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Abstract

Perceiving the geometry of surrounding space is a multisensory process, crucial to contextualizing object
perception and guiding navigation behavior. Humans can make judgments about surrounding spaces from
reverberation cues, caused by sounds reflecting off multiple interior surfaces. However, it remains unclear
how the brain represents reverberant spaces separately from sound sources. Here, we report separable
neural signatures of auditory space and source perception during magnetoencephalography (MEG) recording
as subjects listened to brief sounds convolved with monaural room impulse responses (RIRs). The decoding
signature of sound sources began at 57 ms after stimulus onset and peaked at 130 ms, while space decoding
started at 138 ms and peaked at 386 ms. Importantly, these neuromagnetic responses were readily
dissociable in form and time: while sound source decoding exhibited an early and transient response, the
neural signature of space was sustained and independent of the original source that produced it. The
reverberant space response was robust to variations in sound source, and vice versa, indicating a general-
ized response not tied to specific source-space combinations. These results provide the first neuromagnetic
evidence for robust, dissociable auditory source and reverberant space representations in the human brain
and reveal the temporal dynamics of how auditory scene analysis extracts percepts from complex naturalistic
auditory signals.

Key words: audition; auditory scene analysis; magnetoencephalography; multivariate pattern analysis; reverber-
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We often unconsciously process echoes to help navigate places or localize objects. However, very little is
known about how the human brain performs auditory space analysis and, in particular, segregates direct
sound-source information from the mixture of reverberant echoes that characterize the surrounding
environment. Here, we used magnetoencephalography (MEG) to characterize the time courses of auditory
source and space perception in the human brain. We found that the brain responses to spatial extent in
reverberant environments were separable from those to the sounds that produced the reverberations and
robust to variations in those sounds. Our results demonstrate the existence of dedicated neural mecha-
nisms that separately process auditory reverberations and sources within the first few hundred milliseconds

\of hearing. j
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Introduction

Imagine walking into a cathedral at night. Even in dark-
ness, the passage from the narrow entryway to the large
nave is immediately apparent. The reverberations pro-
duced by multiple echoes of footfalls, speech, and other
sounds produce a percept of the surrounding space,
distinct from the sound sources that created the echoes.

Much prior work in audition has investigated the spatial
localization and perceptual organization of sound sources
(Middlebrooks and Green, 1991; Bregman, 1994; Blauert,
1997; Bizley and Cohen, 2013). The surrounding environ-
ment of a sound source (i.e., the various surfaces from
which reverberant reflections arise) has primarily been
characterized by its effects on sound-source perception.
The auditory system typically works to counteract the
distorting effects of reverberation from interior surfaces,
facilitating perceptual robustness of stimulus spatial po-
sition (Litovsky et al., 1999; Shinn-Cunningham, 2003;
Devore et al., 2009; Brown et al., 2015), speaker identity
(Brandewie and Zahorik, 2010; Watkins and Raimond,
2013), or estimated loudness (Stecker and Hafter, 2000;
Zahorik and Wightman, 2001). Neurons in the auditory
cortex have been shown to represent denoised or der-
everberated versions of speech sounds even when pre-
sented under those distorting conditions (Mesgarani et al.,
2014). Yet beyond being an acoustic nuisance to over-
come, reverberations themselves provide informative
cues about the environment. Humans perceive cues such
as the ratio of direct to reverberant acoustic energy (DRR)
to estimate sound-source distances (Mershon and King,
1975; Bronkhorst and Houtgast, 1999; Zahorik, 2001;
Zahorik et al., 2005; Kolarik et al., 2016), and reverbera-
tion time (RT, a measure of reverberant energy decay) to
estimate the sizes of enclosed rooms (McGrath et al.,
1999; Hameed et al., 2004; Pop and Cabrera, 2005; Ca-
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brera and Pop, 2006; Lokki et al., 2011; Kaplanis et al.,
2014).

Direct and reflected environmental sounds usually ar-
rive at the ear in a single stream; their perceptual sepa-
ration is an underdetermined computational problem
whose resolution by the auditory system remains unclear.
Recent behavioral work suggests that the auditory system
performs a scene analysis operation in which natural
reverberation is separated from the originating sound
source and analyzed to extract environmental information
(Traer and McDermott, 2016). The neural basis of that
operation, however, remains largely unexplored.

Here, to investigate the auditory coding of environmental
space in the human brain, we recorded magnetoencepha-
lography (MEG) responses to auditory stimuli comprising
sounds enclosed by reverberant spaces. We operationalized
spaces as the auditory room impulse response (RIR) of
real-world spaces of different spatial extent (small to large
rooms). The stimuli were constructed by convolving brief
anechoic impact sounds of different objects with the spatial
RIRs, allowing us to vary spatial extent and type of source
independently. We hypothesized that both the sound source
and the type of spaces could be separably decoded from
the neural responses to naturalistic reverberant sounds. We
found that neuromagnetic responses to spatialized sounds
were readily dissociable into representations of the source
and its reverberant enclosing space and that these repre-
sentations were robust to environmental variations. Our
MEG results constitute the first neuromagnetic marker of
auditory spatial extent, dissociable from sound-source dis-
crimination, suggesting that sound sources and auditory
space are processed discretely in the human brain.

Materials and Methods

We conducted two MEG experiments. Experiment 1
aimed to investigate whether auditory space and source
representations are encoded in MEG signals and whether
they are dissociable from each other. Experiment 2 was a
control study examining whether neural representations
reflect the timing of neural operations or low-level stimu-
lus properties.

