloglossus woermanni were caught;
a total of 68 bats of the Pteropodidae family were collected. Of the 68 bacterial strains identified, 66 were
Gram-negative bacteria (GNB). Among the GNB, 29 (42.65%) were enterobacteria, which consisted of
11 (37.93%) Escherichia coli, five (17.24%) Klepsiella pneumoniae, three (10.34%) Enterobacter aerogenes, two
(5.88%) Enterobacter cloacae, two (6.89%) Serratia plymuthica, one Citrobacter freundii (3.45%), one (3.45%)
Enterobacter hormaechei, one (3.45%) Ewingella americana, one (3.45%) Morganella morganii, one (3.45%)
Pantoea sp., and one (3.45%) Proteus vulgaris (Table 2). The double-disk diffusion test revealed synergies
that confirmed the presence of ESBLs in six (20.69%) E. coli isolates, four (13.79%) K. pneumoniae isolates,
and one (3.45%) E. cloacae isolate (Table 2).

Table 2. Bacterial strains isolated from fruit bats.

Enterobacteria Strains Isolates
n = 29

ESBL Detected
n (%)

Citrobacter freundii 1 (3.45) 0
Enterobacter aerogenes 3 (10.34) 0

Enterobacter cloacae 2 (6.89) 1 (3.45)
Enterobacter hormaechei 1 (3.45) 0

Escherichia coli 11 (37.93) 6 (20.69)
Ewingella americana 1 (3.45) 0

Klebsiella pneumoniae 5 (17.24) 4 (13.79)
Morganella morganii 1 (3.45) 0

Pantoea sp. 1 (3.45) 0
Proteus vulgaris 1 (3.45) 0

Serratia plymuthica 2 (6.89) 0

3.2. Antibiotic Susceptibility

Antibiotic susceptibility tests yielded 11 (37.93%) ESBL-producing enterobacteria. Among beta-
lactams, resistance was observed by using amoxicillin (100%), ticarcillin (100%), cefotaxime (100%),
ceftazidime (100%), cefpodoxime (100%), aztreonam (100%), ticarcillin/clavulanic acid (90.90%),
piperacillin (90.90%), cephalexin (100%), cefepime (81.81%), amoxicillin/clavulanic acid (54.54%),
cefoxitin (54.54%), ertapenem (36.36%), piperacillin/tazobactam (54.54%), and imipenem (0.00%)
(Table 3).

As for other antibiotics tested on these positive ESBL strains, resistance was observed as follows:
Erythromycin (100%), streptomycin (100%), ciprofloxacin (90.90%), kanamycin (81.81%), tetracycline
(81.81%), trimethoprim/sulfamethoxazole (72.72%), gentamycin (63.63%), nalidixic acid (63.63%),
tobramycin (63.63%), colistin (54.54%), ofloxacin (54.54%), levofloxacin (45.45%), netilmicin (36.36%),
amikacin (27.27%), nitrofurantoin (18.18%), and chloramphenicol (0%) (Table 3).

Seven ESBL-producing Enterobacteriaceae from E. franqueti bats species and four ESBL-producing
Enterobacteriae from M. woermanni bats species were identified. These bats belong to the family of
Pteropodidae (Table 4). ESBL-producing enterobacteria generally showed resistance to amoxicillin,
amoxicillin/clavulanic acid, ticarcillin, ticarcillin/clavulanic acid, piperacillin, piperacillin/tazobactam,
cephalexin, cefotaxime, ceftazidime, cefpodoxime, aztreonam and cefepime (Table 4). Genetic analysis
of ESBL resistance genes by PCR yielded only two types of genes: blaCTX-M-15, with a molecular
weight of 214 bp, and blaSHV-11, with a molecular weight of 909 pb (Table 4).
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Table 3. Prevalence of antibiotic resistance in enteric bacterial strains carrying resistance for beta-lactams.

Antibiotic Agent
Number and Percentage (%) of ESBL-Producing Enterobacteria Strains by Species

E. cloacae
(n = 1)

E. coli
(n = 6)

K. pneumoniae
(n = 4)

Total
(n = 11)

Amoxicillin 1 (100) 6 (100) 4 (100) 11 (100)
Ampicillin 1 (100) 6 (100) 4 (100) 11 (100)

Amoxicillin/clavulanic acid 1 (100) 1 (16.16) 4 (100) 6 (54.54)
Ticarcillin 1 (100) 6(100) 4 (100) 11 (100)

Ticarcillin/clavulanic acid 1 (100) 5 (83.33) 4 (100) 10 (90.90)
Piperacillin 1 (100) 5 (83.33) 4 (100) 10 (90.90)

Piperacillin/tazobactam 1 (100) 0 2 (50) 3 (27.27)
Cephalexin 1 (100) 6 (100) 4 (100) 11 (100)
Cefoxitin 1 (100) 2 (33.33) 3 (75) 6 (54.54)

