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Abstract: Due to its abundance in nature and low cost, starch is one of the most relevant raw
materials for replacing synthetic polymers in a number of applications. It is generally regarded
as non-toxic, biocompatible, and biodegradable and, therefore, a safe option for biomedical, food,
and packaging applications. In this review, we focused on studies that report the use of starch as a
matrix for stabilization, incorporation, or release of bioactive compounds, and explore a wide range
of applications of starch-based materials. One of the key application areas for bioactive compounds
incorporated in starch matrices is the pharmaceutical industry, especially in orally disintegrating films.
The packaging industry has also shown great interest in using starch films, especially those with
antioxidant activity. Regarding food technology, starch can be used as a stabilizer in nanoemulsions,
thus allowing the incorporation of bioactive compounds in a variety of food types. Starch also
presents potential in the cosmetic industry as a delivery system. However, there are still several types
of industry that could benefit from the incorporation of starch matrices with bioactive compounds,
which are described in this review. In addition, the use of microbial bioactive compounds in starch
matrices represents an almost unexplored field still to be investigated.

Keywords: biopolymer; natural extract; starch

1. Introduction

In the last decades, increased concern regarding environmental impact related to
human activity has been expressed worldwide. Plastics have been extensively used in
many applications, from packaging to the medical industry, generating large amounts of
non-degradable solid waste, which are considered one of the main environmental problems
of today.

In this context, biopolymers emerge as an alternative to synthetic polymers, and can
help to reduce the environmental impact caused by the latter. Moreover, biopolymers
are promising candidates for materials used in biotechnology applications because they
tend to be compatible with diverse types of cells and tissues. In addition, they can be
modified in a wide range of manners, which raises their applicability, in addition to being
biodegradable and originating from renewable materials [1]. Among the natural polymers
that have biotechnological potential, starch can be highlighted, particularly for its physical,
chemical, and biological characteristics. It has good film-forming abilities [2,3], and tends
to form thin and transparent films, without color or odor, and presents efficient CO2 and O2
barrier characteristics, thus displaying the capacity to protect food products [4] that could
be enhanced by the addition of bioactive molecules [5]. However, starch-based materials
may present weak mechanical properties and poor long-term stability, though this could be
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improved via chemical or physical modifications in the starch matrix. Bioactive molecules
can benefit from being incorporated to starch-based matrices since it is reported that
polysaccharide microparticles, for example, tend to enhance systemic absorption of drugs
when compared to traditional formulations, as well as lowering the frequency required for
the dose [6,7]. Moreover, the incorporation of bioactive molecules in starch-based matrices
can improve their bioactive stability, thereby increasing their range of applicability [2,3].

The association of biopolymers and bioactive compounds has been extensively studied
and has resulted in the development of bioactive materials with improved properties, such
as antioxidant [8] and antimicrobial properties [9–11], which are important components
for biotechnological applications in the food, pharmaceutical, nutraceutical, and cosmetic
industries. Usually, bioactive compounds are added to enhance the characteristic properties
of these materials, such as oxidation resistance, antimi crobial activity, and mechanical and
barrier properties [12].

Starch is one of the most abundant biopolymers in the world and is greatly explored
because of its abundance and susceptibility to physical and chemical modifications, includ-
ing its capacity to form thermoplastics [13,14]. The importance of starch and the increase in
research regarding its applications can be witnessed by analyzing the publications in the last
decade. Figure 1 presents the number of publications by year from 2012 to 2021 and shows
that the number of studies published on starch doubled, from 4145 to 8688 publications,
which indicates the increasing interest in starch-related research.

Figure 1. Number of papers published per year in the last decade with the keyword “starch”. Data
extracted from the Web of Science database on 3 June 2022.

In order to select the papers that were analyzed in this review, the results from the
Web of Science database pertaining to starch-related research were refined by including the
terms “bioactive compounds” or “natural extract”, which resulted in 98 papers. Then, from
these papers, the ones that used starch as a matrix for incorporating or releasing extracts or
bioactive compounds were selected.