Experiment 1: separating MEG signatures of sound
sources and reverberant spaces
Participants

We recruited 14 healthy volunteers (nine females, age
mean = SD = 27.9 * 5.2 years) with self-reported normal
hearing and no history of neurologic or psychiatric dis-
ease. Participants were compensated for their time and
provided informed consent in accordance with guidelines
of the MIT Committee on the Use of Humans as Experi-
mental Subjects (COUHES).

Stimuli

Stimuli were recordings of three different brief monaural
anechoic impact sounds (hand pat, pole tap, and ball
bounce), averaging 176 ms in duration. Each sound was
convolved with three different monaural RIRs correspond-
ing to real-world spaces of three different sizes, yielding a
total of nine spatialized sound conditions. The RIRs were
selected from a set described in detail in (Traer and
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McDermott, 2016). Briefly, the RIRs were measured by
recording repeated Golay sequences broadcast from a
portable speaker and computing the impulse response
from the averaged result (Zhou et al., 1992). The use of
Golay sequences allowed ambient and transient noise
from busy real-world sites to be averaged out of the final
response. The speaker-recorder relationship was con-
stant at ~1.5 m straight ahead; thus, differences between
IRs did not encode variations in egocentric spatial posi-
tion (azimuth, elevation, or distance) relative to the virtual
sound sources in our stimuli. Rooms consisted of three
real-world everyday spaces, a kitchen, a hallway, and a
gym, with estimated volumes (based on room boundary
dimensions) of ~50, 130, and 600 mS. Reverberation
times (RTg,, the time for an acoustic signal to drop by 60
dB) of the small-, medium-, and large-space RIRs were
0.25, 0.51, and 0.68 s, respectively, averaged across
frequencies from 20 Hz to 16 kHz.

MEG testing protocol

We presented stimuli to participants diotically through
tubal-insert earphones (Etymotic Research, Elk Grove Vil-
lage) at a comfortable volume, ~70 dB SPL. Stimulus
conditions were presented in random order (Psychophys-
ics Toolbox; RRID: SCR_002881) with stimulus onset
asynchronies (SOAs) jittered between 2000 and 2200 ms.
Every three to five trials (four on average), a deviant
vigilance target (brief speech sound) was presented,
prompting participants to press a button and blink. SOAs
between vigilance target and the following stimulus were
2500 ms. Target trials were excluded from analysis. Each
experimental session lasted ~65 min and was divided
into 15 runs containing 10 trials from each condition, for a
total of 150 trials per condition in the entire session.

Behavioral testing protocol

In our MEG scanning protocol, we used a passive-
listening paradigm to avoid contamination of brain signals
with motor-response artifacts. Thus, to test explicit per-
ceptual judgments of the auditory scene stimuli, we con-
ducted separate behavioral tests of space and sound-
source discrimination. Participants (N = 14) listened to
sequential pairs of the stimuli described above, separated
by 1500-ms SOA. In separate blocks, participants made
speeded same-different judgments on the sound sources
or spaces in the stimulus pairs. Condition pairs and se-
quences were counterbalanced for each participant, and
the order of source- and space-discrimination blocks was
counterbalanced across participants. Over the course of
four blocks lasting ~40 min, participants completed a
total of 36 trials per category. We collected reaction time
and accuracy data from participants’ responses.

MEG data acquisition

MEG recordings were obtained with an Elekta Neuro-
mag TRIUX system (Elekta), with continuous whole-brain
data acquisition at 1 kHz from 306 sensors (204 planar
gradiometers; 102 magnetometers), filtered between 0.3
and 330 Hz. Head motion was continuously tracked
through a set of five head-position indicator coils affixed
to the participant’s head.
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MEG preprocessing and analysis

Data were motion compensated and spatiotemporally
filtered offline (Taulu et al., 2004; Taulu and Simola, 2006)
using Maxfilter software (Elekta). All further analysis was
conducted using a combination of Brainstorm software
(Tadel et al.,, 2011; RRID: SCR_001761) and Matlab
(Natick; RRID: SCR_001622) in-house analysis scripts.
We extracted epochs for each stimulus presentation with
a 200-ms prestimulus baseline and 1000-ms poststimulus
onset, removed the baseline mean from each sensor, and
applied a 30-Hz low-pass filter.

MEG multivariate analysis

To determine the time course of reverberant space
and source discrimination, we analyzed MEG data using a
linear support vector machine (SVM) classifier (Chang and
Lin, 2011; RRID:SCR_010243; http://www.csie.nt-
u.edu.tw/~cjlin/libsvm/). For each time point t, the MEG
sensor data were arranged in a 306-dimensional pattern
vector for each of the M = 150 trials per condition (Fig.
1B). To increase SNR and reduce computational load, the
M single-trial pattern vectors per condition were randomly
subaveraged in groups of k = 10 to yield M/k subaver-
aged pattern vectors per condition. We then used a leave-
one-out cross-validation approach to compute the SVM
classifier performance in discriminating between every
pair of conditions. The whole process was repeated K =
100 times, yielding an overall classifier decoding accuracy
between every pair of conditions for every time point t
(Fig. 1B).

The decoding accuracies were then arranged into 9 X 9
representational dissimilarity matrices (RDMs; Krieges-
korte et al., 2008), one per time point t, indexed by
condition and with the diagonal undefined. To generate
the single-sound decoding time course (Fig. 1C), a mean
accuracy was computed from the individual pairwise ac-
curacies of the RDM for each time point.