Cefotaxime 1 (100) 6 (100) 4 (100) 11 (100)
Cefpodoxime 1 (100) 6 (100) 4 (100) 11 (100)
Ceftazidime 1 (100) 6 (100) 4 (100) 11 (100)

Cefepime 1 (100) 4 (66.67) 4 (100) 9 (81.81)
Aztreonam 1 (100) 6 (100) 4 (100) 11 (100)
Imipenem 0 0 0 0
Ertapenem 1 (100) 2 (33.33) 1 (25) 4 (36.36)
Amikacin 1 (100) 2 (33.33) 0 3 (27.27)

Gentamycin 1 (100) 2 (33.33) 4 (80) 7 (63.63)
Kanamycin 1 (100) 4 (66.67) 4 (100) 9 (81.81)
Netilmicin 0 2 (33.33) 2 (50) 4 (36.36)

Streptomycin 1 (100) 6 (100) 4 (100) 11 (100)
Tobramycin 1 (100) 3 (50) 3 (60) 7 (63.63)

Erythromycin 1 (100) 6 (100) 4 (100) 11 (100)
Fosfomycin 1 (100) 1 (16.16) 2 (40) 4 (36.36)
Tetracycline 0 5 (83.33) 4 (100) 9 (81.81)

Colistin 1 (100) 1 (9.09) 4 (80) 6 (54.54)
Trimethoprim/sulfamethoxazole 0 4 (66.67) 4 (100) 8 (72.72)

Chloramphenicol 0 0 0 0
Nalidixic acid 1 (100) 2 (33.33) 4 (100) 7 (63.63)
Ciprofloxacin 1 (100) 5 (83.33) 4 (100) 10 (90.90)

Ofloxacin 0 3 (50) 3 (60) 6 (54.54)
Levofloxacin 0 2 (33.33) 3 (60) 5 (45.45)

Nitrofurantoin 0 0 2 (50) 2 (18.18)

In our findings, E. coli was the main enterobacterial species that was resistant to ESBLs, followed
by K. pneumoniae and E. cloacae. The analysis of the nucleotide sequences resulting from the sequencing
of the ESBL resistance genes showed that all blaCTX-Ms were blaCTX-M-15 and all blaSHVs were
blaSHV-11, according to the following distribution: 54.54% ESBL (CTX-M-15)-producing E. coli, 9.09%
ESBL (CTX-M-15)-producing K. pneumoniae, 27.27% ESBL (CTX-M-15, SHV-11)-producing K. pneumoniae
and 9.09% ESBL (CTX-M-15)-producing E. cloacae (Table 4).

Phylogenetic analyses revealed that all the sequences obtained in bats that carry blaCTX-M-15
(see Table 4) clustered with human bacterial strains carrying blaCTX-M-15 from Turkey (Figure 1).
Four sequences carrying blaSHV-11 from K. pneumoniae isolates provided from bats (CH43 (1)_SHV-11,
CH43 (2)_SHV-11, CH42 (2)_SHV-11 and CH38 (2)_SHV-11) clustered with human bacterial strains
from Tunisia (Figure 2).
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Table 4. Antibiotic resistance profiles of Extended spectrum Beta-lactamase (ESBL)-producing Enterobacteriae from bats belonging to the family of Pteropodidae.

Colony Species of Bat Bacterial Strain Profiles of ESBL-Producing Enterobacteriae ESBL Gene

CH 82 (1) Epomops franqueti E. coli AX-TIC-PRL-CL-CTX-CAZ-CPD-ATM-AMP-TE-STR-SXT-ERY blaCTX-M-15
CH 71 (1) E. franqueti E. coli AX-TIC-TIM-PRL-CL-CTX-CAZ-CPD-ATM-AMP-ERT-CIP-OFX-STR-ERY-SXT-TE blaCTX-M-15
CH 41 (1) E. franqueti E. coli AX-TIC-TIM-PRL-CL-FOX-CTX-CAZ-CPD-FEP-ATM-AMP-CIP-KAN-CT-E-STR-TE blaCTX-M-15
CH 42 (1) Megaloglossus woermanni E. coli AX-TIC-TIM-PRL-CL-CTX-CAZ-CPD-FEP-ATM-AMP-CIP-OFX-LEV-AK-CN-KAN-STR-ERY-TOB-SXT-TE blaCTX-M-15
CH 18 (3) M. woermanni E. coli AX-TIC-TIM-CL-FOX-CTX-CAZ-CPD-FEP-ATM-AMP-ERT-NA-CIP-AK-CN-KAN-NET-STR-E-TOB-CT-FOS blaCTX-M-15
CH 41 (2) M. woermanni E. coli AX-AMC-TIC-TIM-PRL-CL-CTX-CAZ-CPD-FEP-ATM-AMP-NA-CIP-OFX-LEV-KAN-NET-STR-ERY-TOB-SXT-TE blaCTX-M-15
CH 8 (2) E. franqueti E. cloacae AX-AMC-TIC-TIM-PRL-TPZ-CL-FOX-CTX-CAZ-CPD-FEP-ATM-ERT-NA-CIP-AK-CN-KAN-STR-TOB-CT-FOS blaCTX-M-15