2. Starch

Starch is the main carbohydrate that functions as an energy store in plants and is a
significant nutritional source for animals. It is a polysaccharide that is composed of two
polymers, amylose, a linear polymer, and amylopectin, and has highly branched chains [15].
Amylose is a mainly linear polymer that consists of α (1,4) linked D-glucopyranosyl units,
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while amylopectin is a branched polymer of α-D-glucopyranosyl units that are primarily
linked by (1,4) bonds with branches resulting from (1,6) linked D-glucopyranosyl units [16].

Different sources of starches tend to have variations in the proportions of amylose and
amylopectin and, as a consequence, the resulting product can present different character-
istics. A film, for example, may present more flexibility as a result of a higher amount of
amylose; therefore, the use of new starch sources presents advantages due to the versatility
of starch, and creates numerous forms for the incorporation of bioactive compounds for
different applications [17,18].

Two main starch components, amylose and amylopectin, have different contributions
to the supramolecular structure of starch. Single helical chains of amylose disrupt the
structural order and lead to the formation of amorphous domains in starch, while double
helices of amylopectin form highly ordered crystalline domains of starch. The combination
of amorphous and crystalline domains results in the formation of three main types of
semi-crystalline starch granules, such as type A (found in cereals) [19], type B (common in
tubercles, cladodes, and fruits) [20], and type C (generally found in legumes) [21].

Starch extraction is based primarily on the cellular rupture of the plant tissue, liberating
the starch granules to a solvent (usually water) [22]. Depending on the interaction between
the starch granule and the plant tissue, physical and auxiliary chemical methods may
be used to enhance the yield of the extraction [23]. Tagliapietra et al. [24] described a
protocol of extraction of new types of starch and the principal parameters to diminish any
damage to the starch structure. They observed that the type of extraction can also affect
the amylose-amylopectin proportion of starch, further increasing the versatility of this
biopolymer [18].

An important process in starch applications is gelatinization, which occurs when starch
undergoes a structural change after being heated above a certain temperature, normally
ranging from 60 ◦C to 70 ◦C. This leads to the formation of hydrogen bonds between
hydroxyl groups of starch and water in a way that, at a determined concentration, water
acts as a plasticizer of the amorphous parts of the starch granule. Another process that must
be taken into account in the application of starch in industrial processes is retrogradation,
in which the starch molecule recovers parts of its crystalline structure. It is important to
note that the amylose retrogradation happens in a much shorter time than amylopectin
retrogradation; the former can occur in 48 h, while the latter tends to occur in 30 to
40 days [25].

In its native form, starch may not present interesting properties to the industry since
it has high water solubility and swelling power [26], low gelatinization temperature and
tendency to suffer retrogradation, in addition to having low tensile strength [27]. However,
starch can be modified through physical methods (heat-humidity treatment, annealing,
retrogradation, pre-gelatinization, and high pressure) [28], chemical methods (reticulation,
esterification, acid treatment, and oxidation) [29], enzymatic modification (using amylolytic
enzymes), or genetic mutation, in order to improve its properties for a wide range of
industrial applications [30,31].

In general, starch presents good properties for film formation [32–35], particulate
systems [36,37], and gel formation [38–42], and is adequate for incorporating bioactive
substances in controlled-release devices. An example of the process and its applications
can be seen in Figure 2.

Depending on the molecular structure of the bioactive, the bioactive compounds can
be physically or chemically incorporated into starch. Considering that starch matrices have
high swelling capability, the extracts or bioactive compounds can be physically located in
the intermolecular structure of starch, and can also act as a plasticizer in starch films [43].
In addition, starch has hydroxyl functional groups that can chemically interact with the
molecular structure of the bioactive compounds. The main possible interactions between
starch and bioactive compounds are electrostatic interactions and hydrogen bonding [18].
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Figure 2. Schematic representation of starch and sources of natural extracts and potential applications.
Figures obtained from canva.com (accessed on 25 April 2022).

3. Bioactive Compounds

Bioactive compounds have been extensively used around the world and, in recent
years, have attracted the attention of scientists since their consumption has been connected
with healthier habits, in order to prevent and treat various diseases [44]. Initially, plants
were used in the form of tinctures, teas, poultices, and powders, among other types of
pharmaceutical formulations, in an empirical way. Later, a solid scientific basis was added
to the traditional knowledge, which resulted in the development of new drugs from extracts
and oils. It was then possible to identify and isolate the bioactive substances of interest [45].