For reverberant space decoding, conditions were
pooled across the three sound-sources, resulting in 3M
trials for each space. An SVM classifier was trained to
discriminate between every pair of spaces and results
were averaged across all three pairs. Decoding proce-
dures were similar as above, but subaveraging was in-
creased to k = 30 and repetitions to K = 300. For sound-
source decoding, we pooled across the three spaces and
performed the corresponding analyses (Fig. 2A).

Statistical significance of MEG decoding time courses
was determined with permutation tests against the null
hypothesis of chance-level (50%) MEG decoding accu-
racy. For each of 1000 permutations, each time point per
participant was randomly multiplied by +1 or -1 to pro-
duce an empirical distribution of decoding accuracies
from which p values could be derived. Cluster-size infer-
ence (Maris and Oostenveld, 2007) was used to control
for multiple comparisons, with the cluster-definition
threshold set at p = 0.05 (one-sided). Clusters were re-
ported based on exceeding the 95% of the maximal
cluster-size distribution. 95% confidence intervals (Cls)
for onset and peak latencies were determined by boot-
strapping the participants 1000 times and repeating the
analysis to obtain empirical distributions.
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Figure 1. Stimulus conditions, MEG classification scheme, and single-sound decoding time course. A, Stimulus design. Three brief
sounds were convolved with three different RIRs to produce nine sound sources spatialized in reverberant environments. B, MEG
pattern vectors were used to train an SVM classifier to discriminate every pair of stimulus conditions (three sound sources in three
different space sizes each). Decoding accuracies across every pair of conditions were arranged in 9 X 9 decoding matrices, one per
time point t. C, Averaging across all condition pairs (shaded matrix partition) for each time point t resulted in a single-sound decoding
time course. Lines below time course indicates significant time points (N = 14, cluster-definition threshold, p < 0.05, 1000
permutations). Decoding peaked at 156 ms; error bars represent 95% CI.

MEG cross-classification analysis

To determine the robustness of space size and sound-
source representations to environmental variation, we
performed a cross-classification analysis in which differ-
ent orthogonal experimental factors were assigned to
training and testing sets. For example, the cross-classi-
fication of reverberant space (Fig. 2B) was conducted by
training the SVM classifier to discriminate spaces on two
sound sources and testing it on the third sound source.
This analysis was repeated for all such train-test combi-
nations and the results were averaged to produce the final
cross-classification accuracy plots. SVM decoding was
performed similarly to the single-condition analyses, but
the training set had 2M trials, subaveraging was set to k =
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20, and repetitions to K = 150. Cross-classification of
sound-source identity across space sizes was performed
with corresponding analyses.

MEG spatial (sensorwise) analysis

The above analyses used signals from the entire
suite of MEG sensors to maximize information for de-
coding sources and spaces. To characterize the spatial
distribution of the decoding time course, we conducted a
sensorwise analysis of the MEG-response patterns. Spe-
cifically, since the 306 MEG sensors are physically ar-
ranged in 102 triplets (each triplet consisting of one
magnetometer and two gradiometers in the same loca-
tion), we repeated the multivariate analyses described

eNeuro.org
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Figure 2. Separable space and source identity decoding. A, Individual conditions were pooled across source identity (left, top) or
space size (left, bottom) in separate analyses. Classification analysis was then performed on the orthogonal stimulus dimension to
establish the time course with which the brain discriminated between space (red) and source identity (blue). Sound-source classification
peaked at 130 ms, while space classification peaked at 386 ms. Significance indicators and latency error bars on plots same as in
Figure 1. B, Space was classified across sound sources and vice versa. Left panel, Cross-classification example in which a classifier
was trained to discriminate between spaces on sound sources 1 and 2, then tested on space discrimination on source 3. Right panel,
Sound-source cross-classification example in which a classifier was trained to discriminate between sound sources on space sizes
1 and 2, then tested on sound-source discrimination on space 3. B, Results from all nine such pairwise train-test combinations were
averaged to produce a classification time course in which the train and test conditions contained different experimental factors.
Sound-source cross-classification peaked at 132 ms, while space cross-classification peaked at 385 ms. Significance bars below
time courses and latency error bars same as in Figure 1.

above at each of the 102 sensor locations but using a
three-dimensional (rather than 306-dimensional) pattern
vector for each location. This yielded a 9 X 9 RDM of
pairwise classification accuracies at each sensor location

January/February 2017, 4(1) e0007-17.2017

and at each time point. Thus, rather than the single whole-
brain decoding time course shown in Figures 1 and 2, we
generated 102 decoding time courses, one for each sen-
sor triplet location, visualized as sensor maps (Fig. 3).
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Figure 3. Sensorwise decoding of source identity and space size. MEG decoding time courses were computed separately for 102
sensor locations yielding decoding sensor maps. A, Sensor map of sound source decoding at the peak of the effect (130 ms). B,
Sensor map of space size decoding at the peak of the effect (386 ms). Significant decoding is indicated with a black circle over the
sensor position (p < 0.01; corrected for false discovery rate (FDR) across sensors and time).

Statistically significant decoding accuracies were deter-
mined via permutation analysis (N = 14, sign permutation
test with 1000 samples, p < 0.01, corrected for FDR
across sensor positions at each time point).