CH 17 (2) E. franqueti K. pneumoniae AX-AMC-TIC-TIM-PRL-CTX-CAZ-CPD-FEP-ATM-CIP-OFX-KAN-CT blaCTX-M-15

CH 43 (1) E. franqueti K. pneumoniae AX-AMC-TIC-TIM-PRL-TPZ-CL-FOX-CTX-CAZ-CPD-FEP-ATM-CIP-CN-KAN-STR-CT-FTN-SXT-TE- blaCTX-M-15,
blaSHV-11

CH 42 (2) M. woermanni K. pneumoniae AX-AMC-TIC-TIM-PRL-CL-FOX-CTX-CAZ-CPD-FEP-ATM-NA-CIP-CN-KAN-NET-S-TOB-CT-TE-SXT blaCTX-M-15,
blaSHV-11

CH 38 (2) E. franqueti K. pneumoniae AX-AMC-TIC-TIM-PRL-TPZ-CL-FOX-CTX-CAZ-CPD-FEP-ATM-ERT-CIP-OFX-LEV-TOB-CN-KAN-NET-STR-FOS-TE-SXT blaCTX-M-15,
blaSHV-11

AX = Amoxicillin, AMC = Amoxicillin/Clavulanic Acid, TIC = Ticarcillin, TIM = Ticarcillin/Clavulanic Acid, PRL = Piperacillin, TZP = Piperacillin/Tazobactam, CL = Cephalexin, FOX =
Cefoxitin, CTX = Cefotaxime, CAZ = Ceftazidime, CPD = Cefpodoxime, FEP = Cefepime, ATM = Aztreonam, ERT = Ertapenem, IMP = Imipenem, TOB = Tobramycin, KAN = Kanamycin,
AK = Amikacin, NET = Netilmicin, CN = Gentamycin, NA = Nalidixic Acid, CIP = Ciprofloxacin, OFX = Ofloxacin, LEV = Levofloxacin, FOS = Fosfomycin, TE = Tetracycline, SXT =
Sulfamethoxazole + Trimethoprim, C = Chloramphenicol, CT = Colistin; CTX-M = Cefotaximase-Munich; SHV = Sulfhydryl Variable, STR = Streptomycin, ERY = Erythromycin, FTN =
Nitrofurantoin, CH = Chauve-souris (bats).
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4. Discussion

Some studies have demonstrated that bats can carry antibiotic resistance [6,10,13,15,40,41]. Similar
results were found in this study, but the E. coli strains were isolated from three E. franqueti and three
M. woermanni, two Pteropodidae bats with different ecologies. E. coli is considered to be common in
the physiological intestinal flora of megachiropteran bats [42,43].

The beta-lactam resistance phenotypes obtained in our study are also comparable to those obtained
in a study on bats in Algeria [11], which showed resistance to amoxicillin, amoxicillin/clavulanic acid,
aztreonam, cefotaxime, cefoxitin and ceftazidime. However, no ESBL resistance was found in bats in
Algeria. Our study also revealed higher resistance to tetracycline (81.81%), ciprofloxacin (90.90%), and
ofloxacin (54.54%) compared with that of a study carried out in Nigeria [15]. Moreover, in our data,
CTX-M-15 was found either as a single resistance determinant in E. coli (54.54%) and E. cloacae and
K. pneumoniae (9.09%) or was associated with SHV-11 in K. pneumoniae (27.27%). The prevalence of
ESBL-producing enterobacteria (37.93%) was higher than that obtained in E. coli sampled in bats and
other wild animals in Nigeria [13,15] and the Republic of Congo [44], in which no phenotype of ESBL
resistance was found. The CTX-M-15-producing K. pneumoniae was found in a gorilla in its natural
habitat in the Dzanga Ndoki National Park [27]. CTX-M-15 is the most highly detected genotype in
human clinical settings [45,46] and in Tadarida teniotis (bats) in Portugal [12]. Enterobacteria producing
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ESBL have already been found on all continents, and the most frequently encountered is E. coli, followed
by K. pneumoniae [47]. However, blaCTX-M beta-lactam resistance genes are the most common in the
human and veterinary strains [48–50]. blaCTX-M-15 is the most prevalent ESBL gene in human samples
worldwide [25] and is probably the most widely distributed ESBL gene in human strains around
the world [23]. In addition, blaCTX-M-15 and blaSHV-11 genes are recognized as plasmid-mediated
resistance genes [27,51]. All of these studies show that carriage of antibiotic resistance among wildlife
species may vary locally but is linked to the antibiotics used by humans [10,52,53].