The knowledge and applications of bioactive compounds are well-known and widely
applied in different segments such as the pharmaceutical, food, and chemical industries.
Bioactive compounds are commonly found in a large number of organisms, from which
they can be isolated using extraction and biotechnological methods [46]. Several of the
recently launched pharmaceuticals are derived from plants and microorganisms isolated
from different sources [47].

Metabolites produced by plants and microorganisms are classified as either primary
or secondary metabolites. Primary metabolites provide essential substances for cellular
homeostasis, such as sugars, amino acids, nucleotides, organic acids, and fatty acids [48].
Secondary metabolites are essential in the interaction, adaptation, and survival of these
organisms. They occur in low concentrations and specific cells and may be bioactive sub-
stances that exert pharmacological and/or toxicological effects in humans or animals [49].

Secondary metabolites are formed by a wide variety of molecules; some are more
restricted and are only present within a certain species or taxonomic group [50]. However,
with the evolution of methodologies for the elucidation of chemical substances, it has
been possible to characterize the substances that are present even in small concentrations,
thus demonstrating the diversity and chemical complexity synthesized by plants and
microorganisms. These metabolites are formed according to the coevolution of plants,
insects, microorganisms, and mammals, which in turn leads to the synthesis of metabolites
with defense or attraction functions [51].

A large number of plants and microorganisms have been recognized as valuable
sources of natural substances, since they are rich in a variety of molecules that are synthe-
sized in their secondary metabolism, such as vitamins, polyphenols, terpenoids, flavonoids,
carotenoids, essential oils, and proteins, among others. The diversity of bioactive com-
pounds in plants varies according to the part of the plant, such as leaves, bark, roots,
flowers, seeds [52,53], or may be found in the fruit or vegetables produced by the plant [54].

Secondary metabolites are reported in the literature as having a wide range of bio-
logical properties, such as antimicrobial [55], antioxidant, antitumor, antiparasitic, and
anti-inflammatory properties, among others, and thus become important therapeutic re-
sources for human health [56,57]. Furthermore, according to Newman and Cragg [58],

canva.com
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natural products are the best options for obtaining new substances that can lead to effi-
cient agents against various diseases, especially against bacterial and fungal infections
and cancer.

The interest in bioactive substances of natural origin has grown over the years. The
development of bioproducts, thus, depends on natural active substances, and these are
often unstable compounds, which can cause reactions that promote a decrease or loss of
efficiency and even the degradation of the product. Consequently, new technologies have
been proposed to improve the performance of pharmaceutical, food, and cosmetic products
produced from natural raw materials, which favors their acceptance by the consumer. An
alternative that increases stability and allows the controlled release of natural substances
is the encapsulation technique using polymeric matrices. The compartmentalization of
bioactive substances in polymeric carriers with specific physicochemical properties such as
starch is, therefore, an interesting alternative for increasing the use of natural bioactive com-
pounds in different applications, as can be observed through the wide range of applications
presented in this review and summarized here in Table 1.

Table 1. Summary of starch matrices incorporated with bioactive compounds.

Nº Starch Source Starch Matrix Bioactive Source Bioactive Properties Application

[59] Waxy maize starch Microcapsules Commercially
obtained

Tocopheryl
acetate

Controlled
release Pharmaceutical

[60] Porous corn starch Coated
granules

Commercially
obtained Crocin Controlled

release Pharmaceutical

[61] Succinylated
cassava starch Nanoformulation Commercially

obtained Curcumin Anticancer Pharmaceutical

[62] Waxy maize starch Microparticles Commercially
obtained Curcumin Enhanced

stability Pharmaceutical

[63] Maize starch Particle Commercially
obtained Curcumin Enhanced

stability Pharmaceutical

[64] Corn starch and
chitosan Film Commercially

obtained Turmeric Antimicrobial Pharmaceutical

[65] Porous corn starch Encapsulation Sargassum
angustifolium Fucoxanthin Antidiabetic

effect Pharmaceutical

[66]

Blended polyvinyl
alcohol, potato

starch and
polyacrylic acid

Film Pomegranate peel
extract - Wound

healing Pharmaceutical

[67]
Gelatin and

pregelatinized
cassava starch

Film Acerola (Malpighia
emarginata) Vitamin C Enhanced

stability Pharmaceutical

[68]