MEG temporal generalization analysis

The above analyses trained and tested each SVM clas-
sifier at a unique time point, which necessarily limits
information about the persistence or transience of neural
representations. Thus, to further interrogate the temporal
dynamics of reverberant space and source identity pro-
cessing, we generalized the above analysis by training
each classifier at a given time point t and testing against
all other time points t’. This yielded a two-dimensional
temporal generalization (“time-time”) matrix, where the x-
and y-axes index the training and testing time points,
respectively, of the classifiers (Fig. 4; King and Dehaene,
2014). Statistical significance maps for each matrix were
generated via t test across participants for each time-time
coordinate, p < 0.05, FDR corrected.

Analysis of stimulus properties

We generated time-frequency cochleograms from each
stimulus using a Matlab-based toolbox (Slaney, 1998;
Ellis, 2009) that emulates the filtering properties of the
human cochlea. Each wave form was standardized to
44,100 samples and passed through a gammatone filter-
bank (64 subbands, center frequencies 20-20,000 Hz),
summing the energy within overlapping 20-ms windows in
5-ms steps. The cochleograms were then correlated pair-
wise at each time point, with 64-element pattern vectors
comprising the energy per frequency subband in each
5-ms bin. The resulting Pearson correlation coefficients
were then subtracted from 1 and averaged to compute
the stimulus dissimilarity measure for that time point (Fig.
6A). Repeating this analysis across time points yielded the
overall cochleogram-based dissimilarity curve (Fig. 6B).
The same analysis was performed on conditions pooled
by source identity and space size (Fig. 6C) to produce
separate source and space dissimilarity time courses.

January/February 2017, 4(1) e0007-17.2017

Significance of the peak mismatches with the MEG de-
coding peaks was determined via examination of confi-
dence intervals from bootstrapping MEG peak latencies
10,000 times.

Experiment 2: controlling for stimulus duration

For experiment 2, we recorded MEG data while partic-
ipants (N = 16) listened to stimuli comprising the same
impact sounds as in the main experiment, but repeated 10
times at 200-ms intervals, and then convolved with the
same RIRs used in the main experiment. The 2-s wave
form was then linearly ramped up for 1 s and down for 1
s to avoid strong attacks at the onset of the stimulus (Fig.
7A). Consequently, each stimulus contained its source
and spatial information distributed throughout the 2000-ms
repetition window. We reasoned that if peak decoding
latencies reflected the neural process underlying space
perception, they would not be strongly yoked to stimulus
temporal structure and would thus not be strongly shifted
compared with experiment 1. By contrast, MEG decoding
signatures yoked to the stimulus temporal structure
should not only last throughout the duration of the stim-
ulus, but peak at ~1000 ms, the peak of the stimulus
amplitude envelope.

Because of the longer stimulus duration, experimental
sessions were ~10 min longer than those in the main
experiment. The MEG time series extracted from the neu-
ral data spanned 2701 rather than 1201 time points, from
-200 to +2500 ms relative to stimulus onset. All other
parameters (organization of stimulus conditions, task,
presentation procedure, significance calculations) re-
mained the same as in experiment 1. In computing boot-
strapped peak latencies, we included only the time during
which the stimulus was actively playing, between 0 and
2000 ms.

All statistical analyses are summarized in Table 1, with
superscript letters in specific Results indicating rows in
the table.
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Figure 4. Temporal generalization matrix of auditory source and space decoding time courses. Left column shows the generalized
decoding profiles of space (A) and source (B) decoding. Right column shows the statistically significant results (t test against 50%,

p < 0.05, FDR corrected).

Results

Experiment 1

Auditory representations discriminated sound sources
and reverberant spaces with temporally dissociable and
generalizable decoding trajectories

We applied SVM to decode every pair of conditions
(Fig. 1B; Carlson et al., 2013; Cichy et al., 2014, 2015). The
pairwise decoding accuracies were averaged to create an
overall single-condition classification time course. Classi-
fication performance increased sharply from chance lev-
els shortly after stimulus onset, reaching significance at
59 ms (95% Cl: 12-64 ms)® and peaking at 156 ms
(119-240 ms)°. These results indicate the MEG signal was
able to reliably distinguish between individual stimulus
conditions.

To dissociate the neuronal dynamics of space size and
sound-source discrimination, we repeated this analysis,
but pooled trials across the corresponding conditions
before decoding. This resulted in 3 X 3 RDM matrices
(Fig. 2A, left), and averaging across the shaded regions
produced the time courses of space size (red) and source
identity (blue) decoding (Fig. 2A, right). The transient na-
ture of source discrimination, reaching significance at 57

January/February 2017, 4(1) e0007-17.2017

ms (37-60 ms)° and peaking at 130 ms (116-140 ms), is
in sharp contrast to the slower, sustained response of the
reverberant space decoding time course, which exhibited
a significantly later decoding accuracy significance onset
[138 ms (71-150) ms)°] and peak [386 ms (246-395 ms)’;
onset latency difference, p = 0.019; peak latency differ-
ence, p < 0.001". This suggests that sound-source in-
formation is discriminated early by the auditory system,
followed by reliable reverberant space discrimination. In
experiment 2, we found that sources and spaces were still
decodable when all stimuli were controlled for duration,
suggesting that the timing is not solely dependent on
stimulus duration (Fig. 8).