In Gabon, the blaCTX-M-15 genes had already been identified in ESBL-producing Enterobacteriaceae
from patients in the Albert Schweitzer Hospital in Lambaréné and in poultry [31,32]. The presence of
antibiotic resistance linked to blaCTX-M-15 and blaSHV-11 genes is probably linked to antibiotics used
by humans, since our phylogenetic analyses show that all the sequences obtained in bats that carry
CTX-M-15 or SHV-11 clustered with one human bacterial strain from Turkey and Tunisia, respectively.
This suggests that the prevalence of antibiotic resistance in wild animals depends on the antibiotics
consumed by human populations at each site and the density of the human population in contact with
fauna [44].

In our samples, the highest prevalence of resistance was obtained in resistance to aminoglycosides
(kanamycin, tobramycin and streptomycin), fluoroquinolones (ciprofloxacin and nalidixic acid) and
tetracycline, which are the most common antibiotics consumed by the Gabonese people [21,54]. The
congruence between the resistance prevalence and the frequency of antibiotics consumed by local
people was also observed in Portugal [12] but not in Nigeria [15]. The low percentage of carbapenem
resistance in our study suggests that these antibiotics are still very active against multiresistant
strains [55]. Antibiotic resistance among E. coli isolated from wildlife may be acquired from the
food [56–59] they consume, the environment [60] and water [61]; resistance may also reflect the use
of antimicrobials in humans and livestock [15,52]. Further, foodborne transmission of multiresistant
E. coli has already been described as an important source of infection in mammals [15]. Foodborne
diseases such as pathogenic E. coli infections can result from food contamination [59]. We can therefore
explain the transmission of antibiotic resistance observed in our study in three main ways. First, fruit
bats may be contaminated by other mammals that already carry this type of resistance by eating the
same fruits when sharing the same ecosystem [62,63]. Second, fruit bats may also be contaminated
by drinking wastewater [61,64]. Most bats use open water sources for drinking water [65–68], like
pools in streams, lakes, ponds, slow-flowing streams, and rivers [69,70]. These sources of water are
frequently polluted, in particular near cities [61]. Several studies provide much evidence that waste
water effluent and surface water are important sources of the dissemination of ESBLs in the natural
environment and in particular in Africa [71–73]. Third, we captured some bats by hanging nets on
mango branches 2 m behind human dwellings and 1 km away from the hospital. Besides these mango
trees, there were other fruit trees, such as Aridan trees (Tetrapleura tetraptera, the fruit of which is widely
consumed in Gabon) and lemon. Hence, it is possible that some fruits partly eaten by humans and
contaminated have been ingested by bats. Fruit bats are potential vectors and reservoirs of pathogenic
bacteria such as E. coli, which carry acquired resistance [2,41,59]. The risk to human health stems from
the transmission of these pathogens from fruit bats to humans because fruits contaminated (half eaten
or masticated fruits) by bats might be eaten by humans [2,59,74,75]. Bats can also contaminate human
drinking water [61]. In this case, it would be a serious public health problem.

The phylogeny of CTX-M-15 was constructed using v. 1.8.1 in BioEdit v. 7.0.9.0 software. These
analyses were performed with a multiple alignment matrix of obtained partial CTX-M-15 sequences
and the GenBank reference sequences of human, poultry and swine from Africa (Nigeria), Asia (Japan,
China and Hong Kong), Europe (France, Turkey, Poland, Russia, Switzerland, and Czech Republic),
the Middle East (Iran), and South America (Brazil). Enterobacteriaceae carrying CTX-M-15 isolated
from fruit bats of Makokou in Gabon (in pink color).

The phylogeny of SHV-11 was constructed using v. 1.8.1 in BioEdit v. 7.0.9.0 software. These
analyses were performed with a multiple alignment matrix of obtained partial SHV-11 sequences
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and the GenBank reference sequences of human, water and cattle from Europe (Italy, Russia and
Switzerland), Asia (China, Indonesia, India and Thailand), the Middle East (Iran), and Africa (Tunisia
and Egypt). All sequences of SHV-11 were from K. pneumoniae from bats. Enterobacteriaceae carrying
SHV-11 isolated from fruit bats of Makokou in Gabon (in pink color).

5. Conclusions

This study showed for the first time the presence of multiresistant ESBL-producing enterobacteria
in Makokou fruit bats in Gabon (Central Africa). The source of the contamination has not been clearly
determined, but the presence of this type of resistance in bats suggests that these wild mammals could
spread ESBL-producing Enterobacteriacea over long distances or across the urban landscape.

Our results reinforce the need to monitor antimicrobial resistance in wild animals, in protected or
unprotected areas, in order to assess environmental responses to anthropogenic pressures.
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