Gelatin and
pregelatinized

modified cassava
starch

Film Camu-camu
(Myrciaria dubia) Vitamin C Enhanced

stability Pharmaceutical

[69] Corn starch Film Mangifera indica Phenolic
compounds Antioxidant Pharmaceutical

[70]
Pregelatinized

modified cassava
Starch

Film Cordia verbenacea Flavonoids
Antioxidant

and anti-
inflammatory

Pharmaceutical

[71] Cassava starch and
chitosan Film Oregano essential

oil - antimicrobial Packaging

[72] Cassava starch Film Propolis Phenolic
compounds

Antimicrobial
and

Antioxidant
Packaging
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Table 1. Cont.

Nº Starch Source Starch Matrix Bioactive Source Bioactive Properties Application

[9] Cassava
starch–chitosan Edible coating

Lippia sidoides
essential oil and

pomegranate peel
extract

- Food
preservation Packaging

[10] Cassava starch Film
Oregano essential
oil and pumpkin

peel extract
-

Antioxidant
and

antimicrobial
Packaging

[73] Banana starch Film Banana peel
extract - Food

conservation Packaging

[74] Corn starch Film Corn stigma
extract -

Antioxidant
and

antimicrobial
Packaging

[75] Corn starch and
gelatin Film

Guabiroba pulp
(Campomanesia

xanthocarpa)
- antioxidant Packaging

[5] Modified Starch Film Red cabbage Anthocyanin Light and
oxygen barrier Packaging

[76] Cassava Starch and
gelatin Film -

Quercetin and
tertiary butyl-
hydroquinone

Antioxidant Packaging

[77] Modified cassava
starch Film Hibiscus extract - pH Indicator Packaging

[78]

Cassava starch and
poly (butylene

adipate
co-terephthalate)

Film Araucaria
angustifolia

Phenolic
compounds Antioxidant Packaging

[79] Pine nut and
cassava starch Thermoplastic

Rosemary and
green tea aqueous

extract
-

Modification
of physico-
chemical

properties

Packaging

[80] Corn starch and
polyvinyl alcohol Film Commercially

obtained Nisin Z Antimicrobial Packaging

[11] Cassava starch Film Propolis extract - antioxidant Packaging

[8] Cassava starch Film Nopal cladode
flour - Antioxidant Packaging

[33] Rice starch Film Rice Phenolic
compounds Antioxidant Packaging

[81] Modified starch Adjuvant for
spray drying

Fungi isolated
from Brazilian

caves
Pigments Enhanced

stability
Food

technology

[82]
Blends of gum

arabic, starch and
maltodextrin

MicroencapsulationCommercially
obtained Vitamin A Enhanced

stability
Food

technology

[83] Soluble starch
Core material

in
spray-drying

Horseradish juice Phenolic
compounds

Enhanced
stability

Food
technology

[84]
Octenyl succinic

anhydride modified
starch

Nanoemulsion
stabilizer

Commercially
obtained Curcumin Enhanced

stability
Food

technology

[85]
Octenyl succinic

anhydride modified
starch

Nanoemulsion
stabilizer

Commercially
obtained Lutein Enhanced

stability
Food

technology

[86]
Octenyl succinic

anhydride modified
starch

Nanoemulsion
stabilizer

Commercially
obtained

Coenzyme
Q10

Enhanced
stability

Food
technology
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Table 1. Cont.

Nº Starch Source Starch Matrix Bioactive Source Bioactive Properties Application

[87] Chitosan and
modified starch NanoencapsulationLemon essential

oil - Enhanced
stability

Food
technology

[88] Modified starch Encapsulation
Tucumã powder

(Astrocaryum
aculeatum)