Stable source and reverberant space representations
should be tolerant to other changing properties in a
scene, such as low-level spectral differences between
sound sources or spectral modulation differences be-
tween RIRs. Thus, we conducted a cross-classification
analysis in which we assigned space size conditions from
two sources to a training set, and the size conditions from
the remaining source to a testing set (Fig. 2B, left). Results
from all such train/test combinations were averaged to
produce a measure of space size information generalized

eNeuro.org
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Table 1. Summary of key statistical tests
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Line Data structure
a None assumed: classification
accuracy over time

Type of test
Bootstrap N = 14 participants
1000 times to obtain empirical distribution
of significant decoding onset
Bootstrap N = 14 participants
1000 times to obtain empirical distribution
of significant decoding peak
Bootstrap N = 14 participants
1000 times to obtain empirical distribution
of significant sound-source decoding onset
Bootstrap N = 14 participants
1000 times to obtain empirical distribution
of significant sound-source decoding peak
Bootstrap N = 14 participants
1000 times to obtain empirical distribution
of significant space decoding onset
Bootstrap N = 14 participants
1000 times to obtain empirical distribution
of significant space decoding peak
Compare bootstrapped empirical distribution
of space decoding onset with
mean source decoding onset
Compare bootstrapped empirical distribution
of space decoding peak with
mean source decoding peak
Bootstrap N = 14 participants 1000 times
to obtain empirical distribution of significant
sound-source cross-decoding peaks
Bootstrap N = 14 participants 1000 times
to obtain empirical distribution of significant
space cross-decoding peaks
Bootstrapping N = 14 pool, 10,000
iterations of Spearman correlation between
behavioral reaction time and MEG peak latency
Bootstrapping N = 14 pool, 10,000 iterations
of Spearman correlation between behavioral
accuracy and MEG peak accuracy
Compare bootstrapped empirical distribution
of source decoding peak with
source dissimilarity peak
Compare bootstrapped empirical distribution
of space decoding peak with mean
space dissimilarity peak
Paired t test between
mean correlations
Bootstrap N = 16 participants 1000 times to
obtain empirical distribution of
significant source decoding onset
Bootstrap N = 16 participants 1000 times
to obtain empirical distribution of
significant source decoding onset

b None assumed: classification
accuracy over time

c None assumed: classification
accuracy over time

d None assumed: classification
accuracy over time

e None assumed: classification
accuracy over time

f None assumed: classification
accuracy over time

g None assumed: onsets of source and
space decoding

h None assumed: peaks of source
and space decoding

i None assumed: cross-classification
accuracy over time

i None assumed: cross-classification
accuracy over time

k None assumed: MEG-behavior
correlations

None assumed: MEG-behavior
correlations

None assumed: empirical distribution
of source decoding peak

n None assumed: empirical distribution
of space decoding peak

o Normal distribution: MEG-model
correlations over time points

p None assumed: classification
accuracy over time

q None assumed: classification
accuracy over time

95% confidence intervals
Onset Cl: 12-64 ms

Peak Cl: 119-240 ms

Onset Cl: 37-60 ms

Peak Cl: 116-140 ms

Onset Cl: 71-150 ms

Peak Cl: 246-395 ms

Space onset Cl: 71-150 ms

Space peak Cl: 246-395 ms

Onset Cl: 40-63 ms

Peak Cl: 111-139 ms

Onset Cl: 125-356 ms
Peak Cl: 251-513 ms

Cl: .227-.895

Cl: .325-.795

Peak Cl: 116-140 ms

Peak Cl: 246-395 ms

Mean difference Cl: 0.0470-0.0507

Source peak Cl: 96-312 ms

Space peak Cl: 71-790 ms

across sound sources, with sound sources not overlap-
ping between training and testing sets. We also per-
formed an analogous analysis to cross-classify sound
sources across spaces. The results (Fig. 2B, right) indi-
cate time courses consistent with those in the pooled
analysis, with source cross-decoding onset at 57 ms
(40-63 ms), peaking at 132 ms (111-139 ms)’; and space
cross-decoding onset at 148 ms (125-136 ms), peaking at
385 ms (251-513 ms). This demonstrates that the neural
representations of reverberant space and sound source
are robust to variations in an orthogonal dimension.
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Source identity and reverberant space were best de-
coded by bilateral temporal sensors

To determine the spatial distribution of the decoding
response, we repeated the main analysis on sensor clus-
ters in 102 distinct locations across the MEG helmet. This
analysis revealed that the bulk of significant decoding
performance (p < 0.01, FDR corrected across sensors at
each time point) was concentrated in sensors over bilat-
eral temporal regions (Fig. 3). While the spatial interpre-
tation of such an analysis is limited in resolution, the
results implicate bilateral auditory cortical regions as gen-
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Figure 5. Behavior correlates with MEG decoding data. Assessment of linear relationships between response times and MEG peak
decoding latencies (A), as well as behavioral and decoding accuracies (B). Bootstrapping the participant sample (N = 14, p < 0.05)
10,000 times revealed significant correlations between RT and latency (r = 0.66, p = 0.0060) and behavioral and decoding accuracy
(r = 0.59, p < 0.0001). Individual condition pairs are denoted by source (So; red) or space (Sp; blue) labels, with numerals indicating
which conditions were compared. For space conditions: 1, small; 2, medium; 3, large. For source conditions: 1, hand pat; 2, pole tap;

3, ball bounce.

erators of the underlying neural signals distinguishing
sound source and space size information.

Dynamics of reverberant space representations are
slower and more sustained compared with sound-
source representations

To examine the temporal dynamics of source and
space representations, we conducted a temporal gener-
alization analysis (Cichy et al., 2014; King and Dehaene,
2014) in which a classifier trained at one time point was
tested on all other time points. This produced a two-
dimensional matrix showing generalized decoding profiles
for space and source identity (Fig. 4). The results suggest
differences in processing dynamics: the narrow “diagonal
chain” pattern shown for source identity decoding in Fig-
ure 4B indicates that classifiers trained at a time point t
only generalize well to neighboring time points; by con-
trast, the space profile (Fig. 4A) exhibits a broader off-
diagonal decoding regime, indicating that classifiers were
able to discriminate between space conditions over ex-
tended time periods. This suggests that reverberant
space representations are mediated by more metastable,
sustained underlying neural activity, compared with tran-
sient, dynamic activity mediating sound-source represen-
tations (King and Dehaene, 2014).

MEG decoding dynamics predict relative timing and ac-
curacy of behavioral judgments

To extract behavioral parameters that could be com-
pared with the dynamics of the MEG signal, we binned all
trials into appropriate source or space comparison cate-
gories (e.g., Spacel vs Space2, Sourcel vs Source3,
etc.). Within each category, we computed each partici-
pant’s mean accuracy and mean response time (mean RT
estimated by fitting a -y distribution to the response time
data; Palmer et al., 2011). This yielded mean accuracies
and RTs in three source-comparison and three space-
comparison conditions, analogous to the pooled MEG
decoding analysis. Behavioral accuracies and RTs were
then correlated with MEG peak decoding accuracies and
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peak latencies, respectively. Significance and confidence
intervals were determined by bootstrapping the behav-
ioral and MEG participant pools 10,000 times. Behavioral
RTs and peak latencies were significantly correlated (r =
0.66, p = 0.0060)%, as were behavioral accuracies and
peak decoding accuracies (r = 0.59, p < 0.0001)' (Fig. 5).

MEG decoding peaks are not explained by stimulus
temporal structure

To determine the extent to which the MEG signal could
be explained by low-level responses to stimulus proper-
ties, we generated and correlated cochleograms pairwise
from each stimulus condition. This analysis yielded an
overall cochleogram-based dissimilarity curve (Fig. 6B)
and, when performed on conditions pooled by source
identity and space size, separate source and space dis-
similarity curves (Fig. 6C). The cochleogram-based dis-
similarity peaks (source, 495 ms; space, 795 ms) were
significantly mismatched with the MEG decoding peaks (p
< 0.001 for both source™ and space” via comparing to
bootstrapped MEG peak latencies), a disparity that sug-
gests the neural signal reflects processing other than the
temporal structure of the stimulus.

Reverberant spaces are encoded in a stepwise size pro-
gression

The MEG space decoding results shown in Figure 2B
could be suggestive of an encoded size scale (i.e., a
small-to-large progression), or they could simply reflect a
generic category difference between the three space con-
ditions. To evaluate whether MEG responses were con-
sistent with ordinal versus categorical spatial extent
coding, we devised simple models of space representa-
tion in the form of RDMs that reflected the hypothesized
space extent representations. That is, each pairwise rep-
resentational distance in the model 9 X 9 condition matrix
was either 0 or 1, reflecting a within versus between
separation (categorical space model), or 0, 1, or 2 reflect-
ing a pure ordinal separation between space conditions
respective of sound-source identity (ordinal space model).
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Figure 6. Stimulus dissimilarity analysis based on cochleogram data. A, Cochleograms were generated for each stimulus, discretized
into 200 5-ms bins and 64 frequency subbands. Each cochleogram thus comprised 200 64 X 1 pattern vectors. For each pair of
stimuli, pattern vectors across frequency subbands were correlated at corresponding time points and subtracted from 1. B, Overall
cochleogram-based dissimilarity. The final dissimilarity value at time t is an average of all pairwise correlations at that time point. Peak
overall cochleogram dissimilarity occurred at 500 ms; peak MEG dissimilarity (decoding accuracy) is shown for comparison. C, Pooled
cochleogram-based dissimilarity across space size and source identity. Pairwise correlations were performed and averaged
analogously to pooled decoding analysis. MEG pooled decoding peaks for source identity and space size are shown for reference;
corresponding stimulus dissimilarity peaks were significantly offset (o < 0.05 for both source identity and space).

We then correlated (using Spearman rank to capture or-
dinal relationships) the model RDMs with the brain-
response RDMs at every time point between the first and
last time point of significant space decoding in the pooled
analysis (138-801 ms poststimulus onset). Figure 4
shows that an ordinal space model correlates significantly
more strongly with the neural data than a categorical
model (663 time points, paired t test, p < 0.00001)°,
suggesting an ordinal representation of spatial size.

Experiment 2
Temporally extended stimuli elicit decoding dynamics
similar to those of single-pulse stimuli

To examine whether peak decoding latencies reflect the
timing of a neural operation or depend strictly on stimulus
properties, we conducted a second MEG experiment ex-
amining the effect of longer (2000 ms) stimulus durations
on decoding latencies. As shown in Figure 8B, sound-
source decoding peaked at 167 ms (96-312 ms)P, while
space decoding peaked at 237 ms (71-790 ms)9. Re-
sponses remained significant throughout much of the
stimulus duration but peaked early on, despite the ampli-
tude envelope peaking in the middle of the stimulus, 1000
ms postonset. Thus, the neuromagnetic decoding signal
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reflects processing dissociable from the source and
space information distributed throughout the longer stim-
ulus.