- Enhanced
stability

Food
technology

[89] Modified starch
Coating

material in
freeze-drying

Fermented tea
leaf wastewater

Phenolic
compounds

antioxidant
activity

Food
technology

[90] Chitosan and
modified starch

Film-coated
microparticles

Commercially
obtained Thymopoietin Controlled

release
Food

technology

[91] Octenyl succinate
starch

Delivery
carrier - - - Food

technology

[92] Starch biscuit - Propolis
co-product extract - Antioxidant Food

technology

[93] Pine nut starch Topical
formulation Pine nut skins Phenolic

compound Antioxidant Cosmetic

[94] Cassava starch and
cellulose Nanofiber film Tea tree essential

oil - Antimicrobial Several
applications

[95] Maize starch

Starch/nano
graphene

oxide
nanofibers

- - - Bone tissue
engineering

[96] Corn starch Film Ilex paraguariensis Phenolic
compounds Antioxidant Several

applications

[97] Cassava starch Film Catuaba extract
(Trichilia catigua) Vitamin C Antioxidant Cosmetic

4. Pharmaceutical Applications

Controlled-release devices appear as an alternative to traditional drug administration
methods, which usually present low efficacy and the necessity for large dosages [98]. They
may present different forms, such as gels, hydrogels, nanoparticles, and films [99]. The
inclusion of bioactive molecules in biopolymeric matrices allows us to direct the bioactive
to a specific site, promoting local and controlled release, and prolonging the molecule’s
action directly on the desired tissue [100].

Since 2017, starch has been used in various forms as a carrier for the release of different
drugs. Panyoyai, Shanks, and Kasapis [59] showed that microcapsules made from waxy
maize starch can be used to release tocopheryl acetate. Modified starches can provide
multiple possibilities for delivery systems. The studies by Jung et al. [60] showed that
glucan-coated porous starch granules can be used as an encapsulant for crocin, which
directly enhanced the retention of the biomolecule in the starch granules.

One strong trend in delivery systems using starch is the encapsulation of curcumin.
For this purpose, Athira, Jyothi, and Vishnu [61] developed water-soluble nanoparticles of
octenyl succinylated cassava starch loaded with curcumin aiming to enhance bioavailability
and anticancer potential. Similar research was developed by Luo, Adra, and Kim [62], who
encapsulated a curcumin-cyclodextrin complex into microparticles made from enzymatic-
modified waxy maize starch to improve the stability of curcumin against chemical oxidation
and photodegradation, and also raise its bioavailability via control of the release rate and
better stabilization in gastric conditions. In addition, Lu, Li, and Huang [63] encapsulated
curcumin into Pickering emulsions stabilized with starch particles, which enhanced the
stability of the curcumin under simulated gastric conditions.

Incorporation of turmeric in films based on starch and chitosan was performed by
Schaefer et al. [64]. Although the films containing only chitosan presented antimicrobial
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activity and adhesion to pork mucosa, the films blended with starch showed themselves to
be more adequate for biomedical applications, as it diminishes the solubility of the films.

Other studies also should be mentioned. Oliyaei et al. [65] produced fucoxanthin
encapsulated with porous starch, which exhibited therapeutic efficacy in a type 2 diabetic
mice model. Costa et al. [66] developed films composed of blends of polyvinyl alcohol,
starch and polyacrylic acid with the incorporation of pomegranate peel extract, which
showed positive results in wound healing tests (in vitro).

Starch has also been used in the formulation of orally disintegrating films, which are
alternatives to traditional methods of drug administration, especially because they have
the potential for fast release and are absorbed directly into the oral mucosa without the
need for ingestion of water. In this context, special attention has been given to biopolymers
due to their hydrophilicity, non-toxicity, and mucoadhesion properties [101].

Starch-based orally disintegrating films have a remarkable ability to deliver molecules
with pharmaceutical potential. Garcia et al. [67] produced starch and gelatin-based films
and incorporated acerola (Malpighia emarginata) extract, which contains high levels of
vitamin C. The authors observed that in films with higher concentrations of starch, vitamin
C presented greater stability when compared to those with higher concentrations of gelatin,
thus demonstrating the potential of starch as a film matrix for natural compounds. A
similar study was performed with camu-camu (Myrciaria dubia) extract [68], in which a
higher concentration of starch promoted higher hydrophilicity, raising the degradation
time of the orally disintegrating film, which could be interesting for several applications.

Guerra et al. [69] included mango peel extract in the starch to use the final film as
a carrier of phenolic compounds. The authors considered that the films based on corn
starch maintained the antioxidant activity since the incorporated phenolic compounds
did not suffer significant oxidative degradation. Bodini et al. [70] also developed orally
disintegrating films based on starch and hydroxypropyl methylcellulose and containing an
incorporated extract of Cordia verbenacea, which successfully retained anti-inflammatory and
antioxidant activity. In addition, the films presented a higher concentration of flavonoids.