Discussion

We investigated the neural representation of transient
sound sources and their reverberant environments using
multivariate pattern analysis (Carlson et al., 2013; Cichy
et al., 2014) on MEG brain responses to spatialized
sounds. Our results showed that overall individual sound
conditions were decoded starting at ~60 ms poststimulus
onset, peaking at 156 ms. Next, we characterized the
separate neural time courses of source- and RIR-specific
discrimination. These decoding profiles emerged with
markedly different time courses, with the source discrim-
ination time course exhibiting a rapid-onset transient re-
sponse peaking at 130 ms, and the space discrimination
time course ramping up more gradually to peak at 386 ms.
Generalization of the responses across low-level varia-
tions was revealed by a cross-classification analysis in
which training and testing trials contained different exper-
imental factors. This suggests that these representations
are tolerant to differences in amplitude envelope and
spectral distributions, which accompany environmental
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Figure 7. Comparison of MEG neural representations to a categorical versus an ordinal scene size model. Representational
dissimilarity matrices (RDMs) of a categorical and an ordinal model (A) were correlated with the MEG data from 138-801 ms (the
temporal window of significant space size decoding) to assess the nature of MEG scene size representations. B, Results indicate the
MEG representations have significantly higher correlation with the ordinal than the categorical scene size model. Spearman
correlation coefficients p were averaged across time points in the temporal window. Error bars represent =SEM.

changes commonly encountered in real-world situations.
A sensorwise decoding analysis showed that bilateral
temporal cortical areas contributed most heavily to the
decoding performance. MEG decoding peaks were sig-
nificantly correlated with behavioral responses collected
separately. Finally, the MEG decoding signal did not share
the temporal profile of interstimulus correlations and

peaked at similar times even when the stimulus was
temporally extended, suggesting that it is separate from
the stimulus temporal structure. Taken together, the re-
sults suggest that the MEG decoding time series capture
the neural processes mediating extraction of sound
source and reverberant information from naturalistic stim-
uli.
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Figure 8. Space and sound source decoding with repetition-window stimuli. A, Representative waveforms of single and repeated
stimuli. Repeated stimuli were produced by concatenation of anechoic stimuli, followed by RIR convolution and linear amplitude
ramping. B, Source (blue) and space (red) decoding. Sound-source classification peaked at 167 (96-312) ms, while space
classification peaked at 237 (71-790) ms. Color-coded lines below time courses indicate significant time points, as in experiment 1;
latency error bars indicate bootstrapped confidence intervals as in experiment 1. Gray vertical lines indicate stimulus onset and
approximate offset.
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Dissociable and independent decoding time courses
The pooled and cross-classified source and space de-
coding time courses (Figs. 2, 3) indicate that reverberant
space and sound-source representations are dissociable
and independent in the brain. The early sound-source
decoding peak suggests that source or object identity
information is primarily carried by the direct sound and
accompanying early reflections (the first, most nearby
surface echoes; Hameed et al., 2004). By contrast, the
later space decoding peak and concurrent falloff in source
decoding suggest that reverberant decay primarily carries
spatial extent information. This is broadly consistent with
physical properties of large spaces, i.e., the longer prop-
agation time for reflections to reach the listener, as well as
longer RTg, reverberant decay times, in large spaces.
However, even when source and space information was
distributed throughout the stimuli equated for duration in
experiment 2, decoding peaks maintained a similar win-
dow of absolute and relative timing (Fig. 8), suggesting a
consistent neural basis for the decoding time courses.
However, testing other temporally extended nonimpulsive
stimuli (e.g., speech, other environmental or synthetic
sounds) constitutes a fruitful avenue for future work.

Bilateral temporal decoding loci

We observed a bilateral temporal decoding response to
the stimulus conditions for space sizes as well as sound-
source identities. While the spatial resolution of the sen-
sorwise analysis cannot determine the exact loci of the
signal sources, our results are consistent with a bilateral
(Alain et al., 2001; Arnott et al., 2004) account of a spatial
auditory processing stream, distinguishable from auditory
object identification as early as nonprimary auditory cor-
tical regions (Ahveninen et al., 2006, 2013). Room size
judgments have been found to be correlated with sound-
source distance judgments (Kolarik et al., 2013); while this
may suggest a shared mechanism, it is unlikely to indicate
distance as a direct proxy for size: the impulse responses
in our stimuli kept sound-source distance constant, and
the right-lateralized temporal processing of egocentric
distance (Mathiak et al., 2003) is inconsistent with the
bilateral decoding pattern in our results. Still, a source/
reverberant space separation operation by the auditory
system would facilitate computing DRR for distance per-
ception. Our data do not address this question directly
but, along with Traer and McDermott (2016), suggest an
intriguing counterpoint to interpretations that DRR com-
putation is ill-posed and thus unlikely (Kopco and Shinn-
Cunningham, 2011), or is bypassed via perception of
other covarying cues (Larsen et al., 2008).

It has been speculated (Epstein, 2011) that spatial au-
ditory scenes may be processed by the retrosplenial com-
plex (RSC) and parahippocampal place area (PPA),
occipital and ventral temporal brain regions known to be
responsive to visually and haptically presented scene
attributes (Wolbers et al., 2011; Park et al., 2015). The
present sensorwise analysis most clearly implicates
auditory-specific cortices in coding space size, although it
does not preclude RSC and PPA. In addition to further
examining this question, future work could compare the
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neural responses of blind and sighted listeners: people
who are blind or visually impaired tend to weight echoes
more heavily in perceiving their environments, whether
passively listening (Després et al., 2005; Dufour et al.,
2005) or actively echolocating (Teng et al., 2012; Kolarik
et al., 2014; Thaler, 2015). Thus, given increased reliance
on auditory information in blindness, frameworks of neu-
roplasticity espousing fundamental modality indepen-
dence in neural function (Peelen and Kastner, 2009)
suggest that RSC similarly represents auditory spatial
scenes in blind persons.