As can be seen, by being non-toxic and biocompatible with various natural compounds,
starch-based materials are potential carriers of bioactive compounds, especially in the form
of orally disintegrating films.

5. Packaging Applications

Synthetic polymers have been the main component used in the packaging industry
in the last decades. Despite their remarkable characteristics, such as good mechanical
properties and relatively low production cost, they originate from fossil resources and
generate a large volume of solid residues [102]. In this context, the packaging industry
has started to search for less impactful options to replace plastic [103,104]. The main
candidates for solving the problem of the non-biodegradable residues generated by the
packaging industry are biopolymers. Since they are degraded by naturally occurring
microorganisms, they can be degraded at the disposal site under natural conditions. For
this reason, biopolymers have attracted the attention of the packaging industry in the last
decade [105].

To improve the properties of a film intended to be used in the packaging industry, a
wide variety of natural compounds can be used, such as adding antimicrobial or antioxidant
properties to the films. One of the first studies in this area was done by Pelissari et al. [71].
They prepared flexible starch-chitosan films containing incorporated oregano essential oil,
which demonstrated antimicrobial activity. However, starch-based films with incorporated
natural extracts and active packaging properties had not received much attention until
the second half of the last decade. Araújo et al. [72] produced cassava starch-based films
by casting and incorporated an ethanolic propolis extract in the carrier. The films had the
ability to release phenolic compounds with antioxidant activity and showed antimicrobial
activity against the pathogenic bacteria Staphylococcus aureus and Escherichia coli.
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Araújo et al. [9] produced a cassava starch-chitosan edible coat incorporated with
the essential oil of Lippia sidoides cham. and pomegranate peel extracted at different
concentrations and tested its effects on the quality of tomatoes. The results showed that
starch is a potential material for food packaging by lowering the weight loss when compared
to the control group of uncoated tomatoes.

Caetano et al. [10] developed cassava starch biodegradable films incorporated with
essential oils of oregano and pumpkin peel extract. The films produced were tested
regarding lipid oxidation of ground beef and protected the product until the third day
of the analysis. Furthermore, the films incorporated with the highest concentrations of
oregano essential oil presented antimicrobial activity in the tests, thus demonstrating the
potential of starch-based films and the natural compounds utilized in this study on meat
preservation. In a similar study, Taweechat et al. [73] obtained promising results for the
conservation of food by using films produced with banana starch incorporated with banana
peel extract in the conservation of minced pork. Boeira et al. [74] developed a film based
on corn starch and extract of corn stigma that demonstrated antioxidant properties and
reduced lipid oxidation by 60%. In addition, the film showed antimicrobial activity against
mesophilic and psychrotrophic bacteria.

Malherbi et al. [75] produced biodegradable films based on a blend of gelatin and corn
starch incorporated with gabiroba (Campomanesia xanthocarpa) pulp, a natural antioxidant,
and analyzed its application in the storage of extra virgin olive oil. They noted that
the stored product was within the Brazilian parameters for the studied period (15 days).
Cheng et al. [5] obtained an improvement in the light and oxygen barrier properties of the
films incorporated with red cabbage anthocyanin extract, as well as antioxidant properties,
which could improve the shelf life of the product. In the work of Tongdeesoontorn et al. [76],
films composed of starch and gelatin were able to postpone the oxidation of lard, besides
delaying the discoloration of the product. This occurred when using quercetin and thertiary
butylhydroquinone (TBHQ) as antioxidants.

Peralta et al. [77] used an aqueous hibiscus extract incorporated in films based on
three different natural polymers (chitosan, gelatin, and starch) to produce a pH-sensitive
indicator based on the stability of the pigment, and obtained a visible and pH-dependent
variation in color for all polymeric films. The gelatin film had the best color variation.
Nevertheless, starch films presented a similar variation in color to gelatin, which represents
the potential of the films produced as a potential pH indicator in biopolymeric films.