Dynamics in relation to previous electrophysiological
work

Most prior neuroimaging work on spatial auditory per-
ception, including studies that used reverberant stimuli,
measured brain responses to sound-source properties,
rather than properties of the enclosing space. The space-
and source-decoding peak latencies found here are sim-
ilar to that of numerous evoked neuromagnetic responses
such as the mismatch negativity (Mathiak et al., 2003;
King et al., 2014) and N1m response (Paloméaki et al.,
2005). This generally suggests that the neural activity
underlying these evoked components may also be driving
the source-specific MEG decoding performance, while
low-level, preattentive-evoked responses with shorter la-
tencies, such as the P50 (Mathiak et al., 2003), do not
reflect neural activity that distinguishes among the spatial
conditions, despite overlapping origins in bilateral tempo-
ral cortex (Liégeois-Chauvel et al., 1994). Later responses
to naturalistic spatial stimuli include elevation-related pro-
cessing starting at 200 ms (Fujiki et al., 2002) and a
component indexing 3D “spatiality” of sound sources
(Tiitinen et al., 2006), a reverberation-mediated parameter
that may share similar underlying mechanisms with the
space decoding signal in our results.

The metrics of space representation

While behavioral room size judgments have been pre-
viously shown to be driven by reverberant information, the
precise relationship between volumetric spatial extent,
reverberation time, and perceived room size is nonlinear
and not fully understood (Mershon and King, 1975;
Hameed et al., 2004; Kaplanis et al., 2014). We used a
well-discriminable sequence of impulse responses from
differently sized real-world spaces to establish an ordinal
representation of spatial extent, but future work can more
precisely characterize the metric by which the brain en-
codes auditory spatial extent and the interactions of mon-
aural and binaural components of the signal. Future work
may also more precisely map different acoustic compo-
nents of the space signal to different neural correlates of
perception, thus far explored almost exclusively in the
behavioral realm (Kaplanis et al., 2014; but see Lawless
and Vigeant, 2015). While spatial hearing is often consid-
ered inherently binaural, spatial properties carried by re-
verberation are not always so: diotic monaural stimuli
have been used to judge spaces (Berkley and Allen, 1993;
Traer and McDermott, 2016) and may in fact provide more
salient spatial information than when listening binaurally
(Shinn-Cunningham and Ram, 2003). Even when using
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binaural impulse responses, monaural cues in the sound
are among the strongest predictors of perceived room
size judgments (Pop and Cabrera, 2005; Zahorik, 2009).
Still, binaural aspects of reverberation contain cues to
spatially relevant percepts, such as spaciousness and
apparent source width (Kaplanis et al., 2014), that our
data do not address, and binaural listening may “squelch”
or suppress perceived reverberation (Gelfand and Hoch-
berg, 1976; but see Ellis et al., 2015). Finally, our RIRs
were chosen from a set with RTgy averaging <1 s, and we
did not explore effects of much longer times, which tend
to correspond to larger spaces. Thus, our reverberant
diotic stimuli likely reflect a subset of possible salient
spatial extent cues that a real-world listener would en-
counter.

We note that space size as operationalized here is best
defined for indoor environments; outdoor environments
also have reverberant impulse responses, but their utility
for judging spatial scale per se (vs sound-source distance;
cf. Zahorik, 2002) is unclear. Although spatial layout can
be recovered computationally from a few initial echoes
(Dokmanic et al., 2013), human observers do not seem to
have access to this information in real-world spaces (Cal-
leri et al.,, 2016). Even in the visual scene and animal
literatures, outdoor spaces have not been operationalized
consistently (Kravitz et al., 2011; Park et al., 2011; Geva-
sagiv et al., 2015; Vanderelst et al., 2016), and thus the
scene (and scene size) construct in general remains a
topic for further research. However, recent work in scene
processing has established that visual environments are
represented along separable and complementary dimen-
sions of spatial boundary and content (Kravitz et al., 2011;
Park et al., 2011, 2015; Vaziri et al., 2014; Cichy et al.,
2016). Thus, a visual scene may be characterized by, e.g.,
its encompassing shape and size, as well as by the num-
ber, type, and configuration of objects it contains (Oliva
and Torralba, 2001; Oliva, 2013). Given that both visual
and haptic scene exploration elicits responses in scene-
selective brain regions (Wolbers et al., 2011), it is reason-
able to surmise (cf. Epstein, 2011) some multimodality of
scene representation. As a reliable index of perceived
auditory scene extent (i.e., room size), natural reverbera-
tion could thus trigger scene-specific processing in a
temporal regime that overlaps with those reported in re-
cent M/EEG studies of visual scenes (Cichy et al., 2016;
Harel et al., 2016).

In sum, the current study presents the first neuromag-
netic evidence for the separation of auditory scenes into
source and reverberant space representations in the
brain. The neurodynamic profile of the processing stream
is dissociable from that of sound sources in the scene,
robust to variations in those sound sources, and predicts
both timing and accuracy of corresponding behavioral
judgments. Our results establish an auditory basis for
neuroscientific investigations of scene processing, sug-
gest the spatial importance of the reverberant decay in
perceived scene properties, and lay the groundwork for
future auditory and multisensory studies of perceptual
and neural correlates of environmental geometry.
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