Another natural extract with the potential to be incorporated into biopolymeric films
is the Araucaria angustifolia extract, as demonstrated by Da Silva et al. [78], which was incor-
porated into films based on cassava starch and poly (butylene adipate co-terephthalate),
also known as PBAT. Additionally, Muller et al. [79] demonstrated that cassava starch could
be replaced by A. angustifolia starch, which was extracted from its seeds. The authors also
successfully incorporated rosemary and green tea aqueous extract in the films, and the
extract directly influenced the physicochemical properties of the produced films.

An interesting approach to the development of active packaging materials is the
incorporation of antibacterial molecules into the biopolymer. An example of this case can
be seen in the research performed by De Oliveira et al. [80] who developed a composite
film based on starch and polyvinyl alcohol with different concentrations of maleic acid,
cellulose nanocrystals, and nisin Z, which showed activity against Listeria monocytogenes.

Cunha et al. [11] investigated the production of cassava starch-based films incorpo-
rated with propolis extract that resulted in a more flexible film with antioxidant properties,
which are characteristics that may be desired for certain packaging objectives. Similar
results were also obtained by Farias et al. [8] with the use of nopal cladode flour to reinforce
starch-based films. This provided the films with antioxidant activity, and showed a shift on
FTIR spectra in the region associated with hydroxyl groups, thus indicating the importance
of this functional group in the bonding between the starch matrix and the bioactive com-
pounds. Da Silva, Velasco, and Fakhouri [33] demonstrated that, depending on the starch
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source, the film can demonstrate antioxidant properties itself, since films produced from
different types of rice showed the presence of phenolic compounds.

Therefore, the natural properties of starch films, allied to the potential of the active
compounds’ biodiversity, show that the packaging industry can take advantage of these
products while reducing the amount of non-biodegradable residues generated, and im-
proving the functions of the food-packaging.

6. Food Applications

Starch can also be used as a raw material to encapsulate compounds with interesting
properties for food applications, especially molecules that are sensitive to oxidation or
degradation under different conditions, and which diminishes the product’s final quality.
Encapsulation techniques, such as spray drying, extrusion, and emulsification can be used
with starch to encapsulate the desired compound [106].

Souza et al. [81] used starch as an adjuvant for spray drying to encapsulate pig-
ments produced by fungi isolated from caves in Brazil, which leads to high pigment reten-
tion and could improve the stability of the compound during storage. Ribeiro et al. [82]
used blends of starch, gum arabic, and maltodextrin to encapsulate vitamin A, and ob-
served that the presence of starch in the blend led to a slower release rate of the molecule.
Tomsone et al. [83] also used starch, in addition to other biopolymers, as a core mate-
rial in spray-drying of horseradish juice, and obtained larger and less soluble particles
using starch.

Starch has also been used as a stabilizer in nanoemulsions, as shown by Abbas et al. [84].
A curcumin oil-water nanoemulsion was formed, and octenyl succinic anhydride-modified
starch, an amphiphilic polysaccharide, was used as a stabilizer for the emulsion. Octenyl-
modified starch was also used as an emulsifier by Doost et al. [85] to encapsulate lutein
in order to produce a nutraceutical beverage, and by Niu et al. [86], who produced a
nanoemulsion loaded with coenzyme Q10 using the same modified starch as a stabilizer.
The octenyl-modified starch was more stable than the other agents tested (whey protein
isolate and lecithin) in gastric digestion conditions. Furthermore, nanoemulsions were
also prepared by Hasani, Ojagh, and Ghorbani [87], who used microparticles of chitosan
and modified starch to encapsulate essential oil from lemon, which is a compound that
is sensitive to adverse storage conditions. The encapsulation of the two biopolymers
demonstrated their capacity to protect the bioactive compound from volatilization, thus
increasing the stability and increasing the bioactive potential to be used as a food additive.

Another method that can be used to encapsulate compounds in biopolymers is freeze-
drying, as shown in Silva et al. [88]. The authors encapsulated tucumã (Astrocaryum
aculeatum) pulp with various biopolymers and observed that the modified starch was the
one with best bioactive compound retention. Similar work was performed by Ravichai
and Muangrat [89], who used different biopolymers to encapsulate phenolic compounds
derived from fermented Miang wastewater by freeze-drying, and the authors selected
gum arabic as the best coating material for encapsulating the highest amount of phenolic
compounds. Even so, it is important to note that the Miang powder encapsulated with
modified starch maintained its antioxidant properties.

Zheng et al. [90] produced a yogurt containing double polysaccharide film-coated
microparticles to release of thymopoietin. The two different coatings, composed of chi-
tosan and modified starch, allowed the bioactive compound to be delivered to the colon,
maximizing its biological activity. In the work of Wang et al. [91], the authors used octenyl
succinate starch as a carrier for the delivery of bioactive food components, successfully
using 5-aminosalicylic acid and bovine serum albumin as a model and demonstrated the
potential of this type of modified starch as a delivery carrier.

Natural extracts can also be used to supplement starch-based foods, as is the case of
Rodrigues et al. [92], who used a propolis co-product in the supplementation of a starch
biscuit based on canola oil, which prevented lipid oxidation.
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Considering the studies in the literature regarding the use of starch with natural
extracts, it becomes clear that there is great potential for developing functional foods
that could be used as raw material and enhance the quality of a wide range of products.
Moreover, these functional foods would bring several health benefits to consumers.

7. Other Applications

Biopolymers are already broadly used in cosmetic formulations, especially as moistur-
izers and thickeners; starch can form hydrogels with cross-linked networks that tend to
have high water absorption capacity [107]. Therefore, starch matrices, incorporated with
natural extracts, have been studied for cosmetic purposes. Daudt et al. [93] used pinhão
derivatives, starch and coat extract, as raw materials for cosmetics. The authors found that
the pinhão derivatives are sources of phenolic compounds with antioxidant activity.

Silveira et al. [94] developed films based on starch and cellulose nanofiber that were
incorporated with tea tree essential oil and investigated their antimicrobial applications.
The authors observed that the film could inhibit the growth of the Gram-positive bacteria
Sthaphylococcus aureus and the yeast Candida albicans, thus showing that the biopolymers
present potential as a matrix for the release of natural compounds, and resulting in a
product with a diverse range of applications. An interesting study was developed by
Wu et al. [95], who used electrospun starch-derived nanographene oxide as scaffolds for
bone tissue engineering.

Hornung et al. [96] produced starch-based films incorporated with extract of yerba
mate and demonstrated that the films maintained antioxidant activity and total phenolic
and total flavonoids content, as well as other desirable properties such as lower moisture
content, solubility, and water vapor permeability. In addition, this work demonstrated
how the incorporation of extracts in the film can affect its physical properties, lowering the
degree of crystallinity, and suggesting that the extract can act as a plasticizer by increasing
the amorphous region in starch.

Another study that examined the use of starch as a matrix in cosmetic formulations
was developed by Pereira, Lonny, and Mali [97], who incorporated catuaba (Trichilia catigua)
extract in starch films, and the films loaded with the highest concentration of catuaba
extract showed promising results for use as a delivery system in cosmetic formulations.

8. Conclusions

Therefore, as the need for substitution of plastic material increases, being a biopoly-
mer with good availability, non-toxicity, and biodegradability, starch appears to be an
alternative and is a good candidate for use as a matrix in a wide range of applications,
especially when incorporated with bioactive compounds. The incorporation of bioactive
compounds in biopolymeric matrices can enhance the bioactive stability, one of the main
points of concern in the use of certain types of bioactive compounds, allowing these de-
vices to be used in applications in pharmaceutical products, packaging, food technology,
and others. As an example, it is possible to cite the incorporation of curcumin in starch
matrices [61–63]. Orally disintegrating films based on starch have also demonstrated good
potential for incorporating bioactive compounds, especially when blended with other
biopolymers [67,68].

In the packaging industry, bioactive compounds that add antioxidant activity to the
films and coatings are the main targets [10]. In addition, molecules with antimicrobial
activities also have good potential to be used, especially in active packaging [80].

Starch has also been well studied as an adjuvant for spray drying and as a stabilizer
for nanoemulsions [82,86], demonstrating good applicability in the food industry [90].

Just a few studies in the literature have explored starch-based matrices for cosmetic
applications [97], making this area one of the most interesting trends in the utilization of
starch for incorporating bioactive compounds.
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In this review, we highlighted the potential use of starch as matrix for incorporation
and release of a wide variety of bioactive compounds, which enhances its stability and
increases its range of application.